Godsil-McKay switching and twisted Grassmann graphs

Akihiro Munemasa

Tohoku University
July 23, 2014
RIMS, Kyoto University
(ordinary) Grassmann Graph $J_{q}(2 d+1, d+1)$
\downarrow Godsil-McKay switching twisted Grassmann graph
(ordinary) Grassmann Graph $J_{q}(2 d+1, d+1) \leftarrow J_{q}(v, k)$
\downarrow Godsil-McKay switching twisted Grassmann graph

$$
J(v, k)
$$

(ordinary) Grassmann Graph $J_{q}(2 d+1, d+1) \leftarrow J_{q}(v, k)$ \downarrow Godsil-McKay switching twisted Grassmann graph

(ordinary) Grassmann Graph $J_{q}(2 d+1, d+1) \leftarrow J_{q}(v, k)$
\downarrow Godsil-McKay switching
twisted Grassmann graph

The Grassmann graph $J_{q}(2 d+1, d+1)$.
Notation $\left[\begin{array}{c}U \\ j\end{array}\right]$ denotes the collection of j-dim. subspaces of a vector space U

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$

Then the vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D, D=\left[\begin{array}{c}H \\ d+1\end{array}\right]$,

$$
C=\bigcup_{U \in\left[\begin{array}{l}
H \\
d
\end{array}\right]} C_{U}, \quad C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
$$

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $\bar{V}(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$

Then the vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D, D=\left[\begin{array}{c}H \\ d+1\end{array}\right]$

$$
C=\bigcup_{\left.U \in: H^{H}\right]} C_{U}, \quad C_{U}=\left\{\left.\bar{W} \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
$$

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H.

Then the vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D, D=\left[\begin{array}{c}H \\ d+1\end{array}\right]$,

$$
C=\bigcup_{U \in\left[\begin{array}{c}
H \\
H
\end{array}\right]} C_{U}, \quad C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
$$

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H.

Then the vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D, D=\left[\begin{array}{c}H \\ d+1\end{array}\right]$,

$$
C=\bigcup_{U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]} C_{U}, \quad C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
$$

- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Interchange adj. and non-adj. between a vertex of $W \in D$ and $C_{U} \cup C_{U^{\perp}}$ if W is adjacent to $1 / 2$ of $C_{U} \cup C_{U^{\perp}}$.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H.

Then the vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D, D=\left[\begin{array}{c}H \\ d+1\end{array}\right]$,

$$
C=\bigcup_{U \in\left[\begin{array}{l}
H \\
H
\end{array}\right]} C_{U}, \quad C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
$$

- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Interchange adj. and non-adj. between a vertex of $W \in D$ and $C_{U} \cup C_{U^{\perp}}$ if W is adjacent to $1 / 2$ of $C_{U} \cup C_{U^{\perp}}$. The resulting graph is the twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$.

- The Shrikhande graph (1959)
- Seidel switching
- Doob graphs
- Godsil-McKay switching (1982)
- DRG, Grassmann graphs
$\uparrow \sim 1980$'s,
- The Shrikhande graph (1959)
- Seidel switching
- Doob graphs
- Godsil-McKay switching (1982)
- DRG, Grassmann graphs
$\uparrow \sim 1980 ' s, \quad \downarrow$ 2000's~
2005 twisted Grassmann graphs of Van Dam-Koolen
- The Shrikhande graph (1959)
- Seidel switching
- Doob graphs
- Godsil-McKay switching (1982)
- DRG, Grassmann graphs
$\uparrow \sim 1980 ' s, \quad \downarrow$ 2000's~
2005 twisted Grassmann graphs of Van Dam-Koolen
2009 distorted geometric design, Jungnickel-Tonchev
- The Shrikhande graph (1959)
- Seidel switching
- Doob graphs
- Godsil-McKay switching (1982)
- DRG, Grassmann graphs
$\uparrow \sim 1980 ' s, \quad \downarrow$ 2000's~
2005 twisted Grassmann graphs of Van Dam-Koolen
2009 distorted geometric design, Jungnickel-Tonchev
2011 equivalence of these two, M.-Tonchev
- The Shrikhande graph (1959)
- Seidel switching
- Doob graphs
- Godsil-McKay switching (1982)
- DRG, Grassmann graphs
$\uparrow \sim 1980 ' s, \quad \downarrow$ 2000's~
2005 twisted Grassmann graphs of Van Dam-Koolen
2009 distorted geometric design, Jungnickel-Tonchev
2011 equivalence of these two, M.-Tonchev
2014+ distorted \leftrightarrow Godsil-McKay switching

$$
\begin{aligned}
& \mathrm{PG}_{d}(2 d, q) \xrightarrow{\text { block graph }} J_{q}(2 d+1, d+1) \\
& \text { distort } \downarrow \\
& \text { new design } \xrightarrow{\text { block graph }} \tilde{J}_{q}(2 d+1, d+1)
\end{aligned}
$$

Block graph = graph with blocks as vertices, adjacent iff intersect at maximal size.

$$
\begin{aligned}
& \mathrm{PG}_{d}(2 d, q) \xrightarrow{\text { block graph }} J_{q}(2 d+1, d+1) \\
& \text { distort } \downarrow \\
& \text { new design switching } \downarrow \\
& \text { n. } \xrightarrow{\text { block graph }} \tilde{J}_{q}(2 d+1, d+1)
\end{aligned}
$$

Block graph = graph with blocks as vertices, adjacent iff intersect at maximal size.

$$
\begin{aligned}
& \mathrm{PG}_{d}(2 d, q) \xrightarrow{\text { block graph }} J_{q}(2 d+1, d+1) \\
& \text { distort } \downarrow \\
& \text { new design switching } \downarrow \\
& \text { Glock graph } \\
& \text { ne } \tilde{J}_{q}(2 d+1, d+1)
\end{aligned}
$$

Block graph = graph with blocks as vertices, adjacent iff intersect at maximal size.

- The original definition of $\tilde{J}_{q}(2 d+1, d+1)$ does not use a polarity.
- Both distorting and GM switching rely on a polarity.

$$
K_{4} \times K_{4} \xrightarrow{\text { switch }} \mathrm{Sh}
$$

with respect to $C=\left\{(x, x) \mid x \in K_{4}\right\}$.

Seidel switching

x neighbors

non-neighbors

Seidel switching (II)

$\operatorname{SRG}(16,6,2,2): K_{4} \times K_{4} \neq$ Shrikhande graph

$\operatorname{SRG}(16,6,2,2): K_{4} \times K_{4} \neq$ Shrikhande graph

$\operatorname{SRG}(16,6,2,2): K_{4} \times K_{4} \not \approx$ Shrikhande graph

$K_{4} \times K_{4} \xrightarrow{\text { switch }} \mathrm{Sh}$

with respect to $C=\left\{(x, x) \mid x \in K_{4}\right\}$.

$$
\begin{aligned}
&\left(K_{4}\right.\left.\times K_{4}\right) \times K_{4} \xrightarrow{\text { switch }} \mathrm{Sh} \times K_{4} \\
&((x, x), j) \sim((x, y), j) \mapsto((x, x), j) \nsim((x, y), j) \\
& C_{j}=\left\{((x, x), j) \mid x \in K_{4}\right\} \quad\left(j \in K_{4}\right) \\
& D=\left(K_{4} \times K_{4} \times K_{4}\right) \backslash \bigcup_{j \in K_{4}} C_{j}
\end{aligned}
$$

$$
\begin{array}{rll}
& \sim((x, x), j) \in C_{j} & \\
\sim((x, x), j) \in C_{j} \\
D \ni((x, y), j) \sim((y, y), j) \in C_{j} & \nsim((y, y), j) \in C_{j} \\
\nsim((z, z), j) \in C_{j} & & \sim((z, z), j) \in C_{j} \\
\nsim((w, w), j) \in C_{j} & & \sim((w, w), j) \in C_{j}
\end{array}
$$

$\Gamma=(X, E)$: graph, $X=D \cup\left(\bigcup_{i} C_{i}\right)$.
Assume $\forall x \in D, \forall i, x$ is adjacent to $0,1 / 2$ or all vertices of C_{i}.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and C_{i} if x is adj. to $1 / 2$ of C_{i}.
$\Gamma=(X, E)$: graph, $X=D \cup\left(\bigcup_{i} C_{i}\right)$.
Assume $\forall x \in D, \forall i, x$ is adjacent to $0,1 / 2$ or all vertices of C_{i}.
Godsil-McKay switching: interchange adj. and non-adj. between $x \in D$ and C_{i} if x is adj. to $1 / 2$ of C_{i}.
Theorem (Godsil-McKay, 1982)
If $\left\{C_{i}\right\}_{i}$ is equitable, then the resulting graph is cospectral with the original.
Equitable: $\forall i, \forall x \in C_{i}, \forall y \in C_{i}, \forall j$,
$\left|\Gamma(x) \cap C_{j}\right|=\left|\Gamma(y) \cap C_{j}\right|$.

$$
\begin{aligned}
&\left(K_{4}\right.\left.\times K_{4}\right) \times K_{4} \xrightarrow{\text { switch }} \mathrm{Sh} \times K_{4} \\
&((x, x), j) \sim((x, y), j) \mapsto((x, x), j) \nsim((x, y), j) \\
& C_{j}=\left\{((x, x), j) \mid x \in K_{4}\right\} \quad\left(j \in K_{4}\right) \\
& D=\left(K_{4} \times K_{4} \times K_{4}\right) \backslash \bigcup_{j \in K_{4}} C_{j} \\
& \\
& \sim((x, x), j) \in C_{j} \nsim((x, x), j) \in C_{j} \\
& D \ni((x, y), j) \sim((y, y), j) \in C_{j} \quad \nsim((y, y), j) \in C_{j} \\
& \nsim((z, z), j) \in C_{j} \sim((z, z), j) \in C_{j} \\
& \nsim((w, w), j) \in C_{j} \quad \\
& \sim((w, w), j) \in C_{j}
\end{aligned}
$$

$D \ni((x, y), j)$ is adjacent to 2 out of 4 vertices of C_{j}, $D \ni((x, y), j)$ is adjacent to 0 vertices of $C_{j^{\prime}}, j^{\prime} \neq j$.

Distance-Regular Graphs

A connected graph of diameter d is called a distance-regular graph if $\exists\left\{k, b_{1}, \ldots, b_{d-1} ; 1, c_{2}, \ldots, c_{d}\right\}$ such that

Examples with unbounded d :

- $H(n, q)=K_{q}^{n}, J(v, d), J_{q}(v, d)$, dual polar graphs, forms graphs
- halved, folded graphs of above
- Doob, Hemmeter, Ustimenko graphs

Johnson graph $J(v, k)$

- $|V|=v$
- $\binom{V}{k}=$ the collection of k-subsets of V
- $W_{1} \sim W_{2} \Longleftrightarrow\left|W_{1} \cap W_{2}\right|=k-1$.

Then $J(v, k) \cong J(v, v-k)$.

Johnson graph $J(v, k)$

- $|V|=v$
- $\binom{V}{k}=$ the collection of k-subsets of V
- $W_{1} \sim W_{2} \Longleftrightarrow\left|W_{1} \cap W_{2}\right|=k-1$.

Then $J(v, k) \cong J(v, v-k)$.
For $v \geq 2 k, J(v, k)$ is characterized uniquely by the intersection array except $(v, k)=(8,2)$.

Johnson graph $J(v, k)$

- $|V|=v$
- $\binom{V}{k}=$ the collection of k-subsets of V
- $W_{1} \sim W_{2} \Longleftrightarrow\left|W_{1} \cap W_{2}\right|=k-1$.

Then $J(v, k) \cong J(v, v-k)$.
For $v \geq 2 k, J(v, k)$ is characterized uniquely by the intersection array except $(v, k)=(8,2)$.

$$
\overline{\text { Petersen }}=J(5,2)
$$

Johnson graph $J(v, k)$

- $|V|=v$
- $\binom{V}{k}=$ the collection of k-subsets of V
- $W_{1} \sim W_{2} \Longleftrightarrow\left|W_{1} \cap W_{2}\right|=k-1$.

Then $J(v, k) \cong J(v, v-k)$.
For $v \geq 2 k, J(v, k)$ is characterized uniquely by the intersection array except $(v, k)=(8,2)$.

$$
\overline{\text { Petersen }}=J(5,2)
$$

Vector space analogue?

Grassmann graph $J_{q}(v, d)$

- $V=$ vector space over $\mathrm{GF}(q), \operatorname{dim} V=v$
- $\left[\begin{array}{c}V \\ d\end{array}\right]=$ the collection of d-subspaces of V
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d-1$.

Then $J_{q}(v, d) \cong J_{q}(v, v-d)$.

Grassmann graph $J_{q}(v, d)$

- $V=$ vector space over $\operatorname{GF}(q), \operatorname{dim} V=v$
- $\left[\begin{array}{c}V \\ d\end{array}\right]=$ the collection of d-subspaces of V
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d-1$.

Then $J_{q}(v, d) \cong J_{q}(v, v-d)$.
Theorem (Metsch (1995))
$J_{q}(v, d)$ is characterized uniquely by the intersection array except

1. $d=2$
2. $v=2 d, v=2 d+1$
3. $v=2 d+2, q=2,3$
4. $v=2 d+3, q=2$.

Grassmann graph $J_{q}(v, d)$

- $V=$ vector space over $\mathrm{GF}(q), \operatorname{dim} V=v$
- $\left[\begin{array}{c}V \\ d\end{array}\right]=$ the collection of d-subspaces of V
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d-1$.

Then $J_{q}(v, d) \cong J_{q}(v, v-d)$.
Theorem (Metsch (1995))
$J_{q}(v, d)$ is characterized uniquely by the intersection array except

1. $d=2$
2. $v=2 d, v=2 d+1$
3. $v=2 d+2, q=2,3$
4. $v=2 d+3, q=2$.

We focus on $J_{q}(2 d+1, d) \cong J_{q}(2 d+1, d+1)$.

Twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$
The graph $\tilde{J}_{q}(2 d+1, d+1)$ has the same intersection array as $J_{q}(2 d+1, d+1)$ but not isomorphic.

Twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$
The graph $\tilde{J}_{q}(2 d+1, d+1)$ has the same intersection array as $J_{q}(2 d+1, d+1)$ but not isomorphic. $\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}
\end{aligned}
$$

Twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$
The graph $\tilde{J}_{q}(2 d+1, d+1)$ has the same intersection array as $J_{q}(2 d+1, d+1)$ but not isomorphic. $\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}
\end{aligned}
$$

Twist D to define

$$
\tilde{D}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d-1
\end{array}\right] \right\rvert\, W \subset H\right\}
$$

Twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$
The graph $\tilde{J}_{q}(2 d+1, d+1)$ has the same intersection array as $J_{q}(2 d+1, d+1)$ but not isomorphic. $\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d+1
\end{array}\right]
\end{aligned}
$$

Twist D to define

$$
\tilde{D}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d-1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d-1
\end{array}\right]
$$

Twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$
The graph $\tilde{J}_{q}(2 d+1, d+1)$ has the same intersection array as $J_{q}(2 d+1, d+1)$ but not isomorphic. $\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d+1
\end{array}\right]
\end{aligned}
$$

Twist D to define

$$
\tilde{D}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d-1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d-1
\end{array}\right]
$$

Define adjacency on $C \cup \tilde{D}$ to get $\tilde{J}_{q}(2 d+1, d+1)$.

Twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$

The graph $\tilde{J}_{q}(2 d+1, d+1)$ has the same intersection array as $J_{q}(2 d+1, d+1)$ but not isomorphic. $\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d+1
\end{array}\right]
\end{aligned}
$$

Twist D to define
polarity?

$$
\tilde{D}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d-1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d-1
\end{array}\right]
$$

Define adjacency on $C \cup \tilde{D}$ to get $\tilde{J}_{q}(2 d+1, d+1)$. Instead of modifying the vertex set, can we switch edges?
$\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d+1
\end{array}\right]
\end{aligned}
$$

$$
P=\left[\begin{array}{l}
V \\
1
\end{array}\right] \text { projective points }
$$

$\left(P,\left[\begin{array}{c}V \\ d+1\end{array}\right]\right)$: 2-design, with incidence $p \sim W \Longleftrightarrow p \subset W$.
$\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
& C=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
& D=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d+1
\end{array}\right] \\
& P=\left[\begin{array}{l}
V \\
1
\end{array}\right] \quad \text { projective points }
\end{aligned}
$$

$\left(P,\left[\begin{array}{c}V \\ d+1\end{array}\right]\right)$: 2-design, with incidence $p \sim W \Longleftrightarrow p \subset W$. Jungnickel-Tonchev (2009) "distorted" incidence:

$$
P \supset\left[\begin{array}{c}
H \\
1
\end{array}\right] \ni p " \sim " W \in C \Longleftrightarrow p \subset(W \cap H)^{\perp}
$$

where \perp denotes a polarity of $H(\operatorname{dim} W \cap H=d)$.
$\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$, where

$$
\begin{aligned}
C & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\} \\
D & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \subset H\right\}=\left[\begin{array}{c}
H \\
d+1
\end{array}\right] \\
P & =\left[\begin{array}{l}
V \\
1
\end{array}\right] \quad \text { projective points }
\end{aligned}
$$

$\left(P,\left[\begin{array}{c}V \\ d+1\end{array}\right]\right)$: 2-design, with incidence $p \sim W \Longleftrightarrow p \subset W$. Jungnickel-Tonchev (2009) "distorted" incidence:

$$
P \supset\left[\begin{array}{c}
H \\
1
\end{array}\right] \ni p " \sim " W \in C \Longleftrightarrow p \subset(W \cap H)^{\perp}
$$

where \perp denotes a polarity of $H(\operatorname{dim} W \cap H=d)$.
Theorem (M.-Tonchev (2011))
The block graph of the distorted design $\cong \tilde{J}_{q}(2 d+1, d+1)$.
$\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$.

$$
\begin{aligned}
C & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\}=\bigcup_{U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]} C_{U} \\
C_{U} & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\} \\
P & =\left[\begin{array}{c}
V \\
1
\end{array}\right] \quad \text { projective points }
\end{aligned}
$$

$\left(P,\left[\begin{array}{c}V \\ d+1\end{array}\right]\right):$ 2-design, with incidence $p \sim W \Longleftrightarrow p \subset W$.
$\operatorname{dim} V=2 d+1$. Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$.

$$
\begin{aligned}
C & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \not \subset H\right\}=\bigcup_{U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]} C_{U} \\
C_{U} & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\} \\
P & =\left[\begin{array}{c}
V \\
1
\end{array}\right] \quad \text { projective points }
\end{aligned}
$$

$\left(P,\left[\begin{array}{c}V \\ d+1\end{array}\right]\right)$: 2-design, with incidence $p \sim W \Longleftrightarrow p \subset W$.

$$
\begin{aligned}
P \supset\left[\begin{array}{c}
H \\
1
\end{array}\right] \ni p " \sim " W \in C \Longleftrightarrow p \subset(W \cap H)^{\perp} \\
P \supset\left[\begin{array}{c}
H \\
1
\end{array}\right] \ni p \sim \sim W \in C_{U} \Longleftrightarrow p \subset U^{\perp} \Longleftrightarrow p \sim W^{\prime} \in C_{U^{\perp}}
\end{aligned}
$$

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$,

$$
\begin{aligned}
C & =\bigcup_{U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]} C_{U}, \quad D=\left[\begin{array}{c}
H \\
d+1
\end{array}\right], \\
C_{U} & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
\end{aligned}
$$

Then $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$ is equitable, satisfies (0 or all) -property.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\mathrm{GF}(q)$
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$,

$$
\begin{gathered}
C=\bigcup_{U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]} C_{U}, \quad D=\left[\begin{array}{c}
H \\
d+1
\end{array}\right] \\
C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
\end{gathered}
$$

Then $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$ is equitable, satisfies (0 or all) -property.
Fuse \mathcal{C} to get

$$
\mathcal{C}^{\prime}=\left\{C_{U} \cup C_{U^{\perp}} \left\lvert\, U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]\right.\right\} .
$$

Then \mathcal{C}^{\prime} is equitable, satisfies ($0,1 / 2$ or all)-property.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over $\operatorname{GF}(q)$
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$,

$$
\begin{aligned}
C & =\bigcup_{U \in\left[\begin{array}{l}
H \\
d
\end{array}\right.} C_{U}, \quad D=\left[\begin{array}{c}
H \\
d+1
\end{array}\right], \\
C_{U} & =\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
\end{aligned}
$$

Then $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$ is equitable, satisfies (0 or all) -property.
Fuse \mathcal{C} to get

$$
\mathcal{C}^{\prime}=\left\{C_{U} \cup C_{U^{\perp}} \left\lvert\, U \in\left[\begin{array}{l}
H \\
d
\end{array}\right]\right.\right\} .
$$

Then \mathcal{C}^{\prime} is equitable, satisfies ($0,1 / 2$ or all)-property. Godsil-McKay switching gives $\tilde{J}_{q}(2 d+1, d+1)$.

In the Grassmann graph $J_{q}(2 d+1, d+1)$:

- $V:(2 d+1)$-dim. vector space over GF (q)
- Vertices: $\left[\begin{array}{c}V \\ d+1\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=d$.

Fix $H \in\left[\begin{array}{c}V \\ 2 d\end{array}\right]$ and a polarity \perp of H. Then $\left[\begin{array}{c}V \\ d+1\end{array}\right]=C \cup D$,

$$
\begin{gathered}
C=\bigcup_{U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]} C_{U}, \quad D=\left[\begin{array}{c}
H \\
d+1
\end{array}\right] \\
C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\}
\end{gathered}
$$

Then $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[\begin{array}{c}H \\ d\end{array}\right]}$ is equitable, satisfies (0 or all) -property.
Fuse \mathcal{C} to get

$$
\mathcal{C}^{\prime}=\left\{C_{U} \cup C_{U^{\perp}} \left\lvert\, U \in\left[\begin{array}{c}
H \\
d
\end{array}\right]\right.\right\}
$$

Then \mathcal{C}^{\prime} is equitable, satisfies ($0,1 / 2$ or all)-property. Godsil-McKay switching gives $\tilde{J}_{q}(2 d+1, d+1)$.

Questions

- Depends on polarity?
- Any other way to fuse $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$?

Questions

- Depends on polarity?
- Any other way to fuse $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[\begin{array}{l}H \\ d\end{array}\right]}$?

Answers
One could fuse \mathcal{C} by any involutive automorphism in Aut $\left[\begin{array}{c}H \\ d\end{array}\right]=$ Aut $J_{q}(2 d, d)=\operatorname{P\Gamma L}(H) \rtimes\langle\perp\rangle$.

Questions

- Depends on polarity?
- Any other way to fuse $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$?

Answers

One could fuse \mathcal{C} by any involutive automorphism in Aut $\left[\begin{array}{c}H \\ d\end{array}\right]=$ Aut $J_{q}(2 d, d)=\operatorname{P\Gamma L}(H) \rtimes\langle\perp\rangle$.

But fusing by Aut $J_{q}(2 d+1, d+1)=\mathrm{P} Г \mathrm{~L}(V)$,
Godsil-McKay switching results in a graph isomorphic to the original one.

Questions

- Depends on polarity?
- Any other way to fuse $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$?

Answers

One could fuse \mathcal{C} by any involutive automorphism in Aut $\left[\begin{array}{c}H \\ d\end{array}\right]=\operatorname{Aut} J_{q}(2 d, d)=\mathrm{P} \Gamma \mathrm{L}(H) \rtimes\langle\perp\rangle$.

But fusing by Aut $J_{q}(2 d+1, d+1)=\mathrm{P} Г \mathrm{~L}(V)$,
Godsil-McKay switching results in a graph isomorphic to the original one.
$\mathrm{P} \Gamma \mathrm{L}(H)$ extends to $\mathrm{P} \Gamma \mathrm{L}(V)$, but \perp does not.

Questions

- Depends on polarity?
- Any other way to fuse $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$?

Answers

One could fuse \mathcal{C} by any involutive automorphism in Aut $\left[\begin{array}{c}H \\ d\end{array}\right]=$ Aut $J_{q}(2 d, d)=\operatorname{P\Gamma L}(H) \rtimes\langle\perp\rangle$.

But fusing by Aut $J_{q}(2 d+1, d+1)=\mathrm{P} Г \mathrm{~L}(V)$,
Godsil-McKay switching results in a graph isomorphic to the original one.

PГL (H) extends to $\operatorname{P\Gamma L}(V)$, but \perp does not.
Twisting is unique!

Questions

- Depends on polarity?
- Any other way to fuse $\mathcal{C}=\left\{C_{U}\right\}_{U \in\left[{ }_{d}^{H}\right]}$?

Answers
One could fuse \mathcal{C} by any involutive automorphism in Aut $\left[\begin{array}{c}H \\ d\end{array}\right]=$ Aut $J_{q}(2 d, d)=\operatorname{P\Gamma L}(H) \rtimes\langle\perp\rangle$.

But fusing by Aut $J_{q}(2 d+1, d+1)=\mathrm{P} Г \mathrm{~L}(V)$,
Godsil-McKay switching results in a graph isomorphic to the original one.

PГL (H) extends to $\operatorname{P\Gamma L}(V)$, but \perp does not.
Twisting is unique!

