Twisted symplectic polar graphs

Akihiro Munemasa ${ }^{1}$
 (joint work with Frédéric Vanhove)

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
November 20, 2013
Workshop on Algebraic Combinatorics Hebei Normal University

In Takuya Ikuta's talk (Nov. 18)

$$
\begin{gathered}
\left.P=\begin{array}{cccc}
I & A_{1} & A_{2} & A_{3} \\
\mathbb{R} \mathbf{1}\left(\begin{array}{c}
1 \\
V_{1} \\
V_{1} \\
1
\end{array}\right. & \frac{q}{2} & \frac{q^{2}}{2} & q-2 \\
V_{2} & -\frac{q}{2} & -1 \\
1 & -\frac{q}{2}+1 & -\frac{q}{2} & q-2 \\
V_{3} & -\frac{q}{2} & \frac{q}{2} & -1
\end{array}\right) \\
\mathbb{R}^{q^{2}-1}=\mathbb{R} \mathbf{1} \oplus V_{1} \oplus V_{2} \oplus V_{3} \\
J=I+A_{1}+A_{2}+A_{3} \\
H=I+\alpha_{1} A_{1}+\alpha_{2} A_{2}+\alpha_{3} A_{3} \\
\quad: \text { complex Hadamard }
\end{gathered}
$$

Eiichi Bannai: are there many a.s. with this oioonmatrix?
E. van Dam (1999): Table of 3-class association schemes
\rightarrow a.s. with eigenmatrix P with $q=4,8$ have complex Hadamard
\rightarrow a.s. with eigenmatrix P with any $q \geq 4$ (power of 2) have complex Hadamard

An example is given in
Brouwer-Cohen-Neumaier, "Distance-Regular Graphs", Sect. 12.1.1
Q : non degenerate quadratic form on $V=\mathbb{F}_{q}^{3}$ \rightarrow quadric $\mathcal{Q}=\{\langle x\rangle \mid Q(x)=0\}$ on $P G(2, q)$ with nucleus $\langle\nu\rangle=V^{\perp}$.

$$
X=\{\langle x\rangle \in P G(2, q) \mid\langle x\rangle \notin \mathcal{Q},\langle x\rangle \neq\langle\nu\rangle\}
$$

Then $|X|=q^{2}-1$.

$$
\begin{aligned}
& R_{1}=\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle: \text { secant }\} \\
& R_{2}=\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle: \text { exterior }\} \\
& R_{3}=\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle: \text { tangent }\}
\end{aligned}
$$

BCN gives the computation of intersection numbers (sketch), remarks "the proof has to be a geometric one." \rightarrow painful

Frédéric Vanhove (U. Ghent) visited me (Sep. 6-Oct. 4).

$$
\begin{gathered}
O(3, q) \cong S p(2, q) \\
\\
\left.P=\begin{array}{cccc}
& (q: \text { even }) \\
\\
\mathbb{R} \mathbf{1} \\
V_{1} \\
V_{2} \\
V_{3} & A_{1} & A_{2} & A_{3} \\
1 & \frac{q^{2}}{2}-q & \frac{q^{2}}{2} & q-2 \\
1 & \frac{q}{2} & -\frac{q}{2} & -1 \\
1 & -\frac{q}{2}+1 & -\frac{q}{2} & q-2 \\
1 & -\frac{q}{2} & \frac{q}{2} & -1
\end{array}\right)
\end{gathered}
$$

$A_{2}, A_{1}+A_{3}$ are strongly regular $A_{1}+A_{3}$ has the same parameter as the symplectic polar graph
$q=2^{s} . R_{1} \cup R_{3}$: symplectic polar graph?

$O(3, q)$	$S p(2 s, 2)$
\mathbb{F}_{q}^{3}	$\mathbb{F}_{2}^{2 s} \cong \mathbb{F}_{q}^{3} /\langle\nu\rangle$
X	$\mathbb{F}_{2}^{s s}-\{0\}$
R_{1}	orthogonal
R_{2}	non-orthogonal
R_{3}	orthogonal

X : points not on \mathcal{Q}, not $\langle\nu\rangle$
$Q: \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}, f: \mathbb{F}_{q}^{3} \times \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$,
$\underline{f}(x, y)=Q(x+y)+Q(x)+Q(y)$
$\bar{f}: \mathbb{F}_{q}^{3} /\langle\nu\rangle \times \mathbb{F}_{q}^{3} /\langle\nu\rangle \rightarrow \mathbb{F}_{q}$
$\operatorname{Tr} \circ \bar{f}: \mathbb{F}_{q}^{3} /\langle\nu\rangle \times \mathbb{F}_{q}^{3} /\langle\nu\rangle \rightarrow \mathbb{F}_{2}$

$$
\begin{aligned}
& \\
& \\
& \mathbb{R} \mathbf{1} \\
& \mathbf{1} \\
& V_{1} \\
& V_{2} \\
& V_{3} \\
& V_{3}
\end{aligned}\left(\begin{array}{cccc}
1 & \frac{q^{2}}{2}-q & \frac{q^{2}}{2} & A_{3} \\
1 & \frac{q}{2} & -\frac{q}{2} & -1 \\
1 & -\frac{q}{2}+1 & -\frac{q}{2} & q-2 \\
1 & -\frac{q}{2} & \frac{q}{2} & -1
\end{array}\right)
$$

R_{3} is a union of K_{q-1} 's.
$R_{1} \cup R_{3}$: symplectic polar graph?
R_{3} : union of K_{q-1} 's

$O(3, q)$	$S p(2 s, 2)$	$S p(2, q)=\operatorname{Sp}(\bar{f})$
\mathbb{F}_{q}^{3}	$\mathbb{F}_{2}^{2 s} \cong \mathbb{F}_{q}^{3} /\langle\nu\rangle$	\mathbb{F}_{q}^{2}
X	$\mathbb{F}_{2}^{2 s}-\{0\}$	$\mathbb{F}_{q}^{2}-\{0\}$
R_{1}	orthogonal	$\operatorname{Tr} \circ f(a, b)=0$
R_{2}	non-orthogonal	$\operatorname{Tr} \bar{f}(a, b) \neq 0$
R_{3}	orthogonalsame \mathbb{F}_{q}-sp.	$\bar{f}(a, b)=0$

X : points not on \mathcal{Q}, not $\langle\nu\rangle$
$Q: \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}, f: \mathbb{F}_{q}^{3} \times \mathbb{F}_{q}^{3} \rightarrow \mathbb{F}_{q}$
$f(x, y)=Q(x+y)+Q(x)+Q(y)$
$\bar{f}: \mathbb{F}_{q}^{3} /\langle\nu\rangle \times \mathbb{F}_{q}^{3} /\langle\nu\rangle \rightarrow \mathbb{F}_{q}$
$\operatorname{Tr} \circ \bar{f}: \mathbb{F}_{q}^{3} /\langle\nu\rangle \times \mathbb{F}_{q}^{3} /\langle\nu\rangle \rightarrow \mathbb{F}_{2}$

$$
\begin{aligned}
R_{1} & =\{(\langle x\rangle,\langle y\rangle) \mid\langle x, y\rangle: \text { secant }\} \\
& \stackrel{?}{=}\{(\langle x\rangle,\langle y\rangle) \mid \operatorname{Tr} \circ \bar{f}(\bar{x}, \bar{y})=0\}
\end{aligned}
$$

$\langle x, y\rangle$: secant $\quad(Q(x)=Q(y)=1)$
$\Longleftrightarrow \#\{\langle u\rangle \in \mathcal{Q} \mid\langle u\rangle \subset\langle x, y\rangle\}=2$
$\Longleftrightarrow \#\left\{\alpha \in \mathbb{F}_{q} \mid Q(\alpha x+y)=0\right\}=2$
$\Longleftrightarrow \#\left\{\alpha \in \mathbb{F}_{q} \mid \alpha^{2}+f(x, y) \alpha+1=0\right\}=2$
$\Longleftrightarrow \#\left\{\alpha \in \mathbb{F}_{q} \mid \alpha^{2}+\bar{f}(\bar{x}, \bar{y}) \alpha+1=0\right\}=2$
$\Longleftrightarrow \operatorname{Tr}\left(\bar{f}(\bar{x}, \bar{y})^{-1}\right)=0$

$$
\begin{aligned}
& (\langle x\rangle,\langle y\rangle) \in R_{1} \cup R_{3}: \text { strongly regular } \\
& \Longleftrightarrow \operatorname{Tr}\left(\bar{f}(\bar{x}, \bar{y})^{-1}\right)=0 \text { or } \bar{f}(\bar{x}, \bar{y})=0 \\
& \Longleftrightarrow \operatorname{Tr}\left(\bar{f}(\bar{x}, \bar{y})^{q-2}\right)=0 \text { or } \bar{f}(\bar{x}, \bar{y})=0 \\
& \Longleftrightarrow \operatorname{Tr}\left(\bar{f}(\bar{x}, \bar{y})^{q-2}\right)=0
\end{aligned}
$$

What if we replace $q-2$ by an arbitrary integer e with $(e, q-1)=1$?
Always strongly regular, non-isomorphic if $e \not \equiv 2^{r} e^{\prime}(\bmod q-1)$ for $\forall r$ (In September, by computer experiments)
\rightarrow deadline of abstract submission
A. M. \rightarrow Bill Kantor (Nov. 16) in Tokyo:
$q=2^{s},(e, q-1)=1, X=\mathbb{F}_{q}^{2}-\{0\}$,
$f: \mathbb{F}_{q}^{2} \times \mathbb{F}_{q}^{2} \rightarrow \mathbb{F}_{q}:$ alt. bil. form., $\Gamma^{(e)}=(X, R)$, where

$$
R=\left\{(x, y) \mid \operatorname{Tr}\left(f(x, y)^{e}\right)=0\right\}
$$

I would call $\Gamma^{(e)}$ a twisted symplectic polar graph.
Jackson-Wild (1997)
Also relevant: Gordon-Mills-Welch (1962), Jackson (1993)

Kantor (2001) implies
$\Gamma^{(e)} \cong \Gamma^{\left(e^{\prime}\right)} \Longleftrightarrow \exists r, e=2^{r} e^{\prime}(\bmod q-1)$

Back to the question of Eiichi Bannai (Nov. 18):

$$
\begin{aligned}
R & =\left\{(x, y) \mid \operatorname{Tr}\left(f(x, y)^{e}\right)=0\right\} \\
& \supset\{(x, y) \mid f(x, y)=0\}: \text { union of } K_{q-1} \text { 's } \\
& : \text { spread of Delsarte cliques }
\end{aligned}
$$

By Haemers-Tonchev (1996), $R=R_{1} \cup R_{3}, R_{2}$: complement of R, 3-class association scheme.

Varying $e \Longrightarrow$ non-isomorphic $R \Longrightarrow$ non-isomorphic a.s.

Gordon-Mills-Welch (GMW) difference set Ingredients:

- q_{0} : prime power

■ $s \geq 2$
■ D : difference set whose development is a design with the same parameters as
$P G\left(s-1, q_{0}\right)$

- $m \geq 2$

Output: difference set whose development is a design with the same parameters as $P G\left(m s-1, q_{0}\right)$

Isomorphism determined by Jackson-Wild, Kantor

srg+spread of Delsarte cliques \rightarrow a.s. Actually, BCN mentions the case $m>2$.

$$
\begin{array}{ccc}
\text { GMW } & \text { BCN } O(m+1, q) & \text { Twisted Sympl. } \\
q_{0} & 2 & 2 \\
s & q=2^{s} & q=2^{s} \\
D & \left\{a \in \mathbb{F}_{q}^{*} \mid \operatorname{Tr} a^{-1}=0\right\} & \left\{a \in \mathbb{F}_{q}^{*} \mid \operatorname{Tr} a^{e}=0\right\} \\
m & m: \text { even } & m: \text { even } \\
\downarrow & \downarrow & \downarrow \\
\text { diff. set. } & \operatorname{srg} & \text { srg }
\end{array}
$$

However, for $m>2$, spread does not consist of
Delsarte cliques
\Longrightarrow cannot use Haemers-Tonchev to get
3-class association scheme
$s>1, q=2^{s}, m>2$: even, $V=\mathbb{F}_{q}^{m}$,
$f: V \times V \rightarrow \mathbb{F}_{q}:$ non degenerate alt. bil. form,
$X=V-\{0\}$
$D:$ difference set in \mathbb{F}_{q}^{*}

$$
\begin{aligned}
& R_{1}=\{(x, y) \mid f(x, y) \in D\} \\
& R_{2}=\{(x, y) \mid f(x, y) \notin D, f(x, y) \neq 0\} \\
& R_{3}=\left\{(x, y) \mid\langle x\rangle_{\mathbb{F}_{q}}=\langle y\rangle_{\mathbb{F}_{q}}\right\} \\
& R_{4}=\left\{(x, y) \mid\langle x\rangle_{\mathbb{F}_{q}} \neq\langle y\rangle_{\mathbb{F}_{q}}, f(x, y)=0\right\}
\end{aligned}
$$

R_{2} : strongly regular, $\left(X,\left\{R_{i}\right\}_{i=0}^{4}\right)$: a.s.
BCN: $O(m+1, q)$ by $D=\left\{a \in \mathbb{F}_{q}^{*} \mid \operatorname{Tr} a^{-1}=0\right\}$ $m=2 \Longrightarrow R_{4}=\emptyset$

$s>1, q=q_{0}^{s}, m$: even, $V=\mathbb{F}_{q}^{m}, f: V \times V \rightarrow \mathbb{F}_{q}$: non degenerate alt. bil. form,

$$
\begin{gathered}
X=P G(V)=P G\left(m s-1, q_{0}\right)\left(\text { over } \mathbb{F}_{q_{0}}\right) \\
-: \mathbb{F}_{q}^{*} \rightarrow \mathbb{F}_{q}^{*} / \mathbb{F}_{q_{0}}^{*}
\end{gathered}
$$

$D:$ difference set in $\mathbb{F}_{q}^{*} / \mathbb{F}_{q_{0}}^{*}=P G\left(s-1, q_{0}\right)$

$$
\begin{aligned}
R_{1} & =\{([x],[y]) \mid \overline{f(x, y)} \in D\} \\
R_{2} & =\{([x],[y]) \mid \overline{f(x, y)} \notin D, f(x, y) \neq 0\} \\
R_{3} & =\left\{([x],[y]) \mid\langle x\rangle_{\mathbb{F}_{q}}=\langle y\rangle_{\mathbb{F}_{q}}\right\} \\
R_{4} & =\left\{([x],[y]) \mid\langle x\rangle_{\mathbb{F}_{q}} \neq\langle y\rangle_{\mathbb{F}_{q}}, f(x, y)=0\right\}
\end{aligned}
$$

R_{2} : strongly regular, $\left(X,\left\{R_{i}\right\}_{i=0}^{4}\right)$: a.s. (?) $R_{4}=\emptyset$ if $m=2$.

Mark Pankov,
Eiichi Bannai and Tatsuro Ito asked:
Twisted symplectic dual polar graphs?
Van Dam and Koolen (2005) introduced the twisted Grassmann graphs,
Munemasa-Tonchev (2011) showed that these graphs are the block graphs of designs

I don't have any idea how to twist these.

Thank you for your attention.

