Complementary Ramsey Numbers

Akihiro Munemasa
(Tohoku University)
joint work with Masashi Shinohara

September 17, 2013
JCDCGG 2013
Tokyo University of Science

Ramsey Numbers

For a graph G,
$\alpha(G)=$ independence number $=\max \{\#$ independent set $\}$
$\omega(G)=$ clique number $=\max \{\#$ clique $\}$

$$
\omega\left(C_{5}\right)=\alpha\left(C_{5}\right)=2 .
$$

$\forall G$ with 6 vertices, $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.
These fact can be conveniently described by the Ramsey number:

$$
R(3,3)=6 .
$$

The smallest number of vertices required to guarantee $\alpha \geq 3$ or $\omega \geq 3$ (precise definition in the next slide).

Ramsey Numbers and a Generalization

Definition

The Ramsey number $R\left(m_{1}, m_{2}\right)$ is defined as:

$$
\begin{aligned}
& R\left(m_{1}, m_{2}\right) \\
& =\min \left\{n| | V(G) \mid=n \Longrightarrow \omega(G) \geq m_{1} \text { or } \alpha(G) \geq m_{2}\right\} \\
& =\min \left\{n| | V(G) \mid=n \Longrightarrow \omega(G) \geq m_{1} \text { or } \omega(\bar{G}) \geq m_{2}\right\}
\end{aligned}
$$

A graph with n vertices defines a partition of $E\left(K_{n}\right)$ into 2 parts, "edges" and "non-edges".

Generalized Ramsey numbers $R\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ can be defined if we consider partitions of $E\left(K_{n}\right)$ into k parts, i.e., (not necessarily proper) edge-colorings.

Definition (Complementary Ramsey numbers)

We write by $[n]=\{1,2, \ldots, n\}$, and denote by $E\left(K_{n}\right)=\binom{[n]}{2}$ the set of 2 -subsets of $[n]$. The set of k-edge-coloring of K_{n} is denoted by $C(n, k)$:

$$
C(n, k)=\left\{f \mid f: E\left(K_{n}\right) \rightarrow[k]\right\} .
$$

We abbreviate

$$
\omega_{i}(f)=\omega\left([n], f^{-1}(i)\right), \quad \alpha_{i}(f)=\alpha\left([n], f^{-1}(i)\right) .
$$

$R\left(m_{1}, \ldots, m_{k}\right)=\min \left\{n \mid \forall f \in C(n, k), \exists i \in[k], \omega_{i}(f) \geq m_{i}\right\}$
$\bar{R}\left(m_{1}, \ldots, m_{k}\right)=\min \left\{n \mid \forall f \in C(n, k), \exists i \in[k], \alpha_{i}(f) \geq m_{i}\right\}$
The last one is called the complemtary Ramsey number.

$$
\bar{R}\left(m_{1}, m_{2}\right)=R\left(m_{2}, m_{1}\right)=R\left(m_{1}, m_{2}\right) .
$$

Geometric Application

Given a metric space (X, d) and a positive integer k, classify subsets Y of X with the largest size subject to

$$
|\{d(x, y) \mid x, y \in Y, x \neq y\}| \leq k
$$

For example, $X=\mathbb{R}^{n}, k=1 \Longrightarrow$ regular simplex. The method is by induction on k.

The distance function d defines a k-edge-coloring of the complete graph on Y.

If

$$
\bar{R}(\underbrace{m, m, \ldots, m}_{k}) \leq|Y|,
$$

then Y must contain an m-subset having only $(k-1)$ distances (so we can expect to use already obtained results for $k-1$).

$\bar{R}(3,3,3)=5$ by factorization

- K_{4} has a 3 -edge-coloring f into $2 K_{2}$ (a 1 -factorization). Then $\alpha_{i}(f)=2$ for $i=1,2,3$. This implies

$$
\bar{R}(3,3,3)>4 .
$$

- If f is a 3-edge-coloring of K_{5}, then some color i has at most 3 edges, so $\alpha_{i}(f) \geq 3$.
The argument can be generalized to give:

Theorem

If $K_{m n}$ is factorable into k copies of $n K_{m}$, then
$\bar{R}(\underbrace{n+1, \ldots, n+1}_{k})=m n+1$.
Setting $m=n=2$ and $k=3$, we obtain $\bar{R}(3.3 .3)=5$.

Factorizations

Theorem

If $K_{m n}$ is factorable into k copies of $n K_{m}$, then
$\bar{R}(\underbrace{n+1, \ldots, n+1}_{k})=m n+1$.

- Setting $m=2, k=2 n-1$, the existence of a 1-factorization in $K_{2 n}$ implies

$$
\bar{R}(\underbrace{n+1, \ldots, n+1}_{2 n-1})=2 n+1 .
$$

- Setting $m=3, n=2 t+1, k=3 t+1$, the existence of a Kirkman triple system in $K_{3 n}$ implies

$$
\bar{R}(\underbrace{2 t+2, \ldots, 2 t+2}_{3 t+1})=6 t+4
$$

- Setting $m=n, k=n+1$, if $n-1$ MOLS of order n exist, then $\bar{R}(\underbrace{n+1, \ldots, n+1})=n^{2}+1$.

Theorem

There exist $n-1$ MOLS of order n ($K_{n^{2}}$ into $n+1 n K_{n}$'s)
iff $\bar{R}(\underbrace{n+1, \ldots, n+1}_{n+1})=n^{2}+1$.
Non-uniform case, thanks to Turán graphs:

Theorem

Let k and $N>1$ be integers. Suppose that K_{N} is factorable into $H_{1}, H_{2}, \ldots, H_{k}$ where

$$
\begin{aligned}
H_{i} & \cong r_{i} K_{q_{i}+1} \cup\left(n_{i}-r_{i}\right) K_{q_{i}} \\
N & =n_{i} q_{i}+r_{i} \\
0 & \leq r_{i}<n_{i}
\end{aligned}
$$

Assume further that $\left(n_{i}-r_{i}-1\right) q_{i}>0$ for some $i \in[k]$. Then

$$
\bar{R}\left(n_{1}+1 n_{0}+1 \quad n_{1}+1\right)=N+1
$$

Table of small complementary Ramsey numbers

k	3	4	5	6	7	8
$\bar{R}(k, 3,3)$	5	5	5	6	\cdots	\cdots
$\bar{R}(k, 4,3)$	5	7	8	8	9	\cdots

We abbreviate

$$
\bar{R}(m ; k)=\bar{R}(\underbrace{m, \ldots, m}_{k}) .
$$

k	3	4	5	6	7	8	9	10	$11 \cdots 15$	16
$\bar{R}(3 ; k)$	5	3	\cdots							
$\bar{R}(4 ; k)$	10	10	7	5	4	\cdots				
$\bar{R}(5 ; k)$	$?$	$?$	17	10	9	6	6	6	$5 \cdots$	
$\bar{R}(6 ; k)$	$?$	$?$	$?$	26	16	11	11	8	$7 \cdots 7$	6

