Self-Orthogonal Codes and Hadamard Matrices

Akihiro Munemasa ${ }^{1}$
${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Masaaki Harada)

January 11, 2015
Kumamoto University

Self-Dual \mathbb{Z}_{k}-Codes

- $k \in \mathbb{Z}, k \geq 2$.
- \mathbb{Z}_{k} : the ring of integers modulo k.
- a submodule $C \subset \mathbb{Z}_{k}^{n}$ is called a code of length n over \mathbb{Z}_{k}, or a \mathbb{Z}_{k}-code of length n.
- $(\boldsymbol{x}, \boldsymbol{y})=\sum_{i=1}^{n} x_{i} y_{i}$, where $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{Z}_{k}^{n}$,
- C is self-dual if $C=C^{\perp}$, where

$$
C^{\perp}=\left\{\boldsymbol{x} \in \mathbb{Z}_{k}^{n} \mid(\boldsymbol{x}, \boldsymbol{y})=0(\forall \boldsymbol{y} \in C)\right\}
$$

Database by M. Harada and A. M.

http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm

k	complete	comments
3	≤ 24	28 with min. wt. 9
5	≤ 16	$\nexists 20$ with min. wt. 10
7	≤ 12	16 with min. wt. 7; 20 with min. wt. 9ヨ!?

$k=3 \quad$ length 24 by Harada-M. (2009),
length 28 by Harada-M-Venkov. (2009).
$k=5$ length ≤ 16 by Harada-Östergård (2003), length 20 by Harada-M. (2009),
$k=7$ length ≤ 12 by Harada-Östergård (2002), length 16 by Kim-Lee (2012), length 20 by Gulliver-Harada (1999), Gulliver-Harada-Miyabayashi (2007).

Classifying Self-Dual Codes Using Lattices

Proposed by Harada-M.-Venkov (2009) for $k=3$, length 28.
Also used by Harada-M. (2009) for $k=5$, length 20.

- $\pi: \mathbb{Z} \rightarrow \mathbb{Z}_{k}$: canonical surjection.
- $\pi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}_{k}^{n} \supset C$. Construction A_{k} means:

$$
L=\frac{1}{\sqrt{k}} \pi^{-1}(C) \subset \mathbb{R}^{n}
$$

- $C=C^{\perp} \Longrightarrow L$: unimodular.

Such lattices have been classified for $n \leq 25$.
Example: $n=8: \mathbb{Z}^{8}$ and E_{8}.
A lattice obtained by Construction A_{k} contains a k-frame:
$\mathcal{F}=\left\{ \pm f_{1}, \ldots, \pm f_{n}\right\}$ with

$$
\left(f_{i}, f_{j}\right)=k \delta_{i, j}
$$

$L \subset \mathbb{R}^{n}:$ unimodular lattice

If L contains a k-frame $\mathcal{F}=\left\{ \pm f_{1}, \ldots, \pm f_{n}\right\}$, i.e.,

$$
\left(f_{i}, f_{j}\right)=k \delta_{i, j}
$$

then $L \subset \frac{1}{k} \mathbb{Z} \mathcal{F}$, so

$$
C=L / \mathbb{Z} \mathcal{F} \subset \frac{1}{k} \mathbb{Z} \mathcal{F} / \mathbb{Z} \mathcal{F} \cong \mathbb{Z} \mathcal{F} / k \mathbb{Z} \mathcal{F} \cong \mathbb{Z}_{k}^{n}
$$

and C is a self-dual code.

- Knowledge of unimodular lattices can be used to classify self-dual codes.

$C \subset \mathbb{Z}_{k}^{n}, \mathcal{F} \subset L \subset \mathbb{R}^{n}$

$$
\begin{aligned}
C & \mapsto \frac{1}{\sqrt{k}} \pi^{-1}(C): \text { lattice } \\
(L, \mathcal{F}) & \mapsto L / \mathbb{Z} \mathcal{F}: \text { code }
\end{aligned}
$$

The above correspondence gives, for a fixed lattice L :
$\left\{\operatorname{codes} C\right.$ with $\left.\frac{1}{\sqrt{k}} \pi^{-1}(C) \cong L\right\} /(\pm 1)$-monomial equiv.
$\stackrel{1: 1}{\leftrightarrow}\{k$-frames of $L\} / \operatorname{Aut}(L)$

Database by M. Harada and A. M.

k	complete	comments
3	≤ 24	28 with min. wt. 9
5	≤ 16	$\nexists 20$ with min. wt. 10
7	≤ 12	16 with min. wt 7, 20 with min. wt. 9 $\exists!?$

$k=3 \quad$ length 24 by Harada-M. (2009), length 28 by Harada-M-Venkov. (2009).
$k=5$ length ≤ 16 by Harada-Östergård (2003),
length 20 by Harada-M. (2009),
$k=7$ length ≤ 12 by Harada-Östergård (2002), length 16 by Kim-Lee (2012),
length 20 by Gulliver-Harada (1999),
Gulliver-Harada-Miyabayashi (2007).

The only known $[20,10,9]$ code C over \mathbb{Z}_{7}

Length $=20$, Self-dual \Longrightarrow dimension $=10$, minimum Hamming weight $=9$ (largest possible).
For the only known such code C, Construction A_{7} gives the lattice D_{20}^{+}.
(1) Is C the only $[20,10,9]$ code up to equivalence which gives D_{20}^{+}by Construction A_{7} ?
(2) Is there any $[20,10,9]$ code which gives a lattice other than D_{20}^{+}by Construction A_{7} ? For example $D_{12}^{+} \oplus E_{8}$?

$$
\begin{aligned}
D_{20} & =\left\langle \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq 20\right\rangle \\
D_{20}^{+} & =\left\langle D_{20}, \frac{1}{2} \mathbf{1}\right\rangle \subset \frac{1}{2} \mathbb{Z}^{20} \\
& \cong \frac{1}{\sqrt{7}} \pi^{-1}(C)
\end{aligned}
$$

$[20,10,9]$ code C over \mathbb{Z}_{7}

Construction A_{7} gives the lattice D_{20}^{+}.

$$
\begin{aligned}
D_{20} & =\left\langle \pm e_{i} \pm e_{j} \mid 1 \leq i<j \leq 20\right\rangle \\
D_{20}^{+} & =\left\langle D_{20}, \frac{1}{2} \mathbf{1}\right\rangle \\
& \cong \frac{1}{\sqrt{7}} \pi^{-1}(C) \quad \text { contains a } 7 \text {-frame } \mathcal{F}
\end{aligned}
$$

$\mathcal{F}=\left\{ \pm f_{1}, \ldots, \pm f_{20}\right\}, f_{i}$ is of the form

$$
\frac{1}{2}(\pm 3, \pm 1, \ldots, \pm 1)
$$

norm

$$
7=\frac{28}{4}=\frac{(\pm 3)^{2}+19 \cdot(\pm 1)^{2}}{4}
$$

Skew Hadamard matrices of order 20

Theorem

If Construction A_{7} of a self-dual $[20,10,9]$ code over \mathbb{Z}_{7} gives the lattice D_{20}^{+}, then the 7 -frames are of the form

$$
\frac{1}{2}(H+2 I)
$$

where H is a Hadamard matrix of order 20 satisfying $H+H^{\top}=2 I$.

Considering Hamming weight, we may assume the 7 -frames are of the form

$$
\frac{1}{2}\left[\begin{array}{ccc}
3 & & \pm 1 \\
& \ddots & \\
\pm 1 & & 3
\end{array}\right]
$$

Theorem

If Construction A_{7} of a self-dual $[20,10,9]$ code over \mathbb{Z}_{7} gives the lattice D_{20}^{+}, then the 7 -frames are of the form

$$
\frac{1}{2}(H+2 I)=\frac{1}{2}\left[\begin{array}{ccc}
3 & & \pm 1 \\
& \ddots & \\
\pm 1 & & 3
\end{array}\right]
$$

where H is a Hadamard matrix of order 20 satisfying $H+H^{\top}=2 I$.

Proof.

If $H_{i j}=H_{j i}$, then the Hamming wt. of the codeword corresponding to $e_{i}+e_{j} \in D_{20}$ is <9, a contradiction. So $H+H^{\top}=2 I$. Since $(H+2 I)(H+2 I)^{\top}=28 I$, we have $H H^{\top}=20 I$.

Work to be done

- Is C the only $[20,10,9]$ code up to equivalence which gives D_{20}^{+}by Construction A_{7} ?
(1) Skew Hadamard matrices of order 20: classified.
(2) \exists skew Hadamard matrix which gives a self-dual $[20,10,8]$ code.
- Is there any $[20,10,9]$ code which gives a lattice other than D_{20}^{+}by Construction A_{7} ?
(1) For example $D_{12}^{+} \oplus E_{8}$?
(2) Given a self-dual code over \mathbb{Z}_{k}, describe a condition under which Construction A_{k} gives a decomposable lattice.

With Prof. Hiramine

(1) A colloquium talk at University of Tsukuba 1983?
(2) Hokkaido University in 1993 or 1996? Existence of an orthogonal decomposition of $\mathfrak{s l}(6, \mathbb{C})$ into 7 Cartan subalgebras, equivalently, mutually unbiased bases in dimension 6.
(3) R. Craigen in 2014, mentions a conjecture which says that the existence of a $G H(n, U)$ implies that $|U|$ is a prime power.

