Generalized tensor products and related constructions

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University

$$
\text { July 10, } 2014
$$

Workshop on Algebraic Design Theory
and Hadamard Matrices (ADTHM) 2014
In honor of the 70-th birthday of
Hadi Kharaghani
Unversity of Lethbridge

Outline

- Tensor product
- Diță's construction and generalized tensor product
- Weaving
- Generalized tensor product as weaving with respect to J
- Weaving as generalized tensor product of variable-order matrices
- Generalized tensor product as a principal submatrix of strong Kronecker product

Outline

- Tensor product
- Diță's construction and generalized tensor product
- Weaving
- Generalized tensor product as weaving with respect to J
- Weaving as generalized tensor product of variable-order matrices
- Generalized tensor product as a principal submatrix of strong Kronecker product

References:

- R. Craigen, Ph.D Thesis (1991), JCD (1995)
- R. Hosoya and H. Suzuki, JACO (2003)
- J. Seberry and X.-M. Zhang, Australasian J. (1991)
- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1, satisfying $H H^{\top}=n l$.

Hadamard matrices and generalizations

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1, satisfying $H H^{\top}=n l$.
- A weighing matrix of order n and weight k (denoted $W(n, k))$ is an $n \times n$ matrix W with entries in $\{0, \pm 1\}$, satisfying $W W^{\top}=k l$.

Hadamard matrices and generalizations

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1, satisfying $H H^{\top}=n l$.
- A weighing matrix of order n and weight k (denoted $W(n, k))$ is an $n \times n$ matrix W with entries in $\{0, \pm 1\}$, satisfying $W W^{\top}=k l$.
- A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\left\{\xi \in \mathbb{C}||\xi|=1\}\right.$, satisfying $H H^{*}=n l$, where $*$ means the conjugate transpose.

Hadamard matrices and generalizations

- A (real) Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1, satisfying $H H^{\top}=n l$.
- A weighing matrix of order n and weight k (denoted $W(n, k))$ is an $n \times n$ matrix W with entries in $\{0, \pm 1\}$, satisfying $W W^{\top}=k l$.
- A complex Hadamard matrix of order n is an $n \times n$ matrix H with entries in $\left\{\xi \in \mathbb{C}||\xi|=1\}\right.$, satisfying $H H^{*}=n l$, where $*$ means the conjugate transpose.
- A type II (or inverse-orthogonal) matrix of order n is an $n \times n$ matrix H with nonzero complex entries, satisfying $H H^{(-)^{\top}}=n l$, where $(-)$ means the entrywise inverse.

The tensor (Kronecker) product of two matrices H and K is

$$
H \otimes K=\left[\begin{array}{cccc}
H_{11} K & H_{12} K & \cdots & H_{1 n} K \\
\vdots & \vdots & & \vdots \\
H_{i 1} K & H_{i 2} K & \cdots & H_{i n} K \\
\vdots & \vdots & & \vdots \\
H_{j 1} K & H_{j 2} K & \cdots & H_{j n} K \\
\vdots & \vdots & & \vdots \\
H_{n 1} K & H_{n 2} K & \cdots & H_{n n} K
\end{array}\right]
$$

Proposition

If H and K are Hadamard matrices of order n and m, respectively, then $H \otimes K$ is a Hadamard matrix of order $n m$.

The tensor (Kronecker) product of two matrices H and K is

$$
H \otimes K=\left[\begin{array}{cccc}
H_{11} K & H_{12} K & \cdots & H_{1 n} K \\
\vdots & \vdots & & \vdots \\
H_{i 1} K & H_{i 2} K & \cdots & H_{i n} K \\
\vdots & \vdots & & \vdots \\
H_{j 1} K & H_{j 2} K & \cdots & H_{j n} K \\
\vdots & \vdots & & \vdots \\
H_{n 1} K & H_{n 2} K & \cdots & H_{n n} K
\end{array}\right]
$$

Proof.

$$
\begin{aligned}
& H_{i 1} K K^{\top} H_{j 1}+H_{i 2} K K^{\top} H_{j 2}+\cdots \\
& =\left(H_{i 1} H_{j 1}+H_{i 2} H_{j 2}+\cdots\right) \mathrm{ml} \\
& =\left(H H^{\top}\right)_{i j} \mathrm{ml} \\
& =\delta_{i j} n m l
\end{aligned}
$$

$$
H \otimes K=\left[\begin{array}{cccc}
H_{11} K & H_{12} K & \cdots & H_{1 n} K \\
H_{21} K & H_{22} K & \cdots & H_{2 n} K \\
\vdots & \vdots & & \vdots \\
H_{n 1} K & H_{n 2} K & \cdots & H_{n n} K
\end{array}\right]
$$

Proof.

$$
\begin{aligned}
& H_{i 1} K K^{\top} H_{j 1}+H_{i 2} K K^{\top} H_{j 2}+\cdots \\
& =\left(H_{i 1} H_{j 1}+H_{i 2} H_{j 2}+\cdots\right) \mathrm{ml} \\
& =\left(H H^{\top}\right)_{i j} \mathrm{ml} \\
& =\delta_{i j} m n l .
\end{aligned}
$$

$$
H \otimes K=\left[\begin{array}{cccc}
H_{11} K & H_{12} K & \cdots & H_{1 n} K \\
H_{21} K & H_{22} K & \cdots & H_{2 n} K \\
\vdots & \vdots & & \vdots \\
H_{n 1} K & H_{n 2} K & \cdots & H_{n n} K
\end{array}\right]
$$

Proof.

$$
\begin{aligned}
& H_{i 1} K K^{\top} H_{j 1}+H_{i 2} K K^{\top} H_{j 2}+\cdots \\
& =\left(H_{i 1} H_{j 1}+H_{i 2} H_{j 2}+\cdots\right) \mathrm{ml} \\
& =\left(H H^{\top}\right)_{i j} m l \\
& =\delta_{i j} m n l
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
H_{11} K_{1} & H_{12} K_{2} & \cdots & H_{1 n} K_{n} \\
H_{21} K_{1} & H_{22} K_{2} & \cdots & H_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
H_{n 1} K_{1} & H_{n 2} K_{2} & \cdots & H_{n n} K_{n}
\end{array}\right]
$$

Proof.

$$
\begin{aligned}
& H_{i 1} K_{1} K_{1}^{\top} H_{j 1}+H_{i 2} K_{2} K_{2}^{\top} H_{j 2}+\cdots \\
& =\left(H_{i 1} H_{j 1}+H_{i 2} H_{j 2}+\cdots\right) m l \\
& =\left(H H^{\top}\right)_{i j} m l \\
& =\delta_{i j} m \mathrm{ml}
\end{aligned}
$$

Proposition (Diță's construction)

If H is a Hadamard matrix of order n, and K_{1}, \ldots, K_{n} are Hadamard matrices of order m, then

$$
H \otimes\left(K_{1}, \ldots, K_{n}\right)=\left[\begin{array}{cccc}
H_{11} K_{1} & H_{12} K_{2} & \cdots & H_{1 n} K_{n} \\
H_{21} K_{1} & H_{22} K_{2} & \cdots & H_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
H_{n 1} K_{1} & H_{n 2} K_{2} & \cdots & H_{n n} K_{n}
\end{array}\right]
$$

is a Hadamard matrix of order nm.

Proposition (Diță's construction)

If H is a Hadamard matrix of order n, and K_{1}, \ldots, K_{n} are Hadamard matrices of order m, then

$$
H \otimes\left(K_{1}, \ldots, K_{n}\right)=\left[\begin{array}{cccc}
H_{11} K_{1} & H_{12} K_{2} & \cdots & H_{1 n} K_{n} \\
H_{21} K_{1} & H_{22} K_{2} & \cdots & H_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
H_{n 1} K_{1} & H_{n 2} K_{2} & \cdots & H_{n n} K_{n}
\end{array}\right]
$$

is a Hadamard matrix of order nm.

Proposition (Diță's construction)

If H is a complex Hadamard matrix of order n, and K_{1}, \ldots, K_{n} are complex Hadamard matrices of order m, then

$$
H \otimes\left(K_{1}, \ldots, K_{n}\right)=\left[\begin{array}{cccc}
H_{11} K_{1} & H_{12} K_{2} & \cdots & H_{1 n} K_{n} \\
H_{21} K_{1} & H_{22} K_{2} & \cdots & H_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
H_{n 1} K_{1} & H_{n 2} K_{2} & \cdots & H_{n n} K_{n}
\end{array}\right]
$$

is a complex Hadamard matrix of order $n m$.

Proposition (Diță's construction)

If H is an inverse-orthogonal matrix of order n, and K_{1}, \ldots, K_{n} are inverse-orthogonal matrices of order m, then

$$
H \otimes\left(K_{1}, \ldots, K_{n}\right)=\left[\begin{array}{cccc}
H_{11} K_{1} & H_{12} K_{2} & \cdots & H_{1 n} K_{n} \\
H_{21} K_{1} & H_{22} K_{2} & \cdots & H_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
H_{n 1} K_{1} & H_{n 2} K_{2} & \cdots & H_{n n} K_{n}
\end{array}\right]
$$

is an inverse-orthogonal matrix of order $n m$.

Proposition (Diţă's construction)

If H is an inverse-orthogonal matrix of order n, and K_{1}, \ldots, K_{n} are inverse-orthogonal matrices of order m, then

$$
H \otimes\left(K_{1}, \ldots, K_{n}\right)=\left[\begin{array}{cccc}
H_{11} K_{1} & H_{12} K_{2} & \cdots & H_{1 n} K_{n} \\
H_{21} K_{1} & H_{22} K_{2} & \cdots & H_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
H_{n 1} K_{1} & H_{n 2} K_{2} & \cdots & H_{n n} K_{n}
\end{array}\right]
$$

is an inverse-orthogonal matrix of order $n m$.

Not only K but also H can be replaced by H_{1}, \ldots, H_{m}.

Definition (generalized tensor product)

$H_{1}, \ldots, H_{m}:$ matrices of order n
$K_{1}, \ldots, K_{n}:$ matrices of order m.

Let $\Delta_{i j}$ be the diagonal matrix defined by

$$
\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j} \quad(1 \leq i, j \leq m, 1 \leq h \leq n)
$$

The generalized tensor product is

$$
\begin{aligned}
& \left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right) \\
& =\left[\begin{array}{cccc}
\Delta_{11} K_{1} & \Delta_{12} K_{2} & \cdots & \Delta_{1 n} K_{n} \\
\Delta_{21} K_{1} & \Delta_{22} K_{2} & \cdots & \Delta_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
\Delta_{n 1} K_{1} & \Delta_{n 2} K_{2} & \cdots & \Delta_{n n} K_{n}
\end{array}\right]
\end{aligned}
$$

Proposition (Hosoya and Suzuki, 2003)

H_{1}, \ldots, H_{m} : matrices of order n, K_{1}, \ldots, K_{n} : matrices of order m,

$$
\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j} \quad(1 \leq i, j \leq m, 1 \leq h \leq n)
$$

Then the generalized tensor product

$$
\begin{aligned}
& \left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right) \\
& =\left[\begin{array}{cccc}
\Delta_{11} K_{1} & \Delta_{12} K_{2} & \cdots & \Delta_{1 n} K_{n} \\
\Delta_{21} K_{1} & \Delta_{22} K_{2} & \cdots & \Delta_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
\Delta_{n 1} K_{1} & \Delta_{n 2} K_{2} & \cdots & \Delta_{n n} K_{n}
\end{array}\right]
\end{aligned}
$$

is an inverse-orthogonal matrix of order $m n$ if and only if $H_{1}, \ldots, H_{m}, K_{1}, \ldots, K_{n}$ are inverse-orthogonal matrices.

The method of weaving

$M: m \times n(0,1)$-matrix,
r_{i} :row sum of M
$(1 \leq i \leq m)$,
$A_{i}: r_{i} \times r_{i}$ matrix
$(1 \leq i \leq m)$,
c_{j} :column sum of M
$(1 \leq j \leq n)$,
$B_{j}: c_{j} \times c_{j}$ matrix
$(1 \leq j \leq n)$

The method of weaving

$M: m \times n(0,1)$-matrix,
r_{i} :row sum of M
$(1 \leq i \leq m)$,
$A_{i}: r_{i} \times r_{i}$ matrix
$(1 \leq i \leq m)$,
c_{j} :column sum of M
$(1 \leq j \leq n)$,
$B_{j}: c_{j} \times c_{j}$ matrix
$(1 \leq j \leq n)$

Set

$$
N=\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j} .
$$

The method of weaving

$M: m \times n(0,1)$-matrix,

$$
\begin{array}{ll}
r_{i}: \text { row sum of } M & (1 \leq i \leq m), \\
A_{i}: r_{i} \times r_{i} \text { matrix } & (1 \leq i \leq m), \\
c_{j}: \text { column sum of } M & (1 \leq j \leq n), \\
B_{j}: c_{j} \times c_{j} \text { matrix } & (1 \leq j \leq n)
\end{array}
$$

Set

$$
N=\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j} .
$$

The method of weaving gives a weighing matrix $W(N, a b)$ provided

$$
\begin{array}{ll}
A_{i}: W\left(r_{i}, a\right) & (1 \leq i \leq m), \\
B_{j}: W\left(c_{j}, b\right) & (1 \leq j \leq n) .
\end{array}
$$

$$
M=\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
3 \\
3
\end{array} 1-1}
\end{gathered}
$$

$$
M=\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
3 \\
3
\end{array} 1-1}
\end{gathered}
$$

$A_{1}[3 \times 3]$

$$
\begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
{[3 \times 3]} & {[1 \times 1]} & {[1 \times 1]} & {[2 \times 2]}
\end{array}
$$

$A_{2} \quad[2 \times 2]$
$A_{3} \quad[2 \times 2]$

$$
M=\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
3 \\
3
\end{array} 1-1}
\end{gathered}
$$

$$
\begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
{[3 \times 3]} & {[1 \times 1]} & {[1 \times 1]} & {[2 \times 2]}
\end{array}
$$

$A_{1} \quad[3 \times 3]$
$A_{2} \quad[2 \times 2]$
$A_{3} \quad[2 \times 2]$

$$
M=\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
3 \\
3
\end{array} 1 \begin{array}{lll}
2
\end{array}} \\
2 \\
2
\end{gathered}
$$

$$
M=\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
3 \\
3
\end{array} 1 \begin{array}{ll}
2
\end{array}} \\
2
\end{gathered}
$$

		B_{1}	B_{2}	B_{3}	B_{4}
		$[3 \times 3]$	$[1 \times 1]$	$[1 \times 1]$	$[2 \times 2]$
A_{1}	$[3 \times 3]$	3×3	3×1	O	3×2
A_{2}	$[2 \times 2]$	2×3	O	2×1	O
A_{3}	$[2 \times 2]$	2×3	O	O	2×2

$$
M=\begin{gathered}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
3 \\
3
\end{array} 1-1}
\end{gathered}
$$

		B_{1}	B_{2}	B_{3}	B_{4}
		$[3 \times 3]$	$[1 \times 1]$	$[1 \times 1]$	$[2 \times 2]$
A_{1}	$[3 \times 3]$	3×3	3×1	O	3×2
A_{2}	$[2 \times 2]$	2×3	O	2×1	O
A_{3}	$[2 \times 2]$	2×3	O	O	2×2

$$
M=\frac{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
3
\end{array} 1-1}{2}
$$

		B_{1}	B_{2}	B_{3}	B_{4}
		$[3 \times 3]$	$[1 \times 1]$	$[1 \times 1]$	$[2 \times 2]$
A_{1}	$[3 \times 3]$	3×3	3×1	O	3×2
A_{2}	$[2 \times 2]$	2×3	O	2×1	O
A_{3}	$[2 \times 2]$	2×3	O	O	2×2

$A_{i}: r_{i} \times r_{i}, B_{j}: c_{j} \times c_{j} \longrightarrow r_{i} \times c_{j}$ matrix

$$
\left.\begin{array}{l}
M=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
\end{array} \begin{array}{l}
3 \\
2 \\
3
\end{array} 1 \begin{array}{ll}
2 & 1 \\
2
\end{array}\right]
$$

$A_{i}: r_{i} \times r_{i}, B_{j}: c_{j} \times c_{j} \longrightarrow r_{i} \times c_{j}$ matrix

$$
\begin{aligned}
& M=\begin{array}{llll}
{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
2
\end{array}} \\
3 & 1 & 1 & 2
\end{array} \\
& \begin{array}{llll}
B_{1} & B_{2} & B_{3} & B_{4}
\end{array} \\
& \text { [3×3] [1×1] [1×1] [2×2] } \\
& A_{1}\left[\begin{array}{lllll}
{[3 \times 3]} & 3 \times 3 & 3 \times 1 & O & 3 \times 2
\end{array}\right. \\
& A_{2}\left[\begin{array}{lllll}
{[2 \times 2]}
\end{array} 2 \times 3 \quad 0 \quad 2 \times 1 \quad 0\right. \\
& A_{3}\left[\begin{array}{cccc}
{[2 \times 2]} & 2 \times 3 & O & O
\end{array} 2 \times 2\right.
\end{aligned}
$$

$A_{i}: r_{i} \times r_{i}, B_{j}: c_{j} \times c_{j} \longrightarrow r_{i} \times c_{j}$ matrix
$A_{1}: 3 \times 3, B_{4}: 2 \times 2 \longrightarrow 3 \times 2$ matrix $\left(A_{1} \mathbf{e}_{3}\right)\left(\mathbf{e}_{1}^{\top} B_{4}\right)$

$$
M=\frac{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
3
\end{array} 1 \begin{array}{lll}
2
\end{array}}{2}
$$

B_{1}	B_{2}	B_{3}	B_{4}

$[3 \times 3] \quad[1 \times 1] \quad[1 \times 1] \quad[2 \times 2]$
$A_{1}[3 \times 3] \quad A_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top} B_{1} \quad A_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{\top} B_{2} \quad O \quad A_{1} \mathbf{e}_{3} \mathbf{e}_{1}^{\top} B_{4}$
$A_{2}[2 \times 2] \quad A_{2} \mathbf{e}_{1} \mathbf{e}_{2}^{\top} B_{1}$
O
$A_{2} \mathbf{e}_{2} \mathbf{e}_{1}^{\top} B_{3}$
0
$A_{3}[2 \times 2] \quad A_{3} \mathbf{e}_{1} \mathbf{e}_{3}^{\top} B_{1}$
0
O
$A_{3} \mathbf{e}_{2} \mathbf{e}_{2}^{\top} B_{4}$

Weaving with respect to $M=J$

$$
M=\left[\begin{array}{llll}
{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]}
\end{array} \begin{array}{l}
4 \\
4 \\
3 \\
3
\end{array} 3\right.
$$

Weaving with respect to $M=J$

$$
M=\frac{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{l}
4 \\
4 \\
3
\end{array} 3-3}{3} 4
$$

B_{1}	B_{2}	B_{3}	B_{4}
$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$

$A_{1} \quad[4 \times 4] \quad A_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top} B_{1} \quad A_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{\top} B_{2} \quad A_{1} \mathbf{e}_{3} \mathbf{e}_{1}^{\top} B_{3} \quad A_{1} \mathbf{e}_{4} \mathbf{e}_{1}^{\top} B_{4}$
$A_{2}[4 \times 4] \quad A_{2} \mathbf{e}_{1} \mathbf{e}_{2}^{\top} B_{1} \quad A_{2} \mathbf{e}_{2} \mathbf{e}_{2}^{\top} B_{2} \quad A_{2} \mathbf{e}_{3} \mathbf{e}_{2}^{\top} B_{3} \quad A_{2} \mathbf{e}_{4} \mathbf{e}_{2}^{\top} B_{4}$
$A_{3} \quad[4 \times 4] \quad A_{3} \mathbf{e}_{1} \mathbf{e}_{3}^{\top} B_{1} \quad A_{3} \mathbf{e}_{2} \mathbf{e}_{3}^{\top} B_{2} \quad A_{3} \mathbf{e}_{3} \mathbf{e}_{3}^{\top} B_{3} \quad A_{3} \mathbf{e}_{4} \mathbf{e}_{3}^{\top} B_{4}$

Weaving with respect to $M=J$

$$
M=\frac{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{l}
4 \\
4 \\
3
\end{array} 3-3}{}
$$

B_{1}	B_{2}	B_{3}	B_{4}
$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$

$A_{1} \quad[4 \times 4] \quad A_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top} B_{1} \quad A_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{\top} B_{2} \quad A_{1} \mathbf{e}_{3} \mathbf{e}_{1}^{\top} B_{3} \quad A_{1} \mathbf{e}_{4} \mathbf{e}_{1}^{\top} B_{4}$
$A_{2}[4 \times 4] \quad A_{2} \mathbf{e}_{1} \mathbf{e}_{2}^{\top} B_{1} \quad A_{2} \mathbf{e}_{2} \mathbf{e}_{2}^{\top} B_{2} \quad A_{2} \mathbf{e}_{3} \mathbf{e}_{2}^{\top} B_{3} \quad A_{2} \mathbf{e}_{4} \mathbf{e}_{2}^{\top} B_{4}$
$A_{3} \quad[4 \times 4] \quad A_{3} \mathbf{e}_{1} \mathbf{e}_{3}^{\top} B_{1} \quad A_{3} \mathbf{e}_{2} \mathbf{e}_{3}^{\top} B_{2} \quad A_{3} \mathbf{e}_{3} \mathbf{e}_{3}^{\top} B_{3} \quad A_{3} \mathbf{e}_{4} \mathbf{e}_{3}^{\top} B_{4}$

$$
\left[A_{i} \mathbf{e}_{\mathbf{j}} \mathbf{e}_{i}^{\top} B_{j}\right]=\left[A_{i} E_{j i} B_{j}\right]
$$

Weaving with respect to $M=J$

$$
M=\frac{\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] \begin{array}{l}
4 \\
4 \\
3
\end{array} 3-3}{3} 4
$$

B_{1}	B_{2}	B_{3}	B_{4}
$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$

$A_{1} \quad\left[\begin{array}{llllll}4 \times 4] & A_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top} B_{1} & A_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{\top} B_{2} & A_{1} \mathbf{e}_{3} \mathbf{e}_{1}^{\top} B_{3} & A_{1} \mathbf{e}_{4} \mathbf{e}_{1}^{\top} B_{4}\end{array}\right.$
$A_{2}[4 \times 4] \quad A_{2} \mathbf{e}_{1} \mathbf{e}_{2}^{\top} B_{1} \quad A_{2} \mathbf{e}_{2} \mathbf{e}_{2}^{\top} B_{2} \quad A_{2} \mathbf{e}_{3} \mathbf{e}_{2}^{\top} B_{3} \quad A_{2} \mathbf{e}_{4} \mathbf{e}_{2}^{\top} B_{4}$ $A_{3} \quad[4 \times 4] \quad A_{3} \mathbf{e}_{1} \mathbf{e}_{3}^{\top} B_{1} \quad A_{3} \mathbf{e}_{2} \mathbf{e}_{3}^{\top} B_{2} \quad A_{3} \mathbf{e}_{3} \mathbf{e}_{3}^{\top} B_{3} \quad A_{3} \mathbf{e}_{4} \mathbf{e}_{3}^{\top} B_{4}$

$$
\left[A_{i} \mathbf{e}_{\mathbf{j}} \mathbf{e}_{i}^{\top} B_{j}\right]=\left[A_{i} E_{j i} B_{j}\right]
$$

Weaving with respect to $M=J$

		B_{1}	B_{2}	B_{3}	B_{4}
		$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$	$[3 \times 3]$
A_{1}	$[4 \times 4]$	$A_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top} B_{1}$	$A_{1} \mathbf{e}_{2} \mathbf{e}_{1}^{\top} B_{2}$	$A_{1} \mathbf{e}_{3} \mathbf{e}_{1}^{\top} B_{3}$	$A_{1} \mathbf{e}_{4} \mathbf{e}_{1}^{\top} B_{4}$
A_{2}	$[4 \times 4]$	$A_{2} \mathbf{e}_{1} \mathbf{e}_{2}^{\top} B_{1}$	$A_{2} \mathbf{e}_{2} \mathbf{e}_{2}^{\top} B_{2}$	$A_{2} \mathbf{e}_{3} \mathbf{e}_{2}^{\top} B_{3}$	$A_{2} \mathbf{e}_{4} \mathbf{e}_{2}^{\top} B_{4}$
A_{3}	$[4 \times 4]$	$A_{3} \mathbf{e}_{1} \mathbf{e}_{3}^{\top} B_{1}$	$A_{3} \mathbf{e}_{2} \mathbf{e}_{3}^{\top} B_{2}$	$A_{3} \mathbf{e}_{3} \mathbf{e}_{3}^{\top} B_{3}$	$A_{3} \mathbf{e}_{4} \mathbf{e}_{3}^{\top} B_{4}$
		$\left[A_{i} \mathbf{e}_{\mathbf{j}} \mathbf{e}_{i}^{\top} B_{j}\right]=\left[\begin{array}{llll}\left.A_{i} E_{j i} B_{j}\right]\end{array}\right.$			

Weaving with respect to $M=J$

\[

\]

$$
\left[\begin{array}{cccc}
\Delta_{11} K_{1} & \Delta_{12} K_{2} & \cdots & \Delta_{1 n} K_{n} \\
\Delta_{21} K_{1} & \Delta_{22} K_{2} & \cdots & \Delta_{2 n} K_{n} \\
\vdots & \vdots & & \vdots \\
\Delta_{n 1} K_{1} & \Delta_{n 2} K_{2} & \cdots & \Delta_{n n} K_{n}
\end{array}\right]=\left[\Delta_{i j} K_{j}\right]
$$

$\left(\Delta_{i j}\right)_{h h}=\left(A_{h}\right)_{i j}$

$\left[\begin{array}{cc}A_{1} \mathbf{e}_{1} \mathbf{e}_{1}^{\top} B_{1} & \cdots \\ A_{2} \mathbf{e}_{1} \mathbf{e}_{2}^{\top} B_{1} & \cdots \\ A_{3} \mathbf{e}_{1} \mathbf{e}_{3}^{\top} B_{1} & \cdots\end{array}\right.$

$$
=\left[\begin{array} { l l l }
{ (A _ { 1 }) _ { 1 1 } \mathbf { e } _ { 1 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 1 }) _ { 2 1 } \mathbf { e } _ { 1 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 1 }) _ { 3 1 } \mathbf { e } _ { 1 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 2 }) _ { 1 1 } \mathbf { e } _ { 2 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 2 }) _ { 2 1 } \mathbf { e } _ { 2 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 2 }) _ { 3 1 } \mathbf { e } _ { 2 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 3 }) _ { 1 1 } \mathbf { e } _ { 3 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 3 }) _ { 2 1 } \mathbf { e } _ { 3 } ^ { \top } B _ { 1 } } & { \cdots } \\
{ (A _ { 3 }) _ { 3 1 } \mathbf { e } _ { 3 } ^ { \top } B _ { 1 } } & { \cdots }
\end{array} \quad \left[\begin{array}{l}
\left(A_{1}\right)_{11} \mathbf{e}_{1}^{\top} B_{1} \\
\left(A_{2}\right)_{11} \mathbf{e}_{2}^{\top} B_{1}=\Delta_{11} B_{1} \\
\left(A_{3}\right)_{11} \mathbf{e}_{3}^{\top} B_{1} \\
\left(A_{1}\right)_{21} \mathbf{e}_{1}^{\top} B_{1} \\
\left(A_{2}\right)_{21} \mathbf{e}_{2}^{\top} B_{1}=\Delta_{21} B_{1} \\
\left(A_{3}\right)_{21} \mathbf{e}_{3}^{\top} B_{1} \\
\left(A_{1}\right)_{31} \mathbf{e}_{1}^{\top} B_{1} \\
\left(A_{2}\right)_{31} \mathbf{e}_{2}^{\top} B_{1}=\Delta_{31} B_{1} \\
\left(A_{3}\right)_{31} \mathbf{e}_{3}^{\top} B_{1}
\end{array}\right.\right.
$$

Weaving with respect to $M=J$ and

 generalized tensor product- $M=J_{m \times n}$
- $A_{1}, \ldots, A_{m}: n \times n$
- $B_{1}, \ldots, B_{n}: m \times m$

Then the weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to $M=J_{m \times n}$ is

$$
\left[A_{i} E_{j i} B_{j}\right]
$$

which coincides with the generalized tensor product
$\left(A_{1}, \ldots, A_{m}\right) \otimes\left(B_{1}, \ldots, B_{n}\right)=\left[\Delta_{i j} B_{j}\right] \quad$ where $\left(\Delta_{i j}\right)_{h h}=\left(A_{h}\right)_{i j}$
after appropriate row permutation

Definition (weaving)

$M: m \times n(0,1)$-matrix.

$$
R_{i}=\left\{j \mid 1 \leq j \leq n, M_{i j}=1\right\}, \quad r_{i}=\left|R_{i}\right|
$$

$$
\rho_{i}: R_{i} \rightarrow\left\{1, \ldots, r_{i}\right\} \text { bijection }
$$

$A_{i}: r_{i} \times r_{i}$ matrix,

$$
\begin{aligned}
& C_{j}=\left\{i \mid 1 \leq i \leq m, M_{i j}=1\right\}, \quad c_{j}=\left|C_{j}\right| \\
& \gamma_{j}: C_{j} \rightarrow\left\{1, \ldots, c_{j}\right\} \text { bijection, } \\
& B_{j}: c_{j} \times c_{j} \text { matrix. }
\end{aligned}
$$

The weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to M is defined to be the $m \times n$ block matrix whose (i, j) block is the $r_{i} \times c_{j}$ matrix $W_{i j}$ defined by

$$
W_{i j}= \begin{cases}A_{i} E_{\rho_{i}(j), \gamma_{j}(i)} B_{j} & \text { if } M_{i j}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Definition (weaving)

$M: m \times n(0,1)$-matrix. $M=J$

$$
R_{i}=\left\{j \mid 1 \leq j \leq n, M_{i j}=1\right\}, \quad r_{i}=\left|R_{i}\right|=n,
$$

$\rho_{i}: R_{i} \rightarrow\left\{1, \ldots, r_{i}\right\}$ bijection, identity
$A_{i}: r_{i} \times r_{i}$ matrix, $n \times n$
$C_{j}=\left\{i \mid 1 \leq i \leq m, M_{i j}=1\right\}, \quad c_{j}=\left|C_{j}\right|=m$,
$\gamma_{j}: C_{j} \rightarrow\left\{1, \ldots, c_{j}\right\}$ bijection, identity
$B_{j}: c_{j} \times c_{j}$ matrix. $m \times m$

Definition (weaving)

$M: m \times n(0,1)$-matrix. $M=J$

$$
R_{i}=\left\{j \mid 1 \leq j \leq n, M_{i j}=1\right\}, \quad r_{i}=\left|R_{i}\right|=n,
$$

$\rho_{i}: R_{i} \rightarrow\left\{1, \ldots, r_{i}\right\}$ bijection, identity
$A_{i}: r_{i} \times r_{i}$ matrix, $n \times n$
$C_{j}=\left\{i \mid 1 \leq i \leq m, M_{i j}=1\right\}, \quad c_{j}=\left|C_{j}\right|=m$,
$\gamma_{j}: C_{j} \rightarrow\left\{1, \ldots, c_{j}\right\}$ bijection, identity
$B_{j}: c_{j} \times c_{j}$ matrix. $m \times m$

Proposition

The weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to J is the same as the generalized tensor product $\left(A_{1}, \ldots, A_{m}\right) \otimes\left(B_{1}, \ldots, B_{n}\right)$ after row permutaiton.

The method of weaving

Proposition (Craigen, 1991)

$$
\begin{array}{ll}
M & : m \times n(0,1) \text {-matrix, } \\
r_{i}: \text { row sum of } M & (1 \leq i \leq m), \\
A_{i} & : r_{i} \times r_{i} \text { matrix } \\
c_{j} & : \text { column sum of } M \\
B_{j} & : c_{j} \times c_{j} \text { matrix }
\end{array}
$$

The method of weaving

Proposition (Craigen, 1991)

$$
\begin{array}{ll}
M & : m \times n(0,1) \text {-matrix, } \\
r_{i}: \text { row sum of } M & (1 \leq i \leq m), \\
A_{i} & : r_{i} \times r_{i} \text { matrix } \\
c_{j} & : \text { column sum of } M \\
B_{j} & : c_{j} \times c_{j} \text { matrix }
\end{array}
$$

Set $N=\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$.

The method of weaving

Proposition (Craigen, 1991)

$$
\begin{array}{ll}
M: m \times n(0,1) \text {-matrix, } & \\
r_{i}: \text { row sum of } M & (1 \leq i \leq m), \\
A_{i}: r_{i} \times r_{i} \text { matrix } & (1 \leq i \leq m), \\
c_{j}: \text { column sum of } M & (1 \leq j \leq n), \\
B_{j}: c_{j} \times c_{j} \text { matrix } & (1 \leq j \leq n)
\end{array}
$$

Set $N=\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$. The weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to M is a weighing matrix $W(N, a b)$ provided

$$
\begin{array}{ll}
A_{i}: W\left(r_{i}, a\right) & (1 \leq i \leq m), \\
B_{j}: W\left(c_{j}, b\right) & (1 \leq j \leq n) .
\end{array}
$$

The method of weaving, example

M: 6×13 matrix with row sums

$$
\begin{gathered}
\text { row sums } 13,13,10,10,10,10, \\
A_{i}: W(13,9), W(10,9), \\
\text { column sums } 6,6,6,6,6,6,6,4,4,4,4 \\
B_{j}: W(6,4), W(4,4)
\end{gathered}
$$

Then the weaving gives $W(66,36)$.

The method of weaving, example

M: 6×13 matrix with row sums

$$
\begin{gathered}
\text { row sums } 13,13,10,10,10,10, \\
A_{i}: W(13,9), W(10,9), \\
\text { column sums } 6,6,6,6,6,6,6,4,4,4,4 \\
B_{j}: W(6,4), W(4,4)
\end{gathered}
$$

Then the weaving gives $W(66,36)$.

- Weaving in general cannot be expressed by generalized tensor product.

The method of weaving, example

M: 6×13 matrix with row sums

$$
\begin{gathered}
\text { row sums } 13,13,10,10,10,10, \\
A_{i}: W(13,9), W(10,9), \\
\text { column sums } 6,6,6,6,6,6,6,4,4,4,4 \\
B_{j}: W(6,4), W(4,4)
\end{gathered}
$$

Then the weaving gives $W(66,36)$.

- Weaving in general cannot be expressed by generalized tensor product.
- Perhaps generalized tensor product is not general enough.

$$
M=\frac{\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
3
\end{array} 1-1}{2}
$$

$$
\begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
{[3 \times 3]} & {[1 \times 1]} & {[1 \times 1]} & {[2 \times 2]}
\end{array}
$$

$A_{1}[3 \times 3] \quad A_{1} E_{11} B_{1} \quad A_{1} E_{21} B_{2} \quad O \quad A_{1} E_{31} B_{4}$
$A_{2}[2 \times 2] \quad A_{2} E_{12} B_{1} \quad O \quad A_{2} E_{21} B_{3} \quad O$
$A_{3}[2 \times 2] \quad A_{3} E_{13} B_{1} \quad O \quad O \quad A_{3} E_{22} B_{4}$

$$
\begin{aligned}
& M=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
2
\end{array} \\
& \begin{array}{llll}
3 & 1 & 1 & 2
\end{array} \\
& \begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
{[3 \times 3]} & {[1 \times 1]} & {[1 \times 1]} & {[2 \times 2]}
\end{array} \\
& A_{1}[3 \times 3] \quad A_{1} E_{11} B_{1} \quad A_{1} E_{21} B_{2} \quad O \quad A_{1} E_{31} B_{4} \\
& A_{2}[2 \times 2] \quad A_{2} E_{12} B_{1} \quad O \quad A_{2} E_{21} B_{3} \quad O \\
& A_{3}[2 \times 2] \quad A_{3} E_{13} B_{1} \quad O \quad O \quad A_{3} E_{22} B_{4} \\
& A_{2} E_{21} B_{3}=\left[\begin{array}{cc}
* & * \\
* & *
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right][*]=\left[\begin{array}{cccc}
* & 0 & * & 0 \\
* & 0 & * & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
* \\
0
\end{array}\right] \\
& =\tilde{A}_{2} E_{32} \tilde{B}_{3} .
\end{aligned}
$$

$$
\begin{aligned}
& M=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
2
\end{array} \\
& \begin{array}{llll}
3 & 1 & 1 & 2
\end{array} \\
& \begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
{[3 \times 3]} & {[1 \times 1]} & {[1 \times 1]} & {[2 \times 2]}
\end{array} \\
& O \quad A_{1} E_{31} B_{4} \\
& A_{2} E_{21} B_{3} \quad O \\
& O \quad A_{3} E_{22} B_{4} \\
& A_{2} E_{21} B_{3}=\left[\begin{array}{cc}
* & * \\
* & *
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right][*]=\left[\begin{array}{cccc}
* & 0 & * & 0 \\
* & 0 & * & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
* \\
0
\end{array}\right] \\
& =\tilde{A}_{2} E_{32} \tilde{B}_{3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& M=\left[\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
3 \\
2 \\
2
\end{array} \\
& \begin{array}{llll}
3 & 1 & 1 & 2
\end{array} \\
& \begin{array}{cccc}
B_{1} & B_{2} & B_{3} & B_{4} \\
{[3 \times 3]} & {[1 \times 1]} & {[1 \times 1]} & {[2 \times 2]}
\end{array} \\
& A_{1}[3 \times 3] \quad A_{1} E_{11} B_{1} \quad A_{1} E_{21} B_{2} \quad O \quad A_{1} E_{31} B_{4} \\
& A_{2}[2 \times 2] \quad A_{2} E_{12} B_{1} \quad O \quad A_{2} E_{21} B_{3} \quad O \\
& A_{3}[2 \times 2] \quad A_{3} E_{13} B_{1} \quad O \quad O \quad A_{3} E_{22} B_{4} \\
& A_{2} E_{21} B_{3}=\left[\begin{array}{ll}
* & * \\
* & *
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right][*]=\left[\begin{array}{llll}
* & 0 & * & 0 \\
* & 0 & * & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
* \\
0
\end{array}\right] \\
& =\tilde{A}_{2} E_{32} \tilde{B}_{3} \text {. }
\end{aligned}
$$

$M: m \times n(0,1)$-matrix.

$$
R_{i}=\left\{j \mid 1 \leq j \leq n, \quad M_{i j}=1\right\}, \quad r_{i}=\left|R_{i}\right|
$$

$$
\rho_{i}: R_{i} \rightarrow\left\{1, \ldots, r_{i}\right\} \text { bijection, }
$$

$A_{i}: r_{i} \times r_{i}$ matrix,

$$
C_{j}=\left\{i \mid 1 \leq i \leq m, M_{i j}=1\right\}, \quad c_{j}=\left|C_{j}\right|
$$

$\gamma_{j}: C_{j} \rightarrow\left\{1, \ldots, c_{j}\right\}$ bijection,
$B_{j}: c_{j} \times c_{j}$ matrix.
Define an $r_{i} \times n$ matrix \tilde{A}_{i} and an $m \times c_{j}$ matrix \tilde{B}_{j} by

$$
\begin{aligned}
& \left(\tilde{A}_{i}\right)_{h k}= \begin{cases}\left(A_{i}\right)_{h, \rho_{i}(k)} & \text { if } k \in R_{i} \\
0 & \text { otherwise }\end{cases} \\
& \left(\tilde{B}_{j}\right)_{h k}= \begin{cases}\left(B_{j}\right)_{\gamma_{j}(h), k} & \text { if } h \in C_{j} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Proposition

The weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to M coincides with the generalized tensor product (of variable-order matrices) $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right) \otimes\left(\tilde{B}_{1}, \ldots, \tilde{B}_{n}\right)$ after appropriate row permutation.

Proposition

The weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to M coincides with the generalized tensor product (of variable-order matrices) $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right) \otimes\left(\tilde{B}_{1}, \ldots, \tilde{B}_{n}\right)$ after appropriate row permutation.

- We may assume without loss of generality $r_{1} \geq \cdots \geq r_{m}$.
- The "diagonal" matrix $\Delta_{i j}$ defined by $\left(\Delta_{i j}\right)_{h h}=\left(A_{h}\right)_{i j}$ is not a square matrix. It is an $s_{i} \times m$ matrix, where $s_{1} \geq \cdots \geq s_{r_{1}}$ is the conjugate partition of $r_{1} \geq \cdots \geq r_{m}$

Proposition

The weaving of $\left(A_{1}, \ldots, A_{m}\right)$ and $\left(B_{1}, \ldots, B_{n}\right)$ with respect to M coincides with the generalized tensor product (of variable-order matrices) $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right) \otimes\left(\tilde{B}_{1}, \ldots, \tilde{B}_{n}\right)$ after appropriate row permutation.

- We may assume without loss of generality $r_{1} \geq \cdots \geq r_{m}$.
- The "diagonal" matrix $\Delta_{i j}$ defined by $\left(\Delta_{i j}\right)_{h h}=\left(A_{h}\right)_{i j}$ is not a square matrix. It is an $s_{i} \times m$ matrix, where $s_{1} \geq \cdots \geq s_{r_{1}}$ is the conjugate partition of $r_{1} \geq \cdots \geq r_{m}$
- For example,

$$
\left(r_{1}, r_{2}, r_{3}\right)=(3,2,2) \Longrightarrow\left(s_{1}, s_{2}, s_{3}\right)=(3,3,1)
$$

Proposition

$$
\begin{aligned}
& H_{i}: r_{i} \times n \text { matrix, } H_{i} H_{i}^{(-)^{\top}}=\text { al } \quad(1 \leq i \leq m) \\
& K_{j}: m \times c_{j} \text { matrix, } K_{j} K_{j}^{(-)^{\top}}=b l \quad(1 \leq j \leq n)
\end{aligned}
$$

The generalized tensor product (of variable-order matrices) $T=\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)$ satisfies $T T^{(-)^{\top}}=a b l$.

Proposition

$$
\begin{aligned}
& H_{i}: r_{i} \times n \text { matrix, } H_{i} H_{i}^{(-)^{\top}}=\text { al } \quad(1 \leq i \leq m) \\
& K_{j}: m \times c_{j} \text { matrix, } K_{j} K_{j}^{(-)^{\top}}=b l \quad(1 \leq j \leq n)
\end{aligned}
$$

The generalized tensor product (of variable-order matrices) $T=\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)$ satisfies $T T^{(-)^{\top}}=a b l$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time.

Proposition

$$
\begin{aligned}
& H_{i}: r_{i} \times n \text { matrix, } H_{i} H_{i}^{(-)^{\top}}=\text { al } \quad(1 \leq i \leq m) \\
& K_{j}: m \times c_{j} \text { matrix, } K_{j} K_{j}^{(-)^{\top}}=b l \quad(1 \leq j \leq n) .
\end{aligned}
$$

The generalized tensor product (of variable-order matrices) $T=\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)$ satisfies $T T^{(-)^{\top}}=a b l$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time. For a complex number x, we define

$$
x^{(-)}=\left\{\begin{array}{ll}
x^{-1} & \text { if } x \neq 0, \\
0 & \text { if } x=0
\end{array} \quad 0^{-1}=0\right.
$$

Proposition

$$
\begin{aligned}
& H_{i}: r_{i} \times n \text { matrix, } H_{i} H_{i}^{(-)^{\top}}=\text { al } \quad(1 \leq i \leq m) \\
& K_{j}: m \times c_{j} \text { matrix, } K_{j} K_{j}^{(-)^{\top}}=b l \quad(1 \leq j \leq n)
\end{aligned}
$$

The generalized tensor product (of variable-order matrices) $T=\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)$ satisfies $T T^{(-)^{\top}}=a b l$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time. For a complex number x, we define

$$
x^{(-)}=\left\{\begin{array}{ll}
x^{-1} & \text { if } x \neq 0, \\
0 & \text { if } x=0
\end{array} \quad 0^{-1}=0\right.
$$

and define $X^{(-)}$similarly for a matrix X.

Proposition

$$
\begin{aligned}
& H_{i}: r_{i} \times n \text { matrix, } H_{i} H_{i}^{(-)^{\top}}=\text { al } \quad(1 \leq i \leq m) \\
& K_{j}: m \times c_{j} \text { matrix, } K_{j} K_{j}^{(-)^{\top}}=b l \quad(1 \leq j \leq n)
\end{aligned}
$$

The generalized tensor product (of variable-order matrices) $T=\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)$ satisfies $T T^{(-)^{\top}}=a b l$.

The weighing matrix version and inverse-orthogonal matrix version can be proved at the same time. For a complex number x, we define

$$
x^{(-)}=\left\{\begin{array}{ll}
x^{-1} & \text { if } x \neq 0, \\
0 & \text { if } x=0
\end{array} \quad 0^{-1}=0\right.
$$

and define $X^{(-)}$similarly for a matrix X.
Observe $(a b)^{(-)}=a^{(-)} b^{(-)}(\forall a, b \in \mathbb{C})$.

Jones graph

- H: $n \times n$ inverse-orthogonal matrix
- $V=\{(i, j) \mid 1 \leq i, j \leq n, i \neq j\}$
- The Jones graph of $\Gamma(H)$ is the graph with vertex set V and

$$
(i, j) \sim\left(i^{\prime}, j^{\prime}\right) \Longleftrightarrow \sum_{h=1}^{n} \frac{H_{i h} H_{i^{\prime} h}}{H_{j h} H_{j^{\prime} h}} \neq 0 .
$$

Jones graph

- $H: n \times n$ inverse-orthogonal matrix
- $V=\{(i, j) \mid 1 \leq i, j \leq n, i \neq j\}$
- The Jones graph of $\Gamma(H)$ is the graph with vertex set V and

$$
(i, j) \sim\left(i^{\prime}, j^{\prime}\right) \Longleftrightarrow \sum_{h=1}^{n} \frac{H_{i h} H_{i^{\prime} h}}{H_{j h} H_{j^{\prime} h}} \neq 0 .
$$

Theorem (Hosoya-Suzuki)

H is a (nontrivial) generalized tensor product if and only if $\Gamma(H)$ has a connected component contained in $S \times S$ for some $S \subsetneq\{1, \ldots, n\}$.

Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker product:

$$
\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]
$$

$$
H \otimes K=
$$

Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker product:

$$
\begin{array}{r}
{\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]} \\
H \otimes K=(H \otimes I)(I \otimes K)
\end{array}
$$

Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker product:

$$
\begin{aligned}
{\left[M_{i j}\right] \circ\left[N_{i j}\right] } & =\left[\sum_{k} M_{i k} \otimes N_{k j}\right] \\
H \otimes K & =(H \otimes I)(I \otimes K) \\
& =\left(H \otimes \sum_{h=1}^{m} E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K\right)
\end{aligned}
$$

Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker product:

$$
\begin{aligned}
{\left[M_{i j}\right] \circ\left[N_{i j}\right] } & =\left[\sum_{k} M_{i k} \otimes N_{k j}\right] \\
H \otimes K & =(H \otimes I)(I \otimes K) \\
& =\left(\sum_{h=1}^{m} H \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K\right)
\end{aligned}
$$

Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker product:

$$
\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]
$$

$$
\begin{aligned}
H \otimes K & =(H \otimes I)(I \otimes K) \\
& =\left(\sum_{h=1}^{m} H \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K\right) \\
& =\left(\sum_{h=1}^{m} H_{h} \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right)
\end{aligned}
$$

Strong Kronecker product

Seberry and Zhang (1991) introduced strong Kronecker product:

$$
\begin{aligned}
{\left[M_{i j}\right] \circ\left[N_{i j}\right]=} & {\left[\sum_{k} M_{i k} \otimes N_{k j}\right] } \\
H \otimes K & =(H \otimes I)(I \otimes K) \\
& =\left(\sum_{h=1}^{m} H \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K\right) \\
\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right) & =\left(\sum_{h=1}^{m} H_{h} \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right)
\end{aligned}
$$

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{h=1}^{m} H_{h} \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right)$

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{h=1}^{m} H_{h} \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right)$

$$
\left[\begin{array}{lll}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]
$$

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$$
\begin{gathered}
\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{h=1}^{m} H_{n} \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right) \\
{\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right]\left[\begin{array}{ccc}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]}
\end{gathered}
$$

where $\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j}$,

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$$
\begin{gathered}
\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{h=1}^{m} H_{n} \otimes E_{h n}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right) \\
{\left[\begin{array}{c}
\Delta_{i j} K_{j}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right]\left[\begin{array}{ccc}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]}
\end{gathered}
$$

where $\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j}$,

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$$
\begin{gathered}
\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{h=1}^{m} H_{h} \otimes E_{h h}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right) \\
{\left[\begin{array}{c}
\Delta_{i j} K_{j}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right]\left[\begin{array}{ccc}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]}
\end{gathered}
$$

where $\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j}$,

$$
\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right] \circ\left[\begin{array}{lll}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]
$$

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$$
\begin{gathered}
\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{n=1}^{m} H_{h} \otimes E_{h n}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right) \\
{\left[\begin{array}{c}
\Delta_{i j} K_{j}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right]\left[\begin{array}{lll}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]}
\end{gathered}
$$

where $\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j}$,

$$
\left[\begin{array}{c}
\\
\Delta_{i j} \otimes K_{j}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right] \circ\left[\begin{array}{lll}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]
$$

$\left[M_{i j}\right] \circ\left[N_{i j}\right]=\left[\sum_{k} M_{i k} \otimes N_{k j}\right]$

$$
\begin{gathered}
\left(H_{1}, \ldots, H_{m}\right) \otimes\left(K_{1}, \ldots, K_{n}\right)=\left(\sum_{h=1}^{m} H_{h} \otimes E_{h n}\right)\left(\sum_{j=1}^{n} E_{j j} \otimes K_{j}\right) \\
{\left[\begin{array}{c}
\Delta_{i j} K_{j}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right]\left[\begin{array}{lll}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]}
\end{gathered}
$$

where $\left(\Delta_{i j}\right)_{h h}=\left(H_{h}\right)_{i j}$, is a principal submatrix of

$$
\left[\begin{array}{c}
\\
\Delta_{i j} \otimes K_{j}
\end{array}\right]=\left[\begin{array}{ccc}
\Delta_{11} & \cdots & \Delta_{1 n} \\
\vdots & & \vdots \\
\Delta_{n 1} & \cdots & \Delta_{n n}
\end{array}\right] \circ\left[\begin{array}{lll}
K_{1} & & \\
& \ddots & \\
& & K_{n}
\end{array}\right]
$$

Summary

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product

Summary

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product
- generalized tensor product (of variable-order matrices) contains weaving as a special case

Summary

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product
- generalized tensor product (of variable-order matrices) contains weaving as a special case
- weaving with respect to J is generalized tensor product

Summary

- generalized tensor product (of fixed-order matrices) is a principal submatrix of strong Kronecker product
- generalized tensor product (of variable-order matrices) contains weaving as a special case
- weaving with respect to J is generalized tensor product
- Diță's construction is a special case of generalized tensor product

