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and Association Schemes and Complex Hadamard Matrices

= 0 · A0 + 1 · A1 + 2 · A2 + 3 · A3 + 0 · A4

= 1 · A0 + ξ · A1 + (−1) · A2 − ξ · A3 + 1 · A4 = H
Then HH∗ = 16I , where |ξ| = 1



Hadamard matrices and generalizations

A (real) Hadamard matrix of order n is an n× n matrix H
with entries ±1, satisfying HH> = nI .

A complex Hadamard matrix of order n is an n× n matrix
H with entries in {ξ ∈ C | |ξ| = 1}, satisfying HH∗ = nI ,
where ∗ means the conjugate transpose.

We propose a strategy to construct infinite families of complex
Hadamard matrices using association schemes, and
demonstrate a successful case.



Outline

A problem in algebraic geometry

Strategy to find complex Hadamard matrices

A family of 3-class association scheme giving complex
Hadamard matrices

Equivalence and decomposability
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Describe the image of the map

f : (C×)n → Cn(n−1)/2,

(x1, . . . , xn) 7→

(
xi

xj
+

xj

xi

)
1≤i<j≤n

An easier (linear) problem is

Describe the image of the map

f : Cn → Cn(n−1)/2,
(x1, . . . , xn) 7→ (xi + xj)1≤i<j≤n

The image is

(−2 eigenspace of T (n) = J(n, 2))⊥.

Cn(n−1)/2 = 〈1〉 ⊕ V1 ⊕ V2 as Sym(n)-rep.

dim = 1 + (n − 1) +

(
n

2

)
− n



f : (C×)n → Cn(n−1)/2,

(x1, . . . , xn) 7→

(
xi

xj
+

xj

xi

)
1≤i<j≤n

Theorem

The image of f coincides with the set of zeros of the ideal I in
the polynomial ring C[Xij : 1 ≤ i < j ≤ n] generated by

g(Xij ,Xik ,Xjk)

h(Xij ,Xik ,Xil ,Xjk ,Xjl ,Xkl)

where i , j , k , l are distinct, Xij = Xji , and

g = X 2 + Y 2 + Z 2 − XYZ − 4,

h = (Z 2 − 4)U − Z (XW + YV ) + 2(XY + VW ).

Let me know if you know any references.



D. Leonard pointed out this week:

h(X0,1,X0,2,X0,3,X1,2,X1,3,X2,3)

= (X 2
0,3 − 4)X1,2 − X0,3(X0,1X2,3 + X0,2X1,3)

+ 2(X0,1X0,2 + X1,3X2,3)

= det

 2 X0,3 X0,2

X0,3 2 X2,3

X0,1 X1,3 X1,2





Why is the image of the map

f : (C×)n → Cn(n−1)/2,

(x1, . . . , xn) 7→

(
xi

xj
+

xj

xi

)
1≤i<j≤n

relevant to complex Hadamard matrices?



Goethals–Seidel (1970) symmetric regular (real) Hadamard
matrix necessarily comes from a strongly regular
graph (SRG) on 4s2 vertices

de la Harpe–Jones (1990) SRG n: prime ≡ 1 (mod 4)
→ symmetric circulant complex Hadamard

Godsil–Chan (2010), and Chan (2011) classified complex
Hadamard matrices of the form:

H = I + xA1 + yA2,

A1 = adjacency matrix of a SRG Γ,

A2 = adjacency matrix of Γ.

and also considered those of the form

H = I + xA1 + yA2 + zA3

Unifying principle: symmetric association schemes.
(strongly regular graphs is a special case)



A. Chan (2011) found a complex Hadamard matrix of the form

H = I + xA1 + yA2 + zA3

of order 15 from the line graph L(O3) of the Petersen graph
O3.

x = 1, y =
−7±

√
−15

8
, z = 1 (Szöllősi 2010)

x =
5±
√
−11

6
, y = −1, z = x (Szöllősi 2010)

x =
−1±

√
−15

4
, y = x−1, z = 1



I + xA + yA is a type II matrix if and only if

nI = (I + xA + yA)(I + x−1A + y−1A)

= I + (x + x−1)A + (y + y−1)A + (xy−1 + x−1y)AA.

More generally. . . .



If H = α0A0 + α1A1 + α2A2 + · · · is a type II matrix, where
A0 = I ,A1,A2, . . . are the adjacency matrices of a symmetric
association scheme, then

nI = HH∗ = · · ·αiα
−1
j AiA

∗
j + · · ·

= · · · αi

αj
AiAj + · · ·

= · · · (αi

αj
+
αj

αi
)AiAj + · · ·

= · · · (αi

αj
+
αj

αi
)AiAj + · · ·+

∑
i

A2
i

Diagonalize to get linear equations

n =
∑
i<j

(
αi

αj
+
αj

αi
)PhiPhj+2

∑
i

P2
hi (∀h)xijPhiPhj+2

∑
i

P2
hi (∀h)

where Ai =
∑

h PhiEh: spectral decomposition.
Given xij , ∃?(αi) such that

xij =
αi

αj
+
αj

αi



f : (C×)n → Cn(n−1)/2,

(x1, . . . , xn) 7→

(
xi

xj
+

xj

xi

)
1≤i<j≤n

Theorem

The image of f coincides with the set of zeros of the ideal I in
the polynomial ring C[Xij : 1 ≤ i < j ≤ n] generated by

g(Xij ,Xik ,Xjk)

h(Xij ,Xik ,Xil ,Xjk ,Xjl ,Xkl)

where i , j , k , l are distinct, Xij = Xji , and

g = X 2 + Y 2 + Z 2 − XYZ − 4,

h = (Z 2 − 4)U − Z (XW + YV ) + 2(XY + VW ).



xij =
αi

αj
+
αj

αi
(0 ≤ i < j ≤ d). (1)

∑
0≤i<j≤d

xijPhiPhj = n −
d∑

i=0

P2
hi (∀h) (2)

Step 1 Solve the system of linear equations (2) in {xij}
Step 2 Find {αi} from {xij} by (1) using Theorem?.

The theorem only gives a criterion for a given (xij) to be in the
image of the rational map. It does not give how to find
preimages.



Given a zero (xij) of the ideal I , we know that there exists
(αi) ∈ (C×)d+1 such that

xij =
αi

αj
+
αj

αi
(0 ≤ i < j ≤ d). (1)

How do we find (αi), and when does (αi) ∈ (S1)d+1 hold?
Observe, for α ∈ C,

|α| = 1 ⇐⇒ −2 ≤ α +
1

α
≤ 2.

So we need −2 ≤ xij ≤ 2.
Moreover, if xij ∈ {±2} for all i , j , then αi = ±αj so the
resulting matrix is a scalar multiple of a real Hadamard matrix
→ Goethals–Seidel (1970).



f : (C×)n → Cn(n−1)/2,
(x1, . . . , xn) 7→ ( xi

xj
+

xj
xi

)1≤i<j≤n

Theorem

Suppose (xij) ∈ the image of f , xij ∈ R, and −2 < x0,1 < 2.
Fix α0, α1 ∈ S1 in such a way that

x0,1 =
α0

α1
+
α1

α0
.

Define αi (2 ≤ i ≤ n) by

αi =
α0(x0,1α1 − 2α0)

x1,iα1 − x0,iα0
.

Then |αi | = |αj | and

αi

αj
+
αj

αi
= xij (0 ≤ i < j ≤ d). (1)

and every (αi) satisfying (1) is obtained in this way.



The procedure

Step 1 Set up the system of equations

g(Xij ,Xik ,Xjk) = 0,

h(Xij ,Xik ,Xil ,Xjk ,Xjl ,Xkl) = 0,∑
0≤i<j≤d

XijPhiPhj = n −
d∑

i=0

P2
hi

Step 2 Eliminate all but one variable X01, and list all
solutions X01 = x01 with −2 ≤ x01 ≤ 2.

Step 3 Without loss of generality we may assume
α0 = 1. Determine α1 by

α0

α1
+
α1

α0
= x0,1.

Step 4 Determine (αi) by

αi =
α0(x0,1α1 − 2α0)

x1,iα1 − x0,iα0
.



Step 1 Set up the system of equations

Step 2 Eliminate all but one variable X01, and list all
solutions X01 = a01 with −2 ≤ a01 ≤ 2.

In many known examples of association schemes with d = 3,
Step 2 failed.

Theorem (Chan)

There are only finitely many antipodal distance-regular graphs
of diameter 3 whose Bose–Mesner algebra contains a complex
Hadamard matrix.

But Chan did find an example. L(O3): the line graph of the
Petersen graph.
Our systematic search through the table of Van Dam (1999)
revealed the infinite family starting with L(O3).



An infinite family

Let A be an association scheme having the eigenmatrix

P =


1 q2

2
− q q2

2
q − 2

1 q
2

−q
2
−1

1 −q
2

+ 1 −q
2

q − 2
1 −q

2
q
2

−1

 .
Such an association scheme arises from (twisted) symplectic
polar graph. V = V (2, q), q = 2n, f : symplectic form on V .
Define an association scheme on V \ {0} by

R1 = {(x , y) | f (x , y) 6= 0, Tr f (x , y)e = 0}, (e, q − 1) = 1

R2 = {(x , y) | Tr f (x , y)e 6= 0}, (with Frédéric Vanhove)

R3 = {(x , y) | 〈x〉GF(q) = 〈y〉GF(q)},

∃ a complex Hadamard matrix in its Bose–Mesner algebra.
q = 4 ⇐⇒ L(O3).



For the previous family of association schemes, one has

Theorem

The matrix H = I + α1A1 + α2A2 + α3A3 is a complex
Hadamard matrix if and only if

(i) H belongs to the subalgebra (α1 = α3) forming the
Bose–Mesner algebra of a strongly regular graph (already
done by Chan–Godsil),

(ii)

α1 +
1

α1
= −2

q
, α2 =

1

α1
, α3 = 1,

(iii)

α1 +
1

α1
=

(q − 1)(q − 2)− (q + 2)r

q
,

where r =
√

(q − 1)(17q − 1) > 0.

The case (ii) with q = 4 was found by Chan.



Equivalence and decomposability

Two complex Hadamard matrices are said to be equivalent if
one is obtained from the other by multiplication by monomial
matrices. (We do not allow taking transposition or complex
conjugation.)

The three families of complex Hadamard matrices obtained are

1 pairwise inequivalent?

2 decomposable into generalized tensor product?

We use Haagerup sets for the first, and Nomura algebras for
the second.



The Haagerup set Haag(H) is

Haag(H) = {Hi1,j1Hi2,j2Hi1,j2Hi2,j1 | 1 ≤ i1, i2, j1, j2 ≤ n}.

For a complex Hadamard matrix H , we define a vector Yj1,j2

whose i -th entry is given by

Yj1,j2(i) = Hi ,j1Hi ,j2

The Nomura algebra N(H) is

N(H) = {M ∈ Matn(C) | Yj1,j2 is an eigenvector of M for all j1, j2}.

Both Haag(H) and N(H) are invariant under equivalence.



(i) α1 = α3

(ii)

α1 +
1

α1
= −2

q
, α2 =

1

α1
, α3 = 1,

(iii)

α1 +
1

α1
=

(q − 1)(q − 2)− (q + 2)r

q
,

where r =
√

(q − 1)(17q − 1) > 0.

Computing Haag(H), we see that the complex Hadamard
matrices in (i), (ii) and (iii) are pairwise inequivalent.

Problem In each of the cases (i), (ii) and (iii), H ∼= H?



(i) α1 = α3

(ii)

α1 +
1

α1
= −2

q
, α2 =

1

α1
, α3 = 1,

(iii)

α1 +
1

α1
=

(q − 1)(q − 2)− (q + 2)r

q
,

where r =
√

(q − 1)(17q − 1) > 0.

Computing N(H), we see that the complex Hadamard matrices
in (iii) are not equivalent to generalized tensor product.

dimN(H) = 2 =⇒ N(H) primitive ⇐⇒ not gen. tensor

by Hosoya–Suzuki 2003.



Problems

Equivalence of H and H̄?

Are there any other families?

Are those complex Hadamard matrices belonging to a
Bose–Mesner algebra isolated? Craigen 1991 showed that
∃ uncountably many inequivalent complex Hadamard
matrices of composite order.

Thank you very much for your attention!

Happy birthday, Chris!


