Frames of the Leech lattice

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Rowena A. L. Betty)

September 15, 2011
Shanghai Jiao Tong University

McKay's construction of the Leech lattice (1972)

- A Hadamard matrix of order n is a square matrix with entries ± 1 satisfying $H H^{T}=n I$.
- When $n=12$, there exists a unique (up to equivalence) Hadamard matrix H, and one may take H with $H+H^{T}=-2 I$.

The Leech lattice L is defined as

$$
L=\frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
I & H-I \\
0 & 4 I
\end{array}\right] \subset \frac{1}{2} \mathbb{Z}^{24} \subset \mathbb{R}^{24}
$$

L is an integral lattice.

$$
L \supset \frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
4 I & 4(H-I) \\
0 & 4 I
\end{array}\right]=\operatorname{Span}_{\mathbb{Z}} 2 I=2 \mathbb{Z}^{24}
$$

$L=\frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}I & H-I \\ 0 & 4 I\end{array}\right]=$ Leech lattice

$$
\min L=\min \left\{\|x\|^{2} \mid 0 \neq x \in L\right\}=4 .
$$

$\left\{x \in L \mid\|x\|^{2}=4\right\}$ is a spherical 11-design with 196560 points, giving a unique optimal kissing configuration (Bannai-Sloane, 1981).
A frame of L is $\left\{ \pm f_{1}, \pm f_{2}, \ldots, \pm f_{24}\right\}$ with $\left(f_{i}, f_{j}\right)=4 \delta_{i j}$. We also call the sublattice $F=\bigoplus_{i=1}^{24} f_{i}$ a frame.

Example

$$
L \supset \frac{1}{2} \operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
4 I & 4(H-I) \\
0 & 4 I
\end{array}\right]=\operatorname{Span}_{\mathbb{Z}}\left[\begin{array}{cc}
2 I & 0 \\
0 & 2 I
\end{array}\right]=2 \mathbb{Z}^{24} .
$$

There are many others. Equivalence by the isometry group of L. If F is a frame, then

$$
F \subset L \subset \frac{1}{4} F .
$$

$F \subset L \subset \frac{1}{4} F, F \cong 2 \mathbb{Z}^{24}$

$L / F \subset \frac{1}{4} F / F \cong \mathbb{Z}_{4}^{24}$.
A code over \mathbb{Z}_{4} of length n is a submodule of \mathbb{Z}_{4}^{n}.

$$
F \rightarrow \mathcal{C}=L / F \subset \mathbb{Z}_{4}^{24} .
$$

Conversely, given a code \mathcal{C} over \mathbb{Z}_{4} of length 24 , there is a frame $F \subset L$ s.t. $\mathcal{C}=L / F$ if and only if
(1) \mathcal{C} is self-dual,
(2) $\forall x \in \mathcal{C}$, the Euclidean weight $\mathrm{wt}(x)$ is divisible by 8 ,
(3) $\min \{\operatorname{wt}(x) \mid x \in \mathcal{C}, x \neq 0\}=16$.

Definitions

- $(x, y)=\sum_{i=1}^{n} x_{i} y_{i}$, where $x, y \in \mathbb{Z}_{4}^{n}$,
- a code of length n over \mathbb{Z}_{4} is a submodule $\mathcal{C} \subset \mathbb{Z}_{4}^{n}$,
- \mathcal{C} is self-dual if $\mathcal{C}=\mathcal{C}^{\perp}$, where $\mathcal{C}^{\perp}=\left\{x \in \mathbb{Z}_{4}^{n} \mid(x, y)=0(\forall y \in \mathcal{C})\right\}$,
- For $u \in \mathbb{Z}_{4}^{n}$, the Euclidean weight of u is

$$
\mathrm{wt}(u)=\sum_{i=1}^{n} u_{i}^{2},
$$

where we regard $u_{i} \in\{0,1,2,-1\} \subset \mathbb{Z}$.

$F \subset L \subset \frac{1}{4} F, F \cong 2 \mathbb{Z}^{24}$

$L / F \subset \frac{1}{4} F / F \cong \mathbb{Z}_{4}^{24}$.
Given a code \mathcal{C} over \mathbb{Z}_{4} of length 24 , there is a frame $F \subset L$ s.t. $\mathcal{C}=L / F$ if and only if
(1) \mathcal{C} is self-dual,
(2) $\forall x \in \mathcal{C}$, the Euclidean weight $\mathrm{wt}(x)$ is divisible by 8 ,
(3) $\min \{\operatorname{wt}(x) \mid x \in \mathcal{C}, x \neq 0\}=16$.

A code \mathcal{C} is called type II if (1) and (2) hold.
If (1), (2) and (3) hold, then \mathcal{C} is called an extremal type II code over \mathbb{Z}_{4} of length 24 .

$F \rightarrow \mathcal{C}=L / F \subset \frac{1}{4} F / F \cong \mathbb{Z}_{4}^{24}:$ Equivalence

Aut $L=$ the group of isometries of L.
Consider another $F^{\prime} \rightarrow \mathcal{C}^{\prime}=L / F^{\prime} \subset \frac{1}{4} F^{\prime} / F^{\prime} \cong \mathbb{Z}_{4}^{24}$. Then

$$
\begin{aligned}
F & \cong F^{\prime} \text { under Aut } L \\
& \Longleftrightarrow \mathcal{C} \text { and } \mathcal{C}^{\prime} \text { are monomially equivalent. }
\end{aligned}
$$

frames in $L \leftrightarrow$ extremal type II code over \mathbb{Z}_{4} of length 24 . (\leftrightarrow gives a correspondence of equivalence classes.)
Dong-Mason-Zhu (1994): every frame of the Leech lattice gives rise to the Virasoro frame of the moonshine vertex operator algebra.
Example of an extremal type II code over \mathbb{Z}_{4} of length 24:
Bonnecaze-Solé-Calderbank (1995): Hensel lifted Golay code.

Residue code $=\mathcal{C} \bmod 2=\operatorname{Res}(\mathcal{C})$

If \mathcal{C} is a code over \mathbb{Z}_{4}, then its modulo 2 reduction is called the residue code and is denoted by

$$
\operatorname{Res}(\mathcal{C}) \subset \mathbb{F}_{2}^{n}
$$

Example: For the Hensel lifted Golay code $\mathcal{C}, \operatorname{Res}(\mathcal{C})$ is the Golay code.
\mathcal{C} : type II code over \mathbb{Z}_{4}
$\Longrightarrow \operatorname{Res}(\mathcal{C})$ is a doubly even binary code containing 1
\mathcal{C} : extremal type II code of length 24 over \mathbb{Z}_{4}
$\Longrightarrow \operatorname{Res}(\mathcal{C})^{\perp}$ has minimum weight at least 4 .

Residue code $=\mathcal{C} \bmod 2=\operatorname{Res}(\mathcal{C})$

Determine $\{$ frames of $L\} / \sim$, with the help of the residue map $F \mapsto \operatorname{Res}(L / F)$:
$\{F:$ frame of $L\} / \sim \rightarrow\left\{\begin{array}{l}\text { doubly even } C \subset \mathbb{F}_{2}^{24} \\ \text { length }=24, \mathbf{1} \in C \\ \text { min } C^{\perp} \geq 4 \\ \text { easily enumerated }\end{array}\right\} / \sim$
This map is neither injective nor surjective.

- Calderbank-Sloane (with Young) (1997): $\{$ doubly even self-dual codes\} \subset image.
- The image was determined by Harada-Lam-M., but not preimages.
- Rains (1999) determined the preimage for $C=$ Golay.

is equivalent to

but the map is more naturally considered as:

This is surjective (Gaborit, 1996).
Suppose C is a doubly even code of length 24 with $\mathbf{1} \in C$.

$$
[A] \text { generates } C, \quad\left[\begin{array}{l}
A \\
B
\end{array}\right] \text { generates } C^{\perp} \text {. }
$$

Then there exists a matrix \tilde{A} with $\tilde{A} \bmod 2=A$ such that

$$
\mathcal{C}=\mathbb{Z}_{4} \text {-span of }\left[\begin{array}{c}
\tilde{A} \\
2 B
\end{array}\right]
$$

is a type II code over \mathbb{Z}_{4} (i.e., $\operatorname{Res}(\mathcal{C})=C$).

$$
\operatorname{Res}^{-1}(C) \subset\left\{\mathbb{Z}_{4} \text {-span of } \left.\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right] \right\rvert\, M:(0,1) \text { matrix }\right\}
$$

$[A]$ generates $C, \quad\left[\begin{array}{l}A \\ B\end{array}\right]$ generates C^{\perp}.

$\left\{\mathcal{C}: \begin{array}{c}\text { type II code } \\ \text { of length } 24 \\ \text { over } \mathbb{Z}_{4}\end{array}\right\} / \sim \xrightarrow{\text { Res }}\left\{\begin{array}{l}\text { doubly even } C \subset \mathbb{F}_{2}^{24} \\ \text { length }=24,1 \in C\end{array}\right\} / \sim$

$$
\operatorname{Res}^{-1}(C) \subset\left\{\mathbb{Z}_{4} \text {-span of } \left.\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right] \right\rvert\, M:(0,1) \text { matrix }\right\}
$$

In fact,

$$
\operatorname{Res}^{-1}(C)=\left\{\mathbb{Z}_{4} \text {-span of } \left.\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right] \right\rvert\, M \in U_{0}\right\}
$$

where

$$
U_{0}=\left\{M \mid M A^{T}+A M^{T}=0, \operatorname{Diag}\left(A M^{T}\right)+\operatorname{Diag}\left(\mathbf{1} M^{T}\right)=0\right\} .
$$

U_{0} is a linear subspace of matrices.

$[A]$ generates $C, \quad\left[\begin{array}{l}A \\ B\end{array}\right]$ generates C^{\perp}.

Set

$$
\begin{aligned}
U_{0} & =\left\{M \mid M A^{T}+A M^{T}=0, \operatorname{Diag}\left(A M^{T}\right)+\operatorname{Diag}\left(\mathbf{1} M^{T}\right)=0\right\} . \\
W_{0} & =\left\langle\left\{M \in U_{0} \mid M A^{T}=0\right\},\left\{A E_{i i} \mid 1 \leq i \leq n\right\}\right\rangle
\end{aligned}
$$

Theorem

Aut (C) acts on U_{0} / W_{0} as an affine transformation group. Moreover, there is a bijection

$$
\begin{aligned}
& \operatorname{Aut}(C) \text {-orbits on } U_{0} / W_{0} \rightarrow\left\{\begin{array}{c}
\text { eq. class } \\
\text { of type II } \\
\operatorname{codes} \mathcal{C} \text { with } \\
\operatorname{Res}(\mathcal{C})=C
\end{array}\right\} \\
& M \bmod W_{0} \mapsto \quad \begin{array}{c}
\text { eq. class of } \\
\text { codes generated by }
\end{array}\left[\begin{array}{c}
\tilde{A}+2 M \\
2 B
\end{array}\right]
\end{aligned}
$$

Practical Implementation

Theorem

Aut (C) acts on U_{0} / W_{0} as an affine transformation group. Moreover, there is a bijection

$$
\operatorname{Aut}(C) \text {-orbits on } U_{0} / W_{0} \rightarrow\left\{\begin{array}{c}
\text { eq. class } \\
\text { of type II } \\
\operatorname{codes} \mathcal{C} \text { with } \\
\operatorname{Res}(\mathcal{C})=C
\end{array}\right\}
$$

$$
\operatorname{Aut}(C) \rightarrow \operatorname{AGL}\left(U_{0} / W_{0}\right) .
$$

Since $\operatorname{AGL}\left(m, \mathbb{F}_{2}\right) \subset G L\left(1+m, \mathbb{F}_{2}\right)$, we actually construct a linear representation:

$$
\operatorname{Aut}(C) \rightarrow \mathrm{GL}\left(1+m, \mathbb{F}_{2}\right),
$$

where $m=\operatorname{dim} U_{0} / W_{0}$.

$C=$ Golay code

Aut $C=M_{24}$: Mathieu group.

$$
M_{24} \rightarrow \mathrm{AGL}(44,2) \rightarrow \mathrm{GL}(45,2)
$$

acts on a hyperplane \mathcal{H} of \mathbb{F}_{2}^{45}, and orbits of M_{24} on $\mathcal{H} \leftrightarrow$ type II codes \mathcal{C} with $\operatorname{Res}(\mathcal{C})=C$.

The 2^{44} elements of \mathcal{H} are divided into orbits under M_{24}. As an estimate, there are at least

$$
\frac{2^{44}}{\left|M_{24}\right|}=71856.7 \ldots
$$

orbits.
We extract only those orbits which correspond to extremal codes \rightarrow only 13 orbits (an independent verification of computation due to Rains (1999)).

$F \rightarrow \mathcal{C}=L / F \rightarrow \operatorname{Res}(\mathcal{C})$

Rains (1999): there are exactly 13 extremal type II codes \mathcal{C} s.t. $\operatorname{Res}(\mathcal{C})$ is the binary extended Golay code.

Harada-Lam-M. there is a unique extremal type II code \mathcal{C} s.t. $\operatorname{dim} \operatorname{Res}(\mathcal{C})=6$ (This is related to the code used by Miyamoto (2004) to construct $\left.V^{\natural}\right)$. \# of $\operatorname{Res}(\mathcal{C})$ is also computed.

$\operatorname{dim} \operatorname{Res}(\mathcal{C})$	6	7	8	9	10	11	12
$\#$ of $\operatorname{Res}(\mathcal{C})$	1	7	32	60	49	21	9
$\# \mathcal{C}$	1	5	31	178	764	1886	$1890+13$

So there are $1+5+31+178+764+1886+1890+13=4768$ frames of the Leech lattice.

