Contents

組合せデザインから得られる線形符号

宗政昭弘

東北大学情報科学研究科

2013年8月9日
離散数学とその応用研究集会2013
山形市保健センター
（1）t－designs
（2）intersection numbers
（3）5－（24，8，1）design
（－）binary codes
（3）$[24,12,8]$ binary self－dual code
（0）Assmus－Mattson theorem
O extremal binary doubly even codes

$t-(v, k, \lambda)$ designs

Definition

A $t-(v, k, \lambda)$ design is a pair $(\mathcal{P}, \mathcal{B})$ ，where
－ \mathcal{P} ：a finite set of＂points＂，
－ \mathcal{B} ：a collection of k－subsets of \mathcal{P} ，a member of which is called a ＂block，＂
－$\forall T \subset \mathcal{P}$ with $|T|=t$ ，there are exactly λ members $B \in \mathcal{B}$ such that $T \subset B$ ．

Examples：

－2－（ $v, 3,1)$ design $=$ Steiner triple system
－2－$\left(q^{2}, q, 1\right)$ design $=$ affine plane of order q

$$
t \text {-design } \Longrightarrow(t-1) \text {-design }
$$

More precisely，．．．
宗政昭弘（東北大学）

Intersection numbers

$(\mathcal{P}, \mathcal{B}): t-(v, k, \lambda)$ design．Write $\lambda=\lambda_{t}$ ，

$$
\lambda_{t-1}=\left|\left\{B \in \mathcal{B} \mid T^{\prime} \subset B\right\}\right|,
$$

where $T^{\prime} \subset \mathcal{P},\left|T^{\prime}\right|=t-1$ ．Then

$$
\begin{aligned}
\lambda_{t-1}(k-t+1) & =\sum_{\substack{B \in \mathcal{B} \\
T^{\prime} \subset B}}\left|B \backslash T^{\prime}\right| \\
& =\left|\left\{(B, x) \in \mathcal{B} \mid T^{\prime} \cup\{x\} \subset B, x \in \mathcal{P} \backslash T^{\prime}\right\}\right| \\
& =\sum_{x \in \mathcal{P} \backslash T^{\prime}}\left|\left\{B \in \mathcal{B} \mid T^{\prime} \cup\{x\} \subset B\right\}\right| \\
& =\sum_{x \in \mathcal{P} \backslash T^{\prime}} \lambda_{t} \\
& =\lambda_{t}(v-t+1) .
\end{aligned}
$$

$(\mathcal{P}, \mathcal{B}): t-(v, k, \lambda)$ design

Then $(\mathcal{P}, \mathcal{B}):(t-1)-\left(v, k, \lambda_{t-1}\right)$ design，where

$$
\lambda_{t-1}=\lambda_{t} \frac{v-t+1}{k-t+1} .
$$

For example，

$$
\begin{aligned}
5-(24,8,1) & \Longrightarrow 4-(24,8,5) \\
& \Longrightarrow 3-(24,8,21) \\
& \Longrightarrow 2-(24,8,77) \\
& \Longrightarrow 1-(24,8,253) \\
& \Longrightarrow 0-(24,8,759) \\
& \Longleftrightarrow|\mathcal{B}|=759 .
\end{aligned}
$$

5－（24，8，1）design，$\lambda_{i}^{j-1}=\lambda_{i+1}^{j-1}+\lambda_{i}^{j}$

759						
253506						
		77		176	330	
21			56	120	21	
5		16		40	80	130
1	4		12	28		$52 \quad 78$

Next row？
$\lambda_{6}^{0}, \lambda_{5}^{1}, \lambda_{4}^{2}, \ldots$

$$
\lambda_{6}^{0}(I)=|\{B \in \mathcal{B} \mid I \subset B\}|=1 \text { or } 0
$$

depending on the choice of $I \subset \mathcal{P}$ with $|I|=6$ ．
Choose I in such a way that $\lambda_{6}^{0}(I)=1$ ．

Let $(\mathcal{P}, \mathcal{B})$ be a $5-(24,8,1)$ design．Then

$$
B, B^{\prime} \in \mathcal{B},\left|B \cap B^{\prime}\right|=4 \Longrightarrow B \triangle B^{\prime} \in \mathcal{B} .
$$

Proof by contradiction：

```
123 4 5 6 7 8
1234 9 101112
    56678910
    5678 11 12 15 16
****567 9 11
```

Here＂$* * * *$＂must be odd and even simultaneously．

$$
B, B^{\prime} \in \mathcal{P}, B \neq B^{\prime} \Longrightarrow\left|B \cap B^{\prime}\right| \in\{4,2,0\} .
$$

Binary codes

A（linear）binary code of length v is a subspace of the vector space \mathbb{F}_{2}^{ν} ．If C is a binary code and $\operatorname{dim} C=k$ ，we say C is an binary $[v, k]$ code．
The dual code of a binary code C is defined as

$$
C^{\perp}=\left\{x \in \mathbb{F}_{2}^{V} \mid x \cdot y=0(\forall y \in C)\right\} .
$$

where

$$
x \cdot y=\sum_{i=1}^{v} x_{i} y_{i} .
$$

Then

$$
\operatorname{dim} C^{\perp}=v-\operatorname{dim} C
$$

The code C is said to be self－orthogonal if $C \subset C^{\perp}$ and self－dual if $C=C^{\perp}$ ．

Weight

For $x \in \mathbb{F}_{2}^{\nu}$ ，we write

$$
\begin{aligned}
\operatorname{supp}(x) & =\left\{i \mid 1 \leq i \leq v, x_{i} \neq 0\right\}, \\
\operatorname{wt}(x) & =|\operatorname{supp}(x)| .
\end{aligned}
$$

For a binary code C ，its minimum weight is

$$
\min \{\operatorname{wt}(x) \mid 0 \neq x \in C\} .
$$

If an $[v, k]$ code C has minimum weight d ，we call C an $[v, k, d]$ code．C is doubly even if $w t(x) \equiv 0(\bmod 4)(\forall x \in C)$ ．Note

$$
C \subset C^{\perp} \Longleftrightarrow|\operatorname{supp}(x) \cap \operatorname{supp}(y)| \equiv 0 \quad(\bmod 2) \quad(\forall x, y \in C) .
$$

Generator matrix of a code

Incidence matrix of a design

If a binary code C is generated by row vectors $x^{(1)}, \ldots, x^{(b)}$ ，then the matrix
$\left[\begin{array}{c}x^{(1)} \\ \vdots \\ x^{(b)}\end{array}\right]$
is called a generator matrix of C ．This means

$$
C=\left\{\sum_{i=1}^{b} \epsilon_{i} x^{(i)} \mid \epsilon_{1}, \ldots, \epsilon_{b} \in \mathbb{F}_{2}\right\} \subset \mathbb{F}_{2}^{\nu} .
$$

Note

$$
C \subset C^{\perp} \Longleftrightarrow\left|\operatorname{supp}\left(x^{(i)}\right) \cap \operatorname{supp}\left(x^{(j)}\right)\right| \equiv 0 \quad(\bmod 2) \quad(\forall i, j)
$$

C ：doubly even $\Longleftrightarrow C \subset C^{\perp}$ and $w t\left(x^{(i)}\right) \equiv 0 \quad(\bmod 4) \quad(\forall i)$ ．

$\operatorname{dim} C \leq 12$ for $5-(24,8,1)$ design

Recall that in a $5-(24,8,1)$ design $(\mathcal{P}, \mathcal{B})$ ，

$$
\left|B \cap B^{\prime}\right| \in\{8,4,2,0\} \quad\left(\forall B, B^{\prime} \in \mathcal{B}\right) .
$$

The binary code C of a $5-(24,8,1)$ design is self－orthogonal．Indeed， the incidence matrix has row vectors $x^{(B)}(B \in \mathcal{B})$ ，the characteristic vector of the block B ．Then

$$
x^{(B)} \cdot x^{\left(B^{\prime}\right)}=\left|B \cap B^{\prime}\right| \bmod 2=(8 \text { or } 4 \text { or } 2 \text { or } 0) \bmod 2=0 .
$$

Thus $C \subset C^{\perp}$ ，hence

$$
\operatorname{dim} C \leq \frac{1}{2}\left(\operatorname{dim} C+\operatorname{dim} C^{\perp}\right) \leq \frac{24}{2}=12
$$

If $\mathcal{D}=(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design，the incidence matrix $M(\mathcal{D})$ of \mathcal{D} is $|\mathcal{B}| \times|\mathcal{P}|$ matrix whose rows and columns are indexed by \mathcal{B} and \mathcal{P} ， respectively，such that its (B, p) entry is 1 if $p \in B, 0$ otherwise．In other words，the row vectors of $M(\mathcal{D})$ are the characteristic vectors of blocks：

$$
M(\mathcal{D})=\left[\begin{array}{c}
x^{\left(B_{1}\right)} \\
\vdots \\
x^{\left(B_{b}\right)}
\end{array}\right]: b \times v \text { matrix }
$$

where $\mathcal{B}=\left\{B_{1}, \ldots, B_{b}\right\}$ ，and $x^{(B)} \in \mathbb{F}_{2}^{v}$ denotes the characteristic vector of B ，i．e．， $\operatorname{supp}\left(x^{(B)}\right)=B$ ．
The binary code of the design \mathcal{D} is the binary code of length v having $M(\mathcal{D})$ as a generator matrix．

The 5－（24，8，1）design，$\left|B \cap B^{\prime}\right| \in\{4,2,0\}$

$\mathcal{P}=\{1,2, \ldots, 24\}$ ．We may take \mathcal{B} as：

Do we have to find 759 blocks one by one？
No， 12 blocks are sufficient（so one more needed）．

Consequence of Todd＇s lemma
One more block for 5－（ $24,8,1$ ）design

By Todd＇s lemma

$$
B_{0}=\left(\left(B_{1} \triangle B_{4}\right) \triangle B_{7}\right) \triangle\left(B_{5} \triangle B_{6}\right)=\{7,8,17,18,20,21,23,24\} \in \mathcal{B} .
$$

One more block for 5－（24，8，1）design

We know

$$
B_{0}=\{7,8,17,18,20,21,23,24\} \in \mathcal{B}, \quad x^{\left(B_{0}\right)} \in C_{0}=C_{0}^{(78)} .
$$

We have either

$$
\begin{aligned}
B & =\{1,2,3,8,9,17,21,23\} \in \mathcal{B} \text { or } \\
B^{\prime} & =\{1,2,3,8,9,18,20,24\} \in \mathcal{B} .
\end{aligned}
$$

But $B^{(78)}=B \triangle B_{0}$ ，so

$$
\left\langle C_{0}, x^{\left(B^{\prime}\right)}\right\rangle^{(78)}=\left\langle C_{0}, x^{(B)}+x^{\left(B_{0}\right)}\right\rangle=\left\langle C_{0}, x^{(B)}\right\rangle .
$$

Therefore，the code generated by the design is unique up to isomorphism．This self－dual $\left(C=C^{\perp}\right)$ code is known as the extended binary Golay code．Next we show that the code determines the design uniquely．

The above 11 blocks generate a 11－dimensional code C_{0} ．Note the transposition（78）leaves C_{0} invariant．We know from Todd＇s lemma $B_{0}=\{7,8,17,18,20,21,23,24\} \in \mathcal{B}\left(\right.$ but $\left.x^{\left(B_{0}\right)} \in C_{0}\right)$ ．
Consider the block containing $\{1,2,3,8,9\}$ ．There are two choices： $B=\{1,2,3,8,9,17,21,23\}$ and $B^{\prime}=\{1,2,3,8,9,18,20,24\}$ ．

Mendelsohn equations for $t-(v, k, \lambda)$ design $(\mathcal{P}, \mathcal{B})$

For $S \subset \mathcal{P}$ ，let

$$
n_{i}(S)=|\{B \in \mathcal{B}|i=|B \cap S|\} \mid .
$$

Then

$$
\sum_{i \geq 0}\binom{i}{j} n_{i}(S)=\lambda_{j}\binom{|S|}{j} \quad(0 \leq j \leq t) .
$$

Proof：Count

$$
\{(J, B)|J \subset S \cap B,|J|=j\}
$$

in two ways．

$n_{i}(S)=|\{B \in \mathcal{B}|i=|B \cap S|\} \mid$

$(\mathcal{P}, \mathcal{B}): 5-(24,8,1)$ design

$$
\sum_{\substack{0 \leq i \leq w t(v) \\ i: \text { even }}}\binom{i}{j} n_{i}(v)=\lambda_{j}\binom{w t(v)}{j} \quad(0 \leq j \leq 5)
$$

Taking $v \in C^{\perp}$ with $0<w t(v)<8$ gives no solution．This means that C^{\perp} has minimum weight 8 ．
Take $v \in C=C^{\perp}$ with $w t(v)=8$ ．Then there are six equations for five unknowns $n_{0}, n_{2}, n_{4}, n_{6}, n_{8}$ ．The unique solution is

$$
\left(n_{0}, n_{2}, n_{4}, n_{6}, n_{8}\right)=(30,448,280,0,1)
$$

This implies $\operatorname{supp}(v) \in \mathcal{B}$ ．Thus

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\} .
$$

Now the uniqueness of the design follows from that of C ．

The Assmus－Mattson theorem

Theorem

Let C be a binary code of length v ，minimum weight k ．

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\} \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\} \\
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\} \\
t & =k-|S|
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ ．
－C ：$[24,12,8]$ binary doubly even self－dual $\left(C=C^{\perp}\right)$ code，so $k=8$ and C has only weights $0,8,12,16,24$ ．

$$
\begin{aligned}
S & =\left\{w t(x) \mid x \in C^{\perp}, 0<w t(x)<24\right\}=\{8,12,16\} \\
t & =k-|S|=8-3=5
\end{aligned}
$$

Uniqueness of the extended binary Golay code

$C:[24,12,8]$ binary doubly even self－dual $\left(C=C^{\perp}\right)$ code．
－The Assmus－Mattson theorem implies $(\mathcal{P}, \mathcal{B})$ is a $5-(24,8, \lambda)$ design，where $\mathcal{P}=\{1,2, \ldots, 24\}$ ，

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=8\},
$$

for some λ ．
－If $\lambda>1$ ，then $\exists B, B^{\prime} \in \mathcal{B}, B \neq B^{\prime},\left|B \cap B^{\prime}\right| \geq 5$ ．Then $\mathrm{wt}\left(x^{(B)}+x^{\left(B^{\prime}\right)}\right)<8$ ，a contradiction．Thus $\lambda=1$ ．
－So C is the binary code of a 5 －$(24,8,1)$ design which was already shown to be unqiue．
This proves the uniqueness of the extended binary Golay code．

Binary doubly even self－dual codes

Under what circumstance can one obtain a 5 －design from a doubly even self－dual code？Let k be the minimum weight．

$$
\begin{aligned}
S & =\{w t(x) \mid x \in C, 0<w t(x)<v\}, \\
5 & =k-|S| .
\end{aligned}
$$

－$k=8,|S|=3, S=\{8,12,16\}, v=24$ ．
－$k=12,|S|=7, S=\{12,16,20,24,28,32,36\}, v=48$ ．
－$k=16,|S|=11, S=\{16,20,24,28,32,36,40,44,48,52,56\}$ ， $v=72$ ．
In general，$\forall k$ ：a multiple of $4,|S|=k-5$ ，

$$
S=\{k, k+4, k+8, \ldots, 5 k-24=v-k\}
$$

$v=6 k-24=24 m$ ，where $k=4 m+4$ ．

Applicability of the Assmus－Mattson theorem

Theorem

Let C be a binary code of length v ，minimum weight k ．

$$
\begin{aligned}
\mathcal{P} & =\{1,2, \ldots, v\}, \\
\mathcal{B} & =\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}, \\
S & =\left\{\operatorname{wt}(x) \mid x \in C^{\perp}, 0<\operatorname{wt}(x)<v\right\}, \\
t & =k-|S| .
\end{aligned}
$$

Then $(\mathcal{P}, \mathcal{B})$ is a $t-(v, k, \lambda)$ design for some λ ．
The conclusion is stronger if k is large and $|S|$ is small．These are conflicting requirments：

$$
\begin{aligned}
\text { larger } k \Longrightarrow & \text { smaller } C \Longrightarrow \text { larger } C^{\perp} \Longrightarrow \text { larger } S \\
& \text { suppose } C=C^{\perp}, \quad \text { doubly even } \Longrightarrow S \text { not too large }
\end{aligned}
$$

Extremal binary doubly even self－dual codes

Theorem（Mallows－Sloane，1973）

For $m \geq 1$ ，a binary doubly even self－dual［ $24 m, 12 m$ ］code has minimum weight at most $4 m+4$ ．

Definition

A binary doubly even self－dual［ $24 m, 12 m$ ］code with minimum weight $4 m+4$ is called extremal．
For $m \geq 1$ ，an extremal binary doubly even self－dual code gives a $5-(24 m, 4 m+4, \lambda)$ design by the Assmus－Mattson theorem．
－$m=1$ ：the extended binary Golay code and the $5-(24,8,1)$ design
－$m=2$ ：Houghten－Lam－Thiel－Parker（2003）：unique［48，24，12］ code and a $5-(48,12,8)$ design which is unique under self－orthogonality．

Extremal binary doubly even self－dual codes

Definition

A binary doubly even self－dual［ $24 m, 12 m$ ］code with minimum weight $4 m+4$ is called extremal．
－For $m \geq 3$ ，neither a code nor a design is known．

Theorem（Zhang，1999）

There does not exist an extremal［24m，12m，4m＋4］binary doubly even self－dual code for $m \geq 154$ ．

