Complementary Ramsey Numbers

Akihiro Munemasa (Tohoku University)

1

joint work with Masashi Shinohara

September 17, 2013 JCDCGG 2013 Tokyo University of Science

Ramsey Numbers

For a graph G,

 $\alpha(G) =$ independence number $= \max\{\#$ independent set $\}$ $\omega(G) =$ clique number $= \max\{\#$ clique $\}$

$$\omega(C_5) = \alpha(C_5) = 2.$$

 $\forall G \text{ with } 6 \text{ vertices}, \ \omega(G) \geq 3 \text{ or } \alpha(G) \geq 3.$

These fact can be conveniently described by the Ramsey number:

$$R(3,3) = 6.$$

The smallest number of vertices required to guarantee $\alpha \ge 3$ or $\omega \ge 3$ (precise definition in the next slide).

Ramsey Numbers and a Generalization

Definition

The Ramsey number $R(m_1, m_2)$ is defined as:

$$R(m_1, m_2)$$

= min{n | |V(G)| = n \implies \omega(G) \ge m_1 \text{ or } \alpha(G) \ge m_2}
= min{n | |V(G)| = n \implies \omega(G) \ge m_1 \text{ or } \omega(\overline{G}) \ge m_2}

A graph with *n* vertices defines a partition of $E(K_n)$ into 2 parts, "edges" and "non-edges".

Generalized Ramsey numbers $R(m_1, m_2, ..., m_k)$ can be defined if we consider partitions of $E(K_n)$ into k parts, i.e., (not necessarily proper) edge-colorings.

Definition (Complementary Ramsey numbers)

We write by $[n] = \{1, 2, ..., n\}$, and denote by $E(K_n) = {[n] \choose 2}$ the set of 2-subsets of [n]. The set of *k*-edge-coloring of K_n is denoted by C(n, k):

$$C(n,k) = \{ f \mid f : E(K_n) \to [k] \}.$$

We abbreviate

$$\omega_i(f) = \omega([n], f^{-1}(i)), \quad \alpha_i(f) = \alpha([n], f^{-1}(i)).$$

 $R(m_1, \dots, m_k) = \min\{n \mid \forall f \in C(n, k), \exists i \in [k], \omega_i(f) \ge m_i\}$ $\overline{R}(m_1, \dots, m_k) = \min\{n \mid \forall f \in C(n, k), \exists i \in [k], \alpha_i(f) \ge m_i\}$

The last one is called the complemtary Ramsey number.

$$\bar{R}(m_1, m_2) = R(m_2, m_1) = R(m_1, m_2).$$

Geometric Application

Given a metric space (X, d) and a positive integer k, classify subsets Y of X with the largest size subject to

$$|\{d(x,y) \mid x, y \in Y, \ x \neq y\}| \le k.$$

For example, $X = \mathbb{R}^n$, $k = 1 \implies$ regular simplex. The method is by induction on k.

The distance function d defines a k-edge-coloring of the complete graph on Y.

lf

$$\bar{R}(\underbrace{m,m,\ldots,m}_{k}) \le |Y|,$$

then *Y* must contain an *m*-subset having only (k - 1) distances (so we can expect to use already obtained results for k - 1).

$\bar{R}(3,3,3) = 5$ by factorization

• K_4 has a 3-edge-coloring f into $2K_2$ (a 1-factorization). Then $\alpha_i(f) = 2$ for i = 1, 2, 3. This implies

 $\bar{R}(3,3,3) > 4.$

 If *f* is a 3-edge-coloring of K₅, then some color *i* has at most 3 edges, so α_i(f) ≥ 3.

The argument can be generalized to give:

Theorem

If K_{mn} is factorable into k copies of nK_m , then $\overline{R}(\underbrace{n+1,\ldots,n+1}_{k}) = mn+1.$

Setting m = n = 2 and k = 3, we obtain $\overline{R}(3, 3, 3) = 5$.

Akihiro Munemasa (Tohoku University) Complementary Ramsey Numbers

Factorizations

Theorem

If
$$K_{mn}$$
 is factorable into k copies of nK_m , then $\overline{R}(\underbrace{n+1,\ldots,n+1}_k) = mn+1.$

- Setting m = 2, k = 2n 1, the existence of a 1-factorization in K_{2n} implies $\overline{R}(\underbrace{n+1,\ldots,n+1}_{2n-1}) = 2n + 1.$
- Setting m = 3, n = 2t + 1, k = 3t + 1, the existence of a Kirkman triple system in K_{3n} implies $\bar{R}(\underbrace{2t + 2, \dots, 2t + 2}_{3t+1}) = 6t + 4.$
- Setting m = n, k = n + 1, if n 1 MOLS of order n exist, then $\overline{R}(n + 1, \dots, n + 1) = n^2 + 1$.

Theorem

There exist n - 1 MOLS of order n (K_{n^2} into n + 1 nK_n 's) iff $\overline{R}(\underbrace{n+1,\ldots,n+1}_{n+1}) = n^2 + 1$.

Non-uniform case, thanks to Turán graphs:

Theorem

Let k and N > 1 be integers. Suppose that K_N is factorable into H_1, H_2, \ldots, H_k where

$$H_i \cong r_i K_{q_i+1} \cup (n_i - r_i) K_{q_i},$$

$$N = n_i q_i + r_i,$$

$$0 \le r_i < n_i$$

Assume further that $(n_i - r_i - 1)q_i > 0$ for some $i \in [k]$. Then

> $\overline{R(n_1 + 1, n_2 + 1)}$ Akihiro Munemasa (Tohoku University)

 $n_1 \pm 1) = N \pm 1$ Complementary Ramsey Numbers

Table of small complementary Ramsey numbers

k345678
$$\bar{R}(k,3,3)$$
5556 \cdots \cdots $\bar{R}(k,4,3)$ 57889 \cdots

We abbreviate

$$\bar{R}(m;k) = \bar{R}(\underbrace{m,\ldots,m}_{k}).$$

k	3	4	5	6	7	8	9	10	11 · · · 15	16
$\bar{R}(3;k)$	5	3	• • •							
$\bar{R}(4;k)$	10	10	7	5	4					
$\bar{R}(5;k)$?	?	17	10	9	6	6	6	5 · · ·	
$\bar{R}(6;k)$?	?	?	26	16	11	11	8	7 · · · 7	6

Akihiro Munemasa (Tohoku University) Complementary Ramsey Numbers