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Eigenvalues of Graphs

All graphs in this talk are finite, undirected and simple.

Eigenvalues of a graph G are the eigenvalues of its
adjacency matrix A(G):

A(G)x,y =

{
1 if x and y are adjacent,

0 otherwise.

λmin(G) = the smallest eigenvalue of G

= the smallest eigenvalue of A(G).

We also denote by λmin(M) the smallest eigenvalue of a real
symmetric matrix M .
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Claw K1,k

A =


0 1 · · · 1
1
... 0
1


det(xI − A) = xk−1(x−

√
k)(x +

√
k).

λmin(k-claw) = −
√

k:

λmin(G) can be arbitrarily small.

Bounding λmin from below =⇒ 6 ∃k-claw for large k.

Akihiro Munemasa Smallest Eigenvalues



The line graph L(G)

P2 L(P2)

Let A = A(L(G)), C = edge-vertex incidence matrix

C = edge

vertex

0 · · · 010 · · · 010 · · · 0

λmin(A) ≥ λmin(A− CCT ) = λmin(−2I) = −2.
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Maximal exceptional graphs

Theorem (Cameron–Goethals–Seidel–Shult, 1976)

Every graph with smallest eigenvalue at least −2 is
represented by a root system of type An, Dn︸ ︷︷ ︸

infinite

or E8︸︷︷︸
finite

.

Theorem (Cvetković–Rowlinson–Simić, 2002)

Every graph with smallest eigenvalue at least −2 is a
generalized line graph or contained in one of the 473 maximal
graphs represented by the root system E8.
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Hoffman’s idea

L(G) from G Hoffman graph
L(G) slim vertices
G fat vertices

( slim fat

A C
CT 0

)

λmin(A) ≥ λmin(A− CCT ).

Advantage of considering A− CCT over A is that A− CCT

is often a diagonal join of smaller matrices even if A is the
adjacency matrix of a connected graph.

Akihiro Munemasa Smallest Eigenvalues



Woo and Neumaier (1995)

Definition

A (fat) Hoffman graph H is a graph (V, E) whose vertex set
V consists of “slim” vertices and “fat” vertices, satisfying the
following conditions:

1 every slim vertex is adjacent to at least one fat vertex,

2 every fat vertex is adjacent to at least one slim vertex,

3 fat vertices are pairwise non-adjacent.

A(H) =

( slim fat

A C
CT 0

)
=

 0 1 1
1 0 0
1 0 0

.

λmin(H) := λmin(A− CCT ).
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Join and indecomposability

is obtained by

More generally, H = H1 ]H2 can be defined, for any graph
G, its line graph is the slim part of a graph of the form
H1 ] · · · ]Hm, where

Hi
∼=

Note λmin(Hi) = −2, so

λmin(L(G)) ≥ λmin(H1 ] · · · ]Hm)

= min{λmin(H1), · · · , λmin(Hm)} = −2.
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Essentially, the only other indecomposable Hoffman graph with

λmin ≥ −2 other than is

(This leads to the definition of a generalized line graph).

The next largest λmin(H) is −1−
√

2:

This gap between −2 and −1−
√

2 has implication in
accumulation points of λmin of ordinary graphs.
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Theorem (Hoffman (1977))

If {Gn}∞n=1 is a sequence of graphs with dmin(Gn) →∞,
λ = lim

n→∞
λmin(Gn) exists and λ < −2, then λ ≤ −1−

√
2.

Theorem (Woo and Neumaier (1995))

If {Gn}∞n=1 is a sequence of graphs with dmin(Gn) →∞,
λ = lim

n→∞
λmin(Gn) exists and λ < −1−

√
2, then λ ≤ α,

where α is the smallest root of x3 + 2x2 − 2x− 2 and is the
smallest eigenvalue of the Hoffman graph

α = −2.48119 · · ·

Conversely, λmin of a Hoffman graph is a limit point of λmin of
ordinary graphs.
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τ = 1+
√

5
2

Definition

A Hoffman graph H is λ-irreducible if λmin(H) ≥ λ and H
cannot be embedded nontrivially to a Hoffman graph H1 ]H2

with λmin(H1), λmin(H2) ≥ λ.

Theorem (M.–Sano–Taniguchi, arXiv:1111.7284v3)

There are exactly 37 (−1− τ)-irreducible Hoffman graphs.

Note

−1− τ = −2.618 · · · < α < −1−
√

2 < −2.
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Edge-signed graphs

If a Hoffman graph H has adjacency matrix

( slim fat

A C
CT 0

)
and all the off-diagonal entries of A− CCT are 0,±1, then
one obtains an edge-signed graph S.

Theorem (Jang–Koolen–M.–Taniguchi, arXiv:1110.6821v1)

If λmin(H) ≥ −3 and H has edge-signed graph S, then

the minus graph of S is the Dynkin graph An, Ãn, Dn, D̃n

(i.e., path plus 1 or 2 edges), or

S is embeddable into the root system E8 (hence finitely
many possibilities).
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Summary

λmin −1 −2 −1−
√

2 α

irreducible
Hoffman
graphs

Woo-
Neumaier
(4 graphs)

?

Hoffman type
Theorem

Hoffman Hoffman
Woo-

Neumaier
?

λmin −1− τ −3
irreducible
Hoffman
graphs

MST
(37 graphs)

JKMT
(signed graphs

only)
Hoffman type

Theorem
? ?
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