Super Catalan numbers and Krawtchouk polynomials

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
joint work with Evangelos Georgiadis (MIT)
and Hajime Tanaka (Tohoku Univ.)

arXiv:1101.1579
November 26, 2011
Kyushu University

Binomial coefficients

$$
\binom{n}{r}=\frac{n(n-1) \cdots(n-r+1)}{r(r-1) \cdots 1}=\frac{n!}{r!(n-r)!}
$$

is an integer, because it counts the number of r-subsets of an n-set. The middle binomial coefficient

$$
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
$$

is not only an integer, but also divisible by $n+1$. That is, the Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{(n+1)!n!}
$$

is an integer, because....

Catalan numbers

The Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\frac{(2 n)!}{(n+1)!n!}
$$

is an integer, because it counts the number of different ways $n+1$ factors can be completely parenthesized:

$$
\begin{gathered}
((a b) c) d,(a(b c)) d,(a b)(c d), a((b c) d), a(b(c d)) \\
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
\end{gathered}
$$

Super Catalan numbers

Catalan (1874) also observed

$$
\begin{gathered}
S(m, n)=\frac{(2 m)!(2 n)!}{m!n!(m+n)!} \in \mathbb{Z} \\
S(0, n)=\binom{2 n}{n}, \quad S(1, n)=2 C_{n}=\frac{2}{n+1}\binom{2 n}{n} .
\end{gathered}
$$

Gessel-Xin (2005) gave a combinatorial reason for $S(2, n), S(3, n) \in \mathbb{Z}$.
On the other hand, von Szily's identity (1894)

$$
S(m, n)=\sum_{k \in \mathbb{Z}}(-1)^{k}\binom{2 m}{m+k}\binom{2 n}{n-k}
$$

implies that $S(m, n) \in \mathbb{Z}$.

Combinatorial interpretation of von Szily's identity

$$
\begin{aligned}
& S(m, n)=\sum_{k \in \mathbb{Z}}(-1)^{k}\binom{2 m}{m+k}\binom{2 n}{n-k} \\
& =(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h}\binom{2 m}{h}\binom{2 n}{m+n-h} \quad(h=m+k) \\
& S(m, n)=(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h}\left|\left\{\begin{array}{l}
X \\
\left\lvert\, \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}\right.
\end{array}\right\}\right|, \\
& \text { where }|M|=2 m,|N|=2 n, M \cap N=\emptyset \text {. }
\end{aligned}
$$

Lattice paths

Let $|M|=2 m,|N|=2 n, M \cap N=\emptyset$, so $|M \cup N|=2(m+n)$.

$$
\left|\left\{\begin{array}{l|l}
X & \begin{array}{l}
X \subset M \cup N \\
|X|=m+n
\end{array}
\end{array}\right\}\right|
$$

counts the number of all lattice paths from $(0,0)$ to ($m+n, m+n$) consisting of unit steps \rightarrow or \uparrow.

$|M|=2 m,|N|=2 n, M \cap N=\emptyset$

$$
\left|\left\{\begin{array}{l|l}
X & \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}
\end{array}\right\}\right|
$$

counts the number of all lattice paths from $(0,0)$ to $(m+n, m+n)$ consisting of unit steps \rightarrow or \uparrow, such that the height is h after the $2 m$-th step.

$$
\begin{aligned}
m & =6 \\
n & =4 \\
2 m & =12 \\
h & =5
\end{aligned}
$$

$|M|=2 m,|N|=2 n, M \cap N=\emptyset$

$S(m, n)$

$$
\begin{aligned}
& =(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h}\binom{2 m}{h}\binom{2 n}{m+n-h} \\
& =(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h}\left|\left\{\begin{array}{l}
X \subset M \cup N \\
X|X|=m+n \\
|X \cap M|=h
\end{array}\right\}\right|
\end{aligned}
$$

$$
=(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h}\left|\left\{\begin{array}{l}
\text { lattice paths from }(0,0) \text { to } \\
(m+n, m+n) \text { consisting of unit } \\
\text { steps } \rightarrow \text { or } \uparrow, \text { such that the height } \\
\text { is } h \text { after the } 2 m \text {-th step }
\end{array}\right\}\right|
$$

$|M|=2 m,|N|=2 n, M \cap N=\emptyset$

Let $\mathbb{F}_{2}=\{0,1\}$ denote the finite field with two elements (equipped with binary addition and multiplication). For a vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{F}_{2}^{d}$,

$$
\begin{aligned}
\operatorname{supp}(\boldsymbol{x}) & =\left\{i \mid 1 \leq i \leq d, x_{i}=1\right\} \\
\mathrm{wt}(\boldsymbol{x}) & =|\operatorname{supp}(\boldsymbol{x})|
\end{aligned}
$$

Let $\boldsymbol{z}=(1, \ldots, 1,0, \ldots, 0), \operatorname{supp}(\boldsymbol{z})=2 m$. Then

$$
\left|\left\{\begin{array}{l|l}
X \left\lvert\, \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}\right.
\end{array}\right\}\right|=\sum_{\substack{\left.\boldsymbol{x} \in \mathbb{F}_{2}^{2(m+n)} \\
\text { wt } \boldsymbol{x}\right)=m+n \\
\operatorname{supp}(\boldsymbol{x}) \cap \operatorname{supp}(\boldsymbol{z})=h}} 1
$$

counts the number of all binary vectors $\boldsymbol{x} \in \mathbb{F}_{2}^{2(m+n)}$ of weight $m+n$, such that $\operatorname{supp}(\boldsymbol{x}) \cap \operatorname{supp}(\boldsymbol{z})=h$.

$$
\begin{aligned}
& S(m, n)=(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h} \left\lvert\,\left\{\begin{array}{l}
X \left\lvert\, \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}\right.
\end{array}\right\}\right. \\
& =(-1)^{m} \sum_{h=0}^{m+n}(-1)^{h} \sum_{\substack{\boldsymbol{x} \in \mathbb{F}_{2}^{2(m+n)} \\
\mathrm{wt}(\boldsymbol{x})=m+n \\
|\operatorname{supp}(\boldsymbol{x}) \cap \operatorname{supp}(\boldsymbol{z})|=h}} 1 \\
& =(-1)^{m} \sum_{h=0}^{m+n} \sum_{\begin{array}{c}
\boldsymbol{x} \in \mathbb{F}_{2}^{2(m+n)} \\
\mathrm{wt}(\boldsymbol{x})=m+n \\
|\operatorname{supp}(\boldsymbol{x}) \cap \operatorname{supp}(\boldsymbol{z})|=h
\end{array}}(-1)^{|\operatorname{supp}(\boldsymbol{x}) \cap \operatorname{supp}(\boldsymbol{z})|} \\
& =(-1)^{m} \sum_{\substack{\boldsymbol{x} \in \mathbb{F}_{2}^{2(m+n)} \\
\mathrm{wt}(\boldsymbol{x})=m+n}}(-1)^{\langle\boldsymbol{x}, \boldsymbol{z}\rangle} \quad\left(\langle\boldsymbol{x}, \boldsymbol{z}\rangle=\sum x_{i} z_{i}\right)
\end{aligned}
$$

Krawtchouk polynomials

$$
(-1)^{m} S(m, n)=\sum_{\substack{\boldsymbol{x} \in \mathbb{F}_{2}^{2(m+n)} \\ \mathrm{wt}(\boldsymbol{x})=m+n}}(-1)^{\langle\boldsymbol{x}, \boldsymbol{z}\rangle}
$$

Krawtchouk polynomial $K_{j}^{d}(x)$ is defined by

$$
\begin{aligned}
K_{j}^{d}(z)= & \sum_{\substack{\boldsymbol{x} \in \mathbb{F}_{2}^{d} \\
\mathrm{wt}(\boldsymbol{x})=j}}(-1)^{\langle\boldsymbol{x}, \boldsymbol{z}\rangle}, \quad \text { where } \mathrm{wt}(\boldsymbol{z})=z \\
= & \sum_{h=0}^{j}(-1)^{h}\binom{z}{h}\binom{d-z}{j-h}
\end{aligned}
$$

Then

$$
(-1)^{m} S(m, n)=K_{m+n}^{2(m+n)}(2 m)
$$

$(-1)^{m} S(m, n)=K_{m+n}^{2(m+n)}(2 m)$

Krawtchouk polynomials are the eigenvalues of the distance- j graph of the d-cube. More precisely,

$$
\left\{(-1)^{m} S(m, n) \mid m, n \geq 0, m+n=d\right\} \cup\{0\}
$$

coincides with the set of eigenvalues of the distance- d graph of the $2 d$-cube, which is known as the orthogonality graph.

$$
\begin{aligned}
& \text { vertices }=\{ \pm 1\}^{2 d}, \\
& \qquad \boldsymbol{x} \sim \boldsymbol{y} \Longleftrightarrow\langle\boldsymbol{x}, \boldsymbol{y}\rangle=0 .
\end{aligned}
$$

MacWilliams identities $C \subset \mathbb{F}_{2}^{d}, C^{\perp} \subset \mathbb{F}_{2}^{d}$

$$
\left|\left\{\boldsymbol{x} \in C^{\perp} \mid \operatorname{wt}(\boldsymbol{x})=j\right\}\right|
$$

$$
=\sum_{x \in \mathbb{R}^{\perp}} \frac{1}{|C|} \sum_{z \in C}(-1)^{\langle x, z\rangle} \quad\left(\left\{\begin{array}{ll}
1 & \boldsymbol{x} \in C^{\perp}, \\
0 & \boldsymbol{x} \notin C^{\perp}
\end{array}\right)\right.
$$

$$
=\frac{1}{|C|} \sum_{z=0}^{d} \sum_{\substack{z \in C \\ \mathrm{wt}(z)=z=z}} \sum_{\substack{x \in \mathbb{R}^{d} \\ \mathrm{w}(x)=j}}(-1)^{\langle x, z)}
$$

$$
=\frac{1}{|C|} \sum_{z=0}^{d} \sum_{\substack{z \in C \\ \mathrm{wt}(z)=x}} K_{j}^{d}(z)
$$

$$
K_{j}^{d}(z)=\sum_{\substack{x \in \mathbb{R}_{2}^{d} \\ \mathrm{wt}(x)=j}}(-1)^{\langle x, z\rangle}
$$

$$
=\frac{1}{|C|} \sum_{z=0}^{d} K_{j}^{d}(z)|\{\boldsymbol{z} \in C \mid \operatorname{wt}(\boldsymbol{z})=z\}| .
$$

$S(m, n)$ is the size of a set?

$$
\begin{aligned}
S(m, n)= & (-1)^{m} \sum_{h=0}^{m+n}(-1)^{h}\left|\left\{\begin{array}{l}
X \left\lvert\, \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}\right.
\end{array}\right\}\right| \\
= & \sum_{\substack{0 \leq h \leq m+n \\
h+m: \text { venen }}}\left|\left\{X \left\lvert\, \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}\right.\right\}\right| \\
& -\sum_{\substack{0 \leq h \leq m+n \\
h+m \text { odd }}}\left|\left\{\begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}\right\}\right|
\end{aligned}
$$

$S(m, n)$ is the size of a set?

Problem

Find an injection from

$$
\bigcup_{\substack{0 \leq \leq \leq m+n \\
h+m: \text { odd }}}\left\{\begin{array}{l|l}
X & \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}
\end{array}\right\}
$$

to

$$
\bigcup_{\substack{0 \leq \leq \leq m+n \\
h+m: \text { even }}}\left\{\begin{array}{l|l}
X & \begin{array}{l}
X \subset M \cup N \\
|X|=m+n \\
|X \cap M|=h
\end{array}
\end{array}\right\}
$$

and describe the complement of the image.

