組合せデザインから得られる線形符号

宗政昭弘

東北大学情報科学研究科

2013年8月9日 離散数学とその応用研究集会2013 山形市保健センター

Codes and Designs

Contents

- t-designs
- intersection numbers
- 5-(24, 8, 1) design
- binary codes
- **(3)** [24, 12, 8] binary self-dual code
- Assmus–Mattson theorem
- extremal binary doubly even codes

宗政昭弘 (東北大学)

t-(v, k, λ) designs

Definition

A *t*-(v, k, λ) design is a pair (\mathcal{P}, \mathcal{B}), where

- \mathcal{P} : a finite set of "points",
- *B*: a collection of *k*-subsets of *P*, a member of which is called a "block,"
- $\forall T \subset \mathcal{P}$ with |T| = t, there are exactly λ members $B \in \mathcal{B}$ such that $T \subset B$.

Examples:

- 2-(v, 3, 1) design = Steiner triple system
- $2-(q^2, q, 1)$ design = affine plane of order q

$$t$$
-design $\implies (t-1)$ -design

More precisely,... _{宗政昭弘 (東北大学)}

Codes and Designs

宗政昭弘 (東北大学)

1 / 29

3 / 29

Codes and Designs

Intersection numbers

 $(\mathcal{P}, \mathcal{B})$: t- (v, k, λ) design. Write $\lambda = \lambda_t$,

$$\lambda_{t-1} = |\{B \in \mathcal{B} \mid T' \subset B\}|,$$

where $T' \subset \mathcal{P}$, |T'| = t - 1. Then

$$\begin{split} \lambda_{t-1}(k-t+1) &= \sum_{\substack{B \in \mathcal{B} \\ T' \subset B}} |B \setminus T'| \\ &= |\{(B,x) \in \mathcal{B} \mid T' \cup \{x\} \subset B, \ x \in \mathcal{P} \setminus T'\}| \\ &= \sum_{x \in \mathcal{P} \setminus T'} |\{B \in \mathcal{B} \mid T' \cup \{x\} \subset B\}| \\ &= \sum_{x \in \mathcal{P} \setminus T'} \lambda_t \\ &= \lambda_t (v-t+1). \end{split}$$

宗政昭弘 (東北大学)

$(\mathcal{P}, \mathcal{B})$: *t*- (v, k, λ) design

Then $(\mathcal{P}, \mathcal{B})$: (t - 1)- (v, k, λ_{t-1}) design, where

$$\lambda_{t-1} = \lambda_t \frac{v - t + 1}{k - t + 1}.$$

For example,

宗政昭弘 (東北大学)

$$\begin{array}{l} 5\text{-}(24,8,1) \implies 4\text{-}(24,8,5) \\ \implies 3\text{-}(24,8,21) \\ \implies 2\text{-}(24,8,77) \\ \implies 1\text{-}(24,8,253) \\ \implies 0\text{-}(24,8,759) \\ \iff |\mathcal{B}| = 759. \end{array}$$

Codes and Designs

5-(24, 8, 1) design, $\lambda_i^{j-1} = \lambda_{i+1}^{j-1} + \lambda_i^j$

 $\lambda_{6}^{0}, \lambda_{5}^{1}, \lambda_{4}^{2}, \ldots$

$$\lambda_6^0(I) = |\{B \in \mathcal{B} \mid I \subset B\}| = 1 ext{ or } 0$$

depending on the choice of $I \subset \mathcal{P}$ with |I| = 6. Choose *I* in such a way that $\lambda_6^0(I) = 1$.

宗政昭弘 (東北大学)

 $(\mathcal{P}, \mathcal{B})$: t- (v, k, λ) design

Let $I \subset \mathcal{P}, \ J \subset \mathcal{P}, \ |I| = i, \ |J| = j, \ I \cap J = \emptyset, \ i+j \leq t.$ Define $\lambda_i^j = |\{B \in \mathcal{B} \mid I \subset B, \ B \cap J = \emptyset\}|.$ In particular, $\lambda_i^0 = \lambda_i \quad (0 \leq i \leq t).$ $\lambda_i^{j-1} = \lambda_{i+1}^{j-1} + \lambda_i^j.$ $\lambda_i^0 \quad \lambda_1^0 \lambda_1^0$ $\lambda_2^0 \lambda_1^1 \lambda_0^2$ $\lambda_3^0 \lambda_2^1 \lambda_1^2 \lambda_3^0$ $\lambda_4^0 \lambda_3^1 \lambda_2^2 \lambda_1^3 \lambda_4^0$ $\lambda_5^0 \lambda_4^1 \lambda_3^2 \lambda_3^2 \lambda_1^4 \lambda_5^0$

5-(24, 8, 1) design,
$$\mathit{I} \subset \mathcal{P}$$
, $|\mathit{I}| =$ 6, $\mathit{I} \subset \exists \mathit{B} \in \mathcal{B}$

Codes and Designs

$$\lambda_{6-j}^{j} = |\{B \in \mathcal{B} \mid I \setminus J \subset B, \ B \cap J = \emptyset\}| \quad \text{where } J \subset I, \ J = j.$$
$$\lambda_{5-j}^{j} = \lambda_{6-j}^{j} + \lambda_{5-j}^{j+1}$$

giving

宗政昭弘 (東北大学)

宗政昭弘 (東北大学)

759 253 506 330 77 176 21 56 120 210 5 16 40 80 130 12 28 52 78 1 4 20 32 8 46 0 4 1 Similarly, taking $I \subset \mathcal{P}$, |I| = 7 appropriately, we obtain λ_{7-i}^{j} . Finally taking $I \in \mathcal{B}$, we obtain λ_{8-i}^{j} .

Codes and Designs

7 / 29

5 / 29

	759														
	253 506														
	77 176 330														
					21		56	-	120	2	210				
				5		16		40		80	130)			
			1		4		12		28		52	78			
		1		0		4		8		20	32	46	6		
	1		0		0		4		4		16	16	30		
1		0		0		0		4		0	16	0	30		

The last row implies

宗政昭弘 (東北大学)

$$B, B' \in \mathcal{P}, \ B \neq B' \implies |B \cap B'| \in \{4, 2, 0\}.$$

Codes and Designs

Binary codes

A (linear) binary code of length v is a subspace of the vector space \mathbb{F}_2^v . If *C* is a binary code and dim C = k, we say *C* is an binary [v, k] code.

The dual code of a binary code C is defined as

$$C^{\perp} = \{ x \in \mathbb{F}_2^{\nu} \mid x \cdot y = 0 \; (\forall y \in C) \}.$$

where

$$x \cdot y = \sum_{i=1}^{\nu} x_i y_i.$$

Then

$$\dim C^{\perp} = v - \dim C.$$

The code *C* is said to be self-orthogonal if $C \subset C^{\perp}$ and self-dual if $C = C^{\perp}$.

Todd's lemma

Let $(\mathcal{P}, \mathcal{B})$ be a 5-(24, 8, 1) design. Then

 $B, B' \in \mathcal{B}, |B \cap B'| = 4 \implies B \triangle B' \in \mathcal{B}.$

Proof by contradiction:

 1
 2
 3
 4
 5
 6
 7
 8

 1
 2
 3
 4
 9
 10
 11
 12

 1
 2
 3
 4
 9
 10
 11
 12

 1
 5
 6
 7
 8
 9
 10
 13
 14

 5
 6
 7
 8
 11
 12
 15
 16

 *
 *
 *
 *
 5
 6
 7
 9
 11

Here "****" must be odd and even simultaneously.

10 / 29

Weight

For $x \in \mathbb{F}_2^{\nu}$, we write

宗政昭弘 (東北大学)

$$\begin{aligned} \sup p(x) &= \{i \mid 1 \leq i \leq v, \ x_i \neq 0\},\\ \operatorname{wt}(x) &= |\operatorname{supp}(x)|. \end{aligned}$$

Codes and Designs

For a binary code C, its minimum weight is

 $\min\{\operatorname{wt}(x) \mid 0 \neq x \in C\}.$

If an [v, k] code C has minimum weight d, we call C an [v, k, d] code. C is doubly even if wt $(x) \equiv 0 \pmod{4} \ (\forall x \in C)$. Note

$$C \subset C^{\perp} \iff |\operatorname{supp}(x) \cap \operatorname{supp}(y)| \equiv 0 \pmod{2} \quad (\forall x, y \in C).$$

宗政昭弘 (東北大学)

Codes and Designs

11 / 29

Generator matrix of a code

If a binary code C is generated by row vectors $x^{(1)}, \ldots, x^{(b)}$, then the matrix F (1) 7

$$\begin{bmatrix} x^{(1)} \\ \vdots \\ x^{(b)} \end{bmatrix}$$

is called a generator matrix of C. This means

$$C = \{\sum_{i=1}^{b} \epsilon_{i} x^{(i)} \mid \epsilon_{1}, \dots, \epsilon_{b} \in \mathbb{F}_{2}\} \subset \mathbb{F}_{2}^{v}.$$

Note

$$C \subset C^{\perp} \iff |\operatorname{supp}(x^{(i)}) \cap \operatorname{supp}(x^{(j)})| \equiv 0 \pmod{2} \quad (\forall i, j).$$

C : doubly even $\iff C \subset C^{\perp}$ and $wt(x^{(i)}) \equiv 0 \pmod{4}$ ($\forall i$). Codes and Designs

dim $C \leq 12$ for 5-(24, 8, 1) design

Recall that in a 5-(24, 8, 1) design $(\mathcal{P}, \mathcal{B})$,

$$|B \cap B'| \in \{8, 4, 2, 0\} \quad (\forall B, B' \in \mathcal{B}).$$

The binary code C of a 5-(24, 8, 1) design is self-orthogonal. Indeed, the incidence matrix has row vectors $x^{(B)}$ ($B \in \mathcal{B}$), the characteristic vector of the block B. Then

$$x^{(B)} \cdot x^{(B')} = |B \cap B'| \mod 2 = (8 \text{ or } 4 \text{ or } 2 \text{ or } 0) \mod 2 = 0.$$

Thus $C \subset C^{\perp}$, hence

宗政昭弘 (東北大学)

$$\dim C \leq \frac{1}{2} (\dim C + \dim C^{\perp}) \leq \frac{24}{2} = 12.$$

Incidence matrix of a design

If $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is a t- (v, k, λ) design, the incidence matrix $M(\mathcal{D})$ of \mathcal{D} is $|\mathcal{B}| \times |\mathcal{P}|$ matrix whose rows and columns are indexed by \mathcal{B} and \mathcal{P} , respectively, such that its (B, p) entry is 1 if $p \in B$, 0 otherwise. In other words, the row vectors of $M(\mathcal{D})$ are the characteristic vectors of blocks:

$$M(\mathcal{D}) = \begin{bmatrix} x^{(B_1)} \\ \vdots \\ x^{(B_b)} \end{bmatrix}$$
 : $b \times v$ matrix,

where $\mathcal{B} = \{B_1, \ldots, B_b\}$, and $x^{(B)} \in \mathbb{F}_2^v$ denotes the characteristic vector of B, i.e., $supp(x^{(B)}) = B$.

Codes and Designs

The binary code of the design \mathcal{D} is the binary code of length vhaving $M(\mathcal{D})$ as a generator matrix.

The 5-(24, 8, 1) design, $|B \cap B'| \in \{4, 2, 0\}$

$\mathcal{P} = \{1, 2, \ldots$,24}.	We may	take	${\mathcal B}$ as	5:
--------------------------------	-------	--------	------	-------------------	----

1	2	3	4	5	6	7	8																
-	~	0	-	0	0	•	0																
1	2	3	4					9	10	11	12												
1	2	3		5				9				13	14	15									
1	2		4	5				9							16	17	18						
1		3	4	5				9										19	20	21			
	2	3	4	5				9													22	23	24
1	2	3			6			9							16			19			22		
1	2		4		6			9				13							20			23	
1		3	4		6			9					14			17							24
1	2			5	6			9	10											21			24
1		3		5	6			9		11							18					23	

Do we have to find 759 blocks one by one? No, 12 blocks are sufficient (so one more needed).

15 / 29

13 / 29

宗政昭弘 (東北大学)

Consequence of Todd's lemma

1	2	3	4	5	6	7	8																
1	2	3	4					9	10	11	12												
1	2	3		5				9				13	14	15									
1	2		4	5				9							16	17	18						
1		3	4	5				9										19	20	21			
	2	3	4	5				9													22	23	24
1	2	3			6			9							16			19			22		
1	2		4		6			9				13							20			23	
1		3	4		6			9					14			17							24
1	2			5	6			9	10											21			24
1		3		5	6			9		11							18					23	

By Todd's lemma

宗政昭弘 (東北大学)

 $B_0 = ((B_1 \triangle B_4) \triangle B_7) \triangle (B_5 \triangle B_6) = \{7, 8, 17, 18, 20, 21, 23, 24\} \in \mathcal{B}.$

Codes and Designs

One more block for 5-(24, 8, 1) design

We know

$$B_0 = \{7, 8, 17, 18, 20, 21, 23, 24\} \in \mathcal{B}, \quad x^{(B_0)} \in C_0 = C_0^{(78)}.$$

We have either

 $B = \{1, 2, 3, 8, 9, 17, 21, 23\} \in \mathcal{B} \text{ or } \\ B' = \{1, 2, 3, 8, 9, 18, 20, 24\} \in \mathcal{B}.$

But $B'^{(7 8)} = B \triangle B_0$, so

$$\langle C_0, x^{(B')} \rangle^{(7\ 8)} = \langle C_0, x^{(B)} + x^{(B_0)} \rangle = \langle C_0, x^{(B)} \rangle.$$

Therefore, the code generated by the design is unique up to isomorphism. This self-dual ($C = C^{\perp}$) code is known as the extended binary Golay code. Next we show that the code determines the design uniquely.

One more block for 5-(24, 8, 1) design

1 2	23	4	5	6	7	8																
1 2	2 3	4					9	10	11	12												
1 2	2 3		5				9				13	14	15									
1 2	2	4	5				9							16	17	18						
1	3	4	5				9										19	20	21			
2	2 3	4	5				9													22	23	24
1 2	2 3			6			9							16			19			22		
1 2	2	4		6			9				13							20			23	
1	3	4		6			9					14			17							24
1 2	2		5	6			9	10											21			24
1	3		5	6			9		11							18					23	

The above 11 blocks generate a 11-dimensional code C_0 . Note the transposition (7.8) leaves C_0 invariant. We know from Todd's lemma $B_0 = \{7, 8, 17, 18, 20, 21, 23, 24\} \in \mathcal{B}$ (but $x^{(B_0)} \in C_0$). Consider the block containing $\{1, 2, 3, 8, 9\}$. There are two choices: $B = \{1, 2, 3, 8, 9, 17, 21, 23\}$ and $B' = \{1, 2, 3, 8, 9, 18, 20, 24\}$.

Mendelsohn equations for t- (v, k, λ) design $(\mathcal{P}, \mathcal{B})$

For $S \subset \mathcal{P}$, let

$$n_i(S) = |\{B \in \mathcal{B} \mid i = |B \cap S|\}|.$$

Then

$$\sum_{i\geq 0} \binom{i}{j} n_i(S) = \lambda_j \binom{|S|}{j} \quad (0 \leq j \leq t).$$

Proof: Count

$$\{(J,B) \mid J \subset S \cap B, \ |J| = j\}$$

in two ways.

宗政昭弘 (東北大学)

$n_i(S) = |\{B \in \mathcal{B} \mid i = |B \cap S|\}|$

Let *C* be the binary code of the design $(\mathcal{P}, \mathcal{B})$. Write $n_i(\operatorname{supp}(v)) = n_i(v)$ for $v \in \mathbb{F}_2^v$.

$$\sum_{i\geq 0} \binom{i}{j} n_i(v) = \lambda_j \binom{\operatorname{wt}(v)}{j} \quad (0 \leq j \leq t).$$

If $v \in C^{\perp}$, then $|B \cap \operatorname{supp}(v)|$ is even, so

$$n_i(v) = |\{B \in \mathcal{B} \mid i = |B \cap \operatorname{supp}(v)|\}| = 0$$
 for i odd.

Thus

$$\sum_{\substack{0 \le i \le \operatorname{wt}(v) \\ j: \text{ even}}} \binom{i}{j} n_i(v) = \lambda_j \binom{\operatorname{wt}(v)}{j} \quad (0 \le j \le t).$$

Codes and Designs

宗政昭弘 (東北大学)

Summary

 \mathcal{D} : 5-(24, 8, 1) design (Witt system).

- The binary code *C* of *D* is a doubly even self-dual [24, 12, 8] code.
- The binary code C of \mathcal{D} is unique up to isomorphism.
- {supp(x) | $x \in C$, wt(x) = 8} = \mathcal{B} .
- There is a unique 5-(24, 8, 1) design up to isomorphism.

The Assmus–Mattson theorem implies that every binary doubly even self-dual [24, 12, 8] code coincides with the binary code of a 5-(24, 8, 1) design, and hence such a code (the extended binary Golay code) is also unique.

$(\mathcal{P}, \mathcal{B})$: 5-(24, 8, 1) design

$$\sum_{\substack{0 \le i \le \mathsf{wt}(v) \\ i: \text{ even}}} \binom{i}{j} n_i(v) = \lambda_j \binom{\mathsf{wt}(v)}{j} \quad (0 \le j \le 5).$$

Taking $v \in C^{\perp}$ with 0 < wt(v) < 8 gives no solution. This means that C^{\perp} has minimum weight 8.

Take $v \in C = C^{\perp}$ with wt(v) = 8. Then there are six equations for five unknowns n_0, n_2, n_4, n_6, n_8 . The unique solution is

$$(n_0, n_2, n_4, n_6, n_8) = (30, 448, 280, 0, 1).$$

This implies $supp(v) \in \mathcal{B}$. Thus

$$\mathcal{B} = \{ \mathsf{supp}(x) \mid x \in C, \ \mathsf{wt}(x) = 8 \}.$$

Codes and Designs

Now the uniqueness of the design follows from that of C.

宗政昭弘 (東北大学)

22 / 29

The Assmus–Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

$$\mathcal{P} = \{1, 2, \dots, v\},\$$

$$\mathcal{B} = \{\text{supp}(x) \mid x \in C, \text{ wt}(x) = k\},\$$

$$S = \{\text{wt}(x) \mid x \in C^{\perp}, 0 < \text{wt}(x) < v\},\$$

$$t = k - |S|.$$

Then $(\mathcal{P}, \mathcal{B})$ is a *t*- (v, k, λ) design for some λ .

C: [24, 12, 8] binary doubly even self-dual (C = C[⊥]) code, so k = 8 and C has only weights 0, 8, 12, 16, 24.

$$S = { wt(x) | x \in C^{\perp}, 0 < wt(x) < 24 } = { 8, 12, 16 },$$

 $t = k - |S| = 8 - 3 = 5.$

Codes and Designs

23 / 29

Uniqueness of the extended binary Golay code

- C: [24, 12, 8] binary doubly even self-dual ($C = C^{\perp}$) code.
 - The Assmus–Mattson theorem implies $(\mathcal{P}, \mathcal{B})$ is a 5-(24, 8, λ) design, where $\mathcal{P} = \{1, 2, \dots, 24\}$,

$$\mathcal{B} = { supp(x) \mid x \in C, wt(x) = 8 },$$

for some λ .

宗政昭弘 (東北大学)

- If $\lambda > 1$, then $\exists B, B' \in \mathcal{B}, B \neq B', |B \cap B'| \ge 5$. Then wt $(x^{(B)} + x^{(B')}) < 8$, a contradiction. Thus $\lambda = 1$.
- So C is the binary code of a 5-(24, 8, 1) design which was already shown to be unque.

This proves the uniqueness of the extended binary Golay code.

Binary doubly even self-dual codes

Under what circumstance can one obtain a 5-design from a doubly even self-dual code? Let k be the minimum weight.

Codes and Designs

$$S = \{ wt(x) \mid x \in C, \ 0 < wt(x) < v \}, \\ 5 = k - |S|.$$

- k = 8, |S| = 3, $S = \{8, 12, 16\}$, v = 24.
- k = 12, |S| = 7, $S = \{12, 16, 20, 24, 28, 32, 36\}$, v = 48.
- k = 16, |S| = 11, $S = \{16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56\}$, v = 72.

In general, $\forall k$: a multiple of 4, |S| = k - 5,

$$S = \{k, k+4, k+8, \dots, 5k-24 = v-k\}$$

Codes and Designs

$$6k - 24 = 24m$$
, where $k = 4m + 4$.

弘 (東北大学)

v =

Applicability of the Assmus-Mattson theorem

Theorem

Let C be a binary code of length v, minimum weight k.

 $\begin{aligned} \mathcal{P} &= \{1, 2, \dots, v\}, \\ \mathcal{B} &= \{ \text{supp}(x) \mid x \in C, \text{ wt}(x) = k \}, \\ S &= \{ \text{wt}(x) \mid x \in C^{\perp}, \ 0 < \text{wt}(x) < v \}, \\ t &= k - |S|. \end{aligned}$

Then $(\mathcal{P}, \mathcal{B})$ is a t- (v, k, λ) design for some λ .

The conclusion is stronger if k is large and |S| is small. These are conflicting requirments:

larger $k \implies$ smaller $C \implies$ larger $C^{\perp} \implies$ larger Ssuppose $C = C^{\perp}$, doubly even $\implies S$ not too large

Codes and Designs

宗政昭弘 (東北大学)

26 / 29

Extremal binary doubly even self-dual codes

Theorem (Mallows-Sloane, 1973)

For $m \ge 1$, a binary doubly even self-dual [24m, 12m] code has minimum weight at most 4m + 4.

Definition

25 / 29

A binary doubly even self-dual [24m, 12m] code with minimum weight 4m + 4 is called extremal.

For $m \ge 1$, an extremal binary doubly even self-dual code gives a 5-(24m, 4m + 4, λ) design by the Assmus–Mattson theorem.

- m = 1: the extended binary Golay code and the 5-(24, 8, 1) design
- m = 2: Houghten-Lam-Thiel-Parker (2003): unique [48, 24, 12] code and a 5-(48, 12, 8) design which is unique under self-orthogonality.

Definition

A binary doubly even self-dual [24m, 12m] code with minimum weight 4m + 4 is called extremal.

• For $m \ge 3$, neither a code nor a design is known.

Theorem (Zhang, 1999)

There does not exist an extremal [24m, 12m, 4m + 4] binary doubly even self-dual code for $m \ge 154$.

Codes and Designs