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(ordinary) Grassmann Graph

# Godsil–McKay switching

twisted Grassmann graph

The Grassmann graph Jq(2d+ 1, d+ 1).
Notation

⇥
U
j

⇤
denotes the collection of j-dim. subspaces of a

vector space U

• V : (2d+ 1)-dim. vector space over GF(q)

• Vertices:
⇥

V
d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.
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In the Grassmann graph Jq(2d+ 1, d+ 1):
• V : (2d+ 1)-dim. vector space over GF(q)

• Vertices:
⇥

V
d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.

Fix H 2
⇥
V
2d

⇤
and a polarity ? of H. Then

⇥
V

d+1

⇤
= C [D,

C =
[

U2[Hd ]

CU , D =


H

d+ 1

�
,

CU = {W 2


V

d+ 1

�
| W \H = U}

Interchange adj. and non-adj. between a vertex of W 2 D
and CU [ CU? if W is adjacent to 1/2 of CU [ CU? .
The resulting graph is the twisted Grassmann graph
J̃q(2d+ 1, d+ 1).



In the Grassmann graph Jq(2d+ 1, d+ 1):
• V : (2d+ 1)-dim. vector space over GF(q)

• Vertices:
⇥

V
d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.
Fix H 2

⇥
V
2d

⇤
and a polarity ? of H.

Then
⇥

V
d+1

⇤
= C [D,

C =
[

U2[Hd ]

CU , D =


H

d+ 1

�
,

CU = {W 2


V

d+ 1

�
| W \H = U}

Interchange adj. and non-adj. between a vertex of W 2 D
and CU [ CU? if W is adjacent to 1/2 of CU [ CU? .
The resulting graph is the twisted Grassmann graph
J̃q(2d+ 1, d+ 1).



In the Grassmann graph Jq(2d+ 1, d+ 1):
• V : (2d+ 1)-dim. vector space over GF(q)

• Vertices:
⇥

V
d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.
Fix H 2

⇥
V
2d

⇤
and a polarity ? of H. Then

⇥
V

d+1

⇤
= C [D,

C =
[

U2[Hd ]

CU , D =


H

d+ 1

�
,

CU = {W 2


V

d+ 1

�
| W \H = U}

Interchange adj. and non-adj. between a vertex of W 2 D
and CU [ CU? if W is adjacent to 1/2 of CU [ CU? .
The resulting graph is the twisted Grassmann graph
J̃q(2d+ 1, d+ 1).



In the Grassmann graph Jq(2d+ 1, d+ 1):
• V : (2d+ 1)-dim. vector space over GF(q)

• Vertices:
⇥

V
d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.
Fix H 2

⇥
V
2d

⇤
and a polarity ? of H. Then

⇥
V

d+1

⇤
= C [D,

C =
[

U2[Hd ]

CU , D =


H

d+ 1

�
,

CU = {W 2


V

d+ 1

�
| W \H = U}

Interchange adj. and non-adj. between a vertex of W 2 D
and CU [ CU? if W is adjacent to 1/2 of CU [ CU? .

The resulting graph is the twisted Grassmann graph
J̃q(2d+ 1, d+ 1).



In the Grassmann graph Jq(2d+ 1, d+ 1):
• V : (2d+ 1)-dim. vector space over GF(q)

• Vertices:
⇥

V
d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.
Fix H 2

⇥
V
2d

⇤
and a polarity ? of H. Then

⇥
V

d+1

⇤
= C [D,

C =
[

U2[Hd ]

CU , D =


H

d+ 1

�
,

CU = {W 2


V

d+ 1

�
| W \H = U}

Interchange adj. and non-adj. between a vertex of W 2 D
and CU [ CU? if W is adjacent to 1/2 of CU [ CU? .
The resulting graph is the twisted Grassmann graph
J̃q(2d+ 1, d+ 1).



• The Shrikhande graph (1959)
• Seidel switching
• Doob graphs
• Godsil–McKay switching (1982)
• DRG, Grassmann graphs

" ⇠1980’s,

# 2000’s⇠
2005 twisted Grassmann graphs of Van Dam–Koolen
2009 distorted geometric design, Jungnickel–Tonchev
2011 equivalence of these two, M.–Tonchev
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PGd(2d, q)
block graph������! Jq(2d+ 1, d+ 1)

distort

??y

GM switching

??y

new design
block graph������! J̃q(2d+ 1, d+ 1)

Block graph = graph with blocks as vertices, adjacent iff
intersect at maximal size.

• The original definition of J̃q(2d+ 1, d+ 1) does not
use a polarity.

• Both distorting and GM switching rely on a polarity.



PGd(2d, q)
block graph������! Jq(2d+ 1, d+ 1)

distort

??y GM switching
??y

new design
block graph������! J̃q(2d+ 1, d+ 1)

Block graph = graph with blocks as vertices, adjacent iff
intersect at maximal size.

• The original definition of J̃q(2d+ 1, d+ 1) does not
use a polarity.

• Both distorting and GM switching rely on a polarity.



PGd(2d, q)
block graph������! Jq(2d+ 1, d+ 1)

distort

??y GM switching
??y

new design
block graph������! J̃q(2d+ 1, d+ 1)

Block graph = graph with blocks as vertices, adjacent iff
intersect at maximal size.

• The original definition of J̃q(2d+ 1, d+ 1) does not
use a polarity.

• Both distorting and GM switching rely on a polarity.



Seidel switching

x neighbors non-neighbors
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SRG(16, 6, 2, 2): K4 ⇥K4 6⇠= Shrikhande graph

宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘


宗政 昭弘




SRG(16, 6, 2, 2): K4 ⇥K4 6⇠= Shrikhande graph

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘



SRG(16, 6, 2, 2): K4 ⇥K4 6⇠= Shrikhande graph

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘

宗政 昭弘



K4 ⇥K4
switch�! Sh

with respect to C = {(x, x) | x 2 K4}.
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� = (X,E): graph, X = D [ (
S

i Ci).
Assume 8x 2 D, 8i, x is adjacent to 0, 1/2 or all vertices
of Ci.
Godsil–McKay switching: interchange adj. and non-adj.
between x 2 D and Ci if x is adj. to 1/2 of Ci.

Theorem (Godsil–McKay, 1982)
If {Ci}i is equitable, then the resulting graph is cospectral
with the original.
Equitable: 8i, 8x 2 Ci, 8y 2 Ci, 8j,
|�(x) \ Cj| = |�(y) \ Cj|.



� = (X,E): graph, X = D [ (
S

i Ci).
Assume 8x 2 D, 8i, x is adjacent to 0, 1/2 or all vertices
of Ci.
Godsil–McKay switching: interchange adj. and non-adj.
between x 2 D and Ci if x is adj. to 1/2 of Ci.

Theorem (Godsil–McKay, 1982)
If {Ci}i is equitable, then the resulting graph is cospectral
with the original.
Equitable: 8i, 8x 2 Ci, 8y 2 Ci, 8j,
|�(x) \ Cj| = |�(y) \ Cj|.



(K4 ⇥K4)⇥K4
switch�! Sh⇥K4
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Distance-Regular Graphs
A connected graph of diameter d is called a
distance-regular graph if 9{k, b1, . . . , bd�1; 1, c2, . . . , cd}
such that

k 1 b1 c2 cd

Examples with unbounded d:
• H(n, q) = Kn

q , J(v, d), Jq(v, d), dual polar graphs,
forms graphs

• halved, folded graphs of above
• Doob, Hemmeter, Ustimenko graphs
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Johnson graph J(v, k)

• |V | = v

•
�
V
k

�
= the collection of k-subsets of V

• W1 ⇠ W2 () |W1 \W2| = k � 1.

Then J(v, k) ⇠= J(v, v � k).

For v � 2k, J(v, k) is characterized uniquely by the
intersection array except (v, k) = (8, 2).

Vector space analogue?
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Grassmann graph Jq(v, d)

• V = vector space over GF(q), dimV = v

•
⇥
V
d

⇤
= the collection of d-subspaces of V

• W1 ⇠ W2 () dimW1 \W2 = d� 1.

Then Jq(v, d) ⇠= Jq(v, v � d).

Theorem (Metsch (1995))
Jq(v, d) is characterized uniquely by the intersection array
except

1. d = 2

2. v = 2d, v = 2d+ 1

3. v = 2d+ 2, q = 2, 3

4. v = 2d+ 3, q = 2.

We focus on Jq(2d+ 1, d) ⇠= Jq(2d+ 1, d+ 1).
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Twisted Grassmann graph J̃q(2d + 1, d + 1)
The graph J̃q(2d+ 1, d+ 1) has the same intersection
array as Jq(2d+ 1, d+ 1) but not isomorphic.

dimV = 2d+ 1. Fix H 2
⇥
V
2d

⇤
. Then

⇥
V

d+1

⇤
= C [D, where

C = {W 2


V

d+ 1

�
| W 6⇢ H}

D = {W 2


V

d+ 1

�
| W ⇢ H}

=


H

d+ 1

�

Twist D to define

polarity?

D0 = {W 2


V

d� 1

�
| W ⇢ H}

=


H

d� 1

�

Define adjacency on C [D0 to get J̃q(2d+ 1, d+ 1).
Instead of modifying the vertex set, can we switch edges?
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H

d+ 1

�

Twist D to define polarity?

D0 = {W 2


V

d� 1

�
| W ⇢ H} =


H

d� 1

�

Define adjacency on C [D0 to get J̃q(2d+ 1, d+ 1).
Instead of modifying the vertex set, can we switch edges?
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In the Grassmann graph Jq(2d+ 1, d+ 1):
• V : (2d+ 1)-dim. vector space over GF(q)
• Vertices:

⇥
V

d+1

⇤

• W1 ⇠ W2 () dimW1 \W2 = d.

Fix H 2
⇥
V
2d

⇤
and a polarity ? of H. Then

⇥
V

d+1

⇤
= C [D,

C =
[

U2[Hd ]

CU , D =


H

d+ 1

�
,

CU = {W 2


V

d+ 1

�
| W \H = U}

Then C = {CU}U2[Hd ]
is equitable, satisfies (0 or all)

-property.
Fuse C to get

C 0 = {CU [ CU? | U 2

H

d

�
}.

Then C 0 is equitable, satisfies (0, 1/2 or all)-property.
Godsil–McKay switching gives J̃q(2d+ 1, d+ 1).
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Questions
• Depends on polarity?
• Any other way to fuse C = {CU}U2[Hd ]

?

Answers
One could fuse C by any involutive automorphism in
Aut

⇥
H
d

⇤
= Aut Jq(2d, d) = P�L(H)o h?i.

But fusing by Aut Jq(2d+ 1, d+ 1) = P�L(V ),
Godsil–McKay switching results in a graph isomorphic to
the original one.

P�L(H) extends to P�L(V ), but ? does not.

Twisting is unique!

Thank you.
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