Extremal type II \mathbb{Z}_4-codes of length 24 and triply even binary codes of length 48

Akihiro Munemasa

1Graduate School of Information Sciences
Tohoku University

August 12, 2014
ICM 2014 Satellite Conference
on Algebraic Coding Theory
Ewha Womans University, Korea
\(L = \text{Leech lattice} \)

\[
\begin{align*}
\{\text{Virasoro frames of } V^h\} & \quad \text{most difficult} \\
\text{str} & \quad \begin{cases}
\text{triply even } D \\
\text{length } = 48, \ 1_{48} \in D \\
\text{min } D^\perp \geq 4
\end{cases} \\
\text{Dong} & \quad \text{(extended doubling)} \\
\uparrow & \quad \text{Mason} \\
\uparrow & \quad \text{Zhu} \\
\{\text{frames of } L\} & \quad \begin{cases}
\text{doubly even } C \\
\text{length } = 24, \ 1_{24} \in C \\
\text{min } C^\perp \geq 4 \\
\text{easily enumerated}
\end{cases}
\end{align*}
\]

The diagram commutes, and

\[
\text{DMZ}(\{\text{frames of } L\}) \supseteq \text{str}^{-1}(\mathcal{D}(\{\text{doubly even}\})).
\]
A binary linear code C is called

- **even** $\iff \text{wt}(x) \equiv 0 \pmod{2} \quad (\forall x \in C)$
- **doubly even** $\iff \text{wt}(x) \equiv 0 \pmod{4} \quad (\forall x \in C)$
- **triply even** $\iff \text{wt}(x) \equiv 0 \pmod{8} \quad (\forall x \in C)$

If C is generated by a set of vectors r_1, \ldots, r_k, then C is **triply even** iff,

1. $\text{wt}(r_h) \equiv 0 \pmod{8}$
2. $\text{wt}(r_h \ast r_i) \equiv 0 \pmod{4}$
3. $\text{wt}(r_h \ast r_i \ast r_j) \equiv 0 \pmod{2}$

for all $h, i, j \in \{1, \ldots, k\}$. (denoting by \ast the entrywise product)
Proposition

$C = \langle r_1, \ldots, r_k \rangle$ is triply even iff,

(i) \ $\text{wt}(r_h) \equiv 0 \pmod{8}$

(ii) \ $\text{wt}(r_h \ast r_i) \equiv 0 \pmod{4}$

(iii) \ $\text{wt}(r_h \ast r_i \ast r_j) \equiv 0 \pmod{2}$

for all $h, i, j \in \{1, \ldots, n\}$.

Proof.

Use induction on k. Note

$$\text{wt}(a + b + c) = \text{wt}(a) + \text{wt}(b) + \text{wt}(c)$$
$$- 2(\text{wt}(a \ast b) + \text{wt}(a \ast c) + \text{wt}(b \ast c))$$
$$+ 4 \text{wt}(a \ast b \ast c).$$
Examples of triply even codes

Let C be a binary code of length n. Then the doubling
\(\{(x, x) \mid x \in C\}\) of C is
- even
- doubly even if C is even
- triply even if C is doubly even

Moreover, the extended doubling

\[\mathcal{D}(C) = \text{code generated by} \begin{bmatrix} 1_n & 0 \\ C & C \end{bmatrix} \]

is
- even if $n \equiv 0 \pmod{2}$
- doubly even if C is even and $n \equiv 0 \pmod{4}$
- triply even if C is doubly even and $n \equiv 0 \pmod{8}$
Examples of triply even codes

\[RM(1, 4) = D(e_8) = \begin{bmatrix} 1_8 & 0 \\ e_8 & e_8 \end{bmatrix} \]

where \(e_8 \) is the doubly even extended Hamming \([8, 4, 4]\) code.

- \(RM(1, 4) \) is the unique maximal triply even code of length 16 up to equivalence.
- If \(C \) is an indecomposable doubly even self-dual code, then \(D(C) \) is a maximal triply even code.
- Betsumiya and M. (2012) classified triply even codes of length up to 48: subcodes of direct sums of extended doublings, or the code spanned by the adjacency matrix of the triangular graph \(L(K_{10}) \) \((n = 45)\)
Virasoro frame of $V^\frac{1}{2}$

Theorem (Harada–Lam–M., 2013)

Let C be doubly even, length 24, $\ni 1$. TFAE:

1. $\mathcal{D}(C)$ is the structure code of a Virasoro frame of $V^\frac{1}{2}$
2. There exist vectors f_1, \ldots, f_{24} of the Leech lattice L with $(f_i, f_j) = 4\delta_{ij}$ (called a 4-frame), and

$$C = \{ x \mod 2 \mid x \in \mathbb{Z}^n, \frac{1}{4} \sum_{i=1}^{24} x_i f_i \in L \}.$$

3. C is the mod 2 residue of an extremal type II \mathbb{Z}_4-code of length 24

Type II \iff self-dual & all Euclidean weight $\equiv 0 \pmod{8}$
Extremal \iff minimum Euclidean weight 16.

We say C is realizable if C satisfies these conditions.
Realizable codes (Harada–Lam–M., 2013)

Numbers of inequivalent doubly even codes C of length 24 such that $1_{24} \in C$ and the minimum weight of C^\perp is ≥ 4.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Total</th>
<th>Realizable</th>
<th>non-Realizable</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>9</td>
<td>1+1+7</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>49</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>46</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$9 = $ Pless–Sloane (1975)
We say a doubly even code C of length 24 is **realizable** if C is the mod 2 residue of an extremal type II \mathbb{Z}_4-code of length 24.

realizable in only one way?

There may be more than one extremal type II code over \mathbb{Z}_4 whose residue is C.

Theorem (Rains, 1999)

If C is the $[24, 12, 8]$ binary Golay code, then there are exactly **13** extremal type II code over \mathbb{Z}_4 whose residue is C.

\[\text{Akihiro Munemasa} \quad \text{Triply even codes}\]
Classification of extremal type II codes over \mathbb{Z}_4

Theorem (Betty and M.)

The number of extremal type II code over \mathbb{Z}_4 with residue C is

<table>
<thead>
<tr>
<th>dim C</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td># C</td>
<td>1</td>
<td>7</td>
<td>32</td>
<td>60</td>
<td>49</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td>5</td>
<td>29</td>
<td>171</td>
<td>755</td>
<td>1880</td>
<td>1890+13</td>
</tr>
</tbody>
</table>

- Computation is easy if dim C is small.
- Rains used special property of the Golay code.
- Computation for the other codes with dim $C = 12$ were hard.

For the method, visit ICM and see the Poster of Rowena Betty.
A \textit{k-frame} of a lattice L of rank n is f_1, \ldots, f_n such that $(f_i, f_j) = k\delta_{ij}$.

For a self-dual code C over \mathbb{Z}_k, and unimodular lattice L,

$$C \rightarrow \frac{1}{\sqrt{k}} A(C) \quad \text{Construction A}$$

$$C \leftarrow L \text{ together with } k\text{-frame}$$

Classification of extremal type II codes over \mathbb{Z}_4 is equivalent to classification of 4-frames in the Leech lattice.

- Harada–M. (2009) $\not\exists [24, 12, 10]$ code over \mathbb{F}_5
- $\exists ![20, 10, 9]$ code over \mathbb{F}_7?
Hadamard matrices

Definition
A Hadamard matrix of order n is an $n \times n$ matrix H with entries ± 1 such that $HH^\top = nl$.

- n must be 1, 2 or $\equiv 0 \pmod{4}$.
- conjectured to exist for all $n \equiv 0 \pmod{4}$
- classified up to $n = 32$
- 60 for $n = 24$
Theorem (M. and Tamura, 2012)

For a normalized Hadamard matrix H of order 24, TFAE:

1. the **binary** code generated by the binary ($-1 \mapsto 0$) Hadamard matrix associated to H is extremal doubly even self-dual $[24, 12, 8]$ (Golay) code

2. the **ternary** code generated by H^\top is extremal $[24, 12, 9]$ code

3. “the common neighbor” of the two lattices obtained from the two codes above is the Leech lattice
Theorem (M. and Tamura, 2012)

For a normalized Hadamard matrix H of order 48, TFAE:

1. the \mathbb{Z}_4-code generated by the binary ($-1 \mapsto 0$) Hadamard matrix associated to H is extremal type II $[48, 24, 24]$ code
2. the ternary code generated by H^\top is extremal self-dual $[48, 24, 15]$ code
3. “the common neighbor” of the two lattices obtained from the two codes above is an extremal even unimodular lattice (of minimum norm 6)

- Hadamard matrices of order 48: hopeless to classify
- extremal type II $[48, 24, 24]$ \mathbb{Z}_4-code: not well-understood
- extremal even unimodular lattice of rank 48: not classified, two well-known for a long time, Nebe found the 3rd (1998) and 4th (2013). $\exists 6$-frame in Nebe’s lattices?
Concluding Remarks

- All codes in my talks were of fixed length, 24, 48, etc. (no general theory).
- These are “testing ground” for general theory to be developed.
- The problems are computationally difficult.
- We need to develop real theory (which is very often applicable to arbitrary lengths).

Thank you very much for your attention.