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A t-(v, k, λ) design (X,B)

X is a finite set, |X| = v,

B ⊂
(
X
k

)
= {k-element subsets of X},

∀T ∈
(
X
t

)
,

λ = |{B ∈ B | B ⊃ T}|.

Elements of X are called “points”, elements of B are called
“blocks”.
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Block Design for Piano

CRC Handbook of Combinatorial Designs, pp.79–80

Rephrased in terms of the 5-(12, 6, 1) design, this means:

There are 12 notes, distributed into 6-note arpeggios, in such
a way that every combination of 5 particular notes comes
together exactly once.

The pianist does not play all the
(
12
6

)
= 924 combinations;

only 132 arpeggios.
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Self-orthogonal designs

A design (X,B) is self-orthogonal if

|B ∩B′| ≡ 0 (mod 2) (∀B,B′ ∈ B).

In particular k ≡ 0 (mod 2).

Let M be the block-point incidence matrix. Then

self-orthogonal ⇐⇒ MM> = 0 over F2.

We call the row space C of M the (binary) code of the design.
Then C ⊂ C⊥.
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Hadamard designs

The row space of the matrix
[
I4 J4 − I4

]
over F2 = {0, 1}

contains 14 vectors of weight 4, forming a self-orthogonal
3-(8, 4, 1) design.

More generally, if H is a Hadamard matrix of order 8n, i.e., H
is a 8n× 8n matrix with entries in {±1} satisfying
HH> = 8nI,
=⇒ a self-orthogonal 3-(8n, 4n, 2n− 1) design.
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Existence problem

Given t, v, k, λ, does there exist a t-(v, k, λ) design?

Before Teirlinck (1987), only a few t-designs with t ≥ 5 were
known.

The 5-(24, 8, 1) design by Witt (1938) is self-orthogonal.
Assmus-Mattson theorem (1969) gives a reason: extremal
binary self-dual code → 5-designs.

In our work we only consider orthogonality mod 2. The
5-(12, 6, 1) design of Witt (1938) is not self-orthogonal.
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5-designs from binary self-dual codes

[24m, 12m, 4m+ 4] code → 5-(24m, 4m+ 4, λ) design.

m = 1: Witt design; related designs were characterized by
Tonchev (1986)

m = 2: Harada-M.-Tonchev (2005)

For m ≥ 3, existence is unknown:

m = 3 by Harada-M.-Kitazume (2004), m = 4 by Harada
(2005), m ≥ 5 by de la Cruz and Willems (2012).

For a systematic study:

Lalaude-Labayle (2001)

A.M., RIMS talk (2005)
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Design theoretic viewpoint

Instead of considering the problem: “given a self-dual code C
of length v and k, what is the maximum t such that

B = {supp(x) | x ∈ C, wt(x) = k}

is a t-design?”,

let C be the code of a self-orthogonal design. Then

B ⊂ {x ∈ C | wt(x) = k} ⊂ C ⊂ C⊥.

In the previously considered situation

B = {x ∈ C = C⊥ | wt(x) = k}.

“saturated”.
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C = the code of a design (X,B)

Suppose (X,B) is self-orthogonal, i.e., C ⊂ C⊥. Unsaturated
case:

1 C $ C⊥

2 B $ {x ∈ C | wt(x) = k}
3 k > min{wt(x) | x ∈ C, x 6= 0}
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Mendelsohn equations

Let (X,B) be a t-(v, k, λ) design, S ⊂ X.

nj = |{B ∈ B | j = |B ∩ S|}|.

Then ∑
j≥1

(
j

i

)
nj = λi

(
|S|
i

)
(i = 1, . . . , t),

a system of t linear equations in unknowns n1, n2, . . . (at most
min{k, |S|}).
If S ∈ C⊥, then nj = 0 for j odd.
If k = minC⊥, then nj = 0 for j > k/2.
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Dual weight 4

The dual code C⊥ of the code C of a t-design has minimum
weight at least t+ 1.

Lemma

If (X,B) is a self-orthogonal 3-(v, k, λ) design, and the dual
code of its code has minimum weight 4, then v = 2k.

Proof.

There are t = 3 Mendelsohn equations for 2 unknowns
n2, n4.

Recall 3-(8, 4, 1) design exists.
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6 ∃ self-orthogonal 3-(12, 6, λ) design

Witt: 5-(12, 6, 1) design which is 3-(12, 6, 12) design (not
self-orthogonal).

Divisibility implies λ ≡ 0 (mod 2).

|B| = 11λ.

C is contained in the unique self-dual [12, 6, 4] code
which has 32 vectors of weight 6, so λ ≤ 2, hence λ = 2.

3-(12, 6, 2) design is an extension of a symmetric
2-(11, 5, 2) design, so it cannot be self-orthogonal.

Alternatively, Mendelsohn equation w.r.t. a block leads to
a contradiction for all λ.
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3-(16, 8, λ) design

Divisibility implies λ ≡ 0 (mod 3).

Largest number of vectors of weight 8 in a self-orthogonal
codes of length 16 =⇒ λ ≤ 18.

λ = 3: Hadamard designs.

λ = 6, 9, 12, 15, 18?
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Theorem

Let λ = 3µ. The following are equivalent:

1 ∃ a self-orthogonal 3-(16, 8, λ) design,

2 ∃ an equitable partition of the folded halved 8-cube with
quotient matrix [

4(µ− 1) 4(8− µ)
4µ 4(7− µ)

]
.

3 µ ∈ {1, 2, 3, 4, 5}.

In particular, there is no self-orthogonal 3-(16, 8, 18) design.
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The folded halved 8-cube

The 8-cube is the graph with vertex set {0, 1}8, two vertices
are adjacent whenever they differ by exactly one coordinate.

‘halved’ = even-weight vectors
‘folded’ = identify with complement

The folded halved 8-cube Γ has 26 vertices, and it is
28-regular.

Equitable partition: A = adjacency matrix of Γ,

A =

[
A11 A12

A21 A22

]
, Aij1 = qij1, Q = (qij).

Akihiro Munemasa Self-orthogonal designs



Theorem

Let λ = 3µ. The following are equivalent:

1 ∃ a self-orthogonal 3-(16, 8, λ) design,

2 ∃ an equitable partition of the folded halved 8-cube with
quotient matrix [

4(µ− 1) 4(8− µ)
4µ 4(7− µ)

]
.

3 µ ∈ {1, 2, 3, 4, 5}.
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3-(20, 10, λ) design

Theorem

There is no self-orthogonal 3-(20, 10, λ) design.

Proof.

Compare the solution of the Mendelsohn equations with the
weight distribution of the self-dual codes of length 20 whose
classification is already known.
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3-(24, 12, λ) design

Assmus-Mattson theorem implies that there is a 5-(24, 12, 48)
design which is 3-(24, 12, 280) design.

Does there exist other self-orthogonal 3-(24, 12, λ) designs?
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