Self-orthogonal designs

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
(joint work with Masaaki Harada and Tsuyoshi Miezaki)
June 22, 2015
The 32nd Algebraic Combinatorics Symposium
Kanazawa

A $t-(v, k, \lambda)$ design (X, \mathcal{B})

- X is a finite set, $|X|=v$,
- $\mathcal{B} \subset\binom{X}{k}=\{k$-element subsets of $X\}$,
- $\forall T \in\binom{X}{t}$,

$$
\lambda=|\{B \in \mathcal{B} \mid B \supset T\}| .
$$

Elements of X are called "points", elements of \mathcal{B} are called "blocks".

Block Design for Piano

CRC Handbook of Combinatorial Designs, pp.79-80
Rephrased in terms of the $5-(12,6,1)$ design, this means:
There are 12 notes, distributed into 6 -note arpeggios, in such a way that every combination of 5 particular notes comes together exactly once.

The pianist does not play all the $\binom{12}{6}=924$ combinations; only 132 arpeggios.

Self-orthogonal designs

A design (X, \mathcal{B}) is self-orthogonal if

$$
\left|B \cap B^{\prime}\right| \equiv 0 \quad(\bmod 2) \quad\left(\forall B, B^{\prime} \in \mathcal{B}\right)
$$

In particular $k \equiv 0(\bmod 2)$.
Let M be the block-point incidence matrix. Then

$$
\text { self-orthogonal } \Longleftrightarrow M M^{\top}=0 \text { over } \mathbb{F}_{2}
$$

We call the row space C of M the (binary) code of the design. Then $C \subset C^{\perp}$.

Hadamard designs

The row space of the matrix $\left[\begin{array}{ll}I_{4} & J_{4}-I_{4}\end{array}\right]$ over $\mathbb{F}_{2}=\{0,1\}$ contains 14 vectors of weight 4 , forming a self-orthogonal 3 - $(8,4,1)$ design.

More generally, if H is a Hadamard matrix of order $8 n$, i.e., H is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying
$H H^{\top}=8 n I$,
\Longrightarrow a self-orthogonal $3-(8 n, 4 n, 2 n-1)$ design.

Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?
Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The $5-(24,8,1)$ design by Witt (1938) is self-orthogonal. Assmus-Mattson theorem (1969) gives a reason: extremal binary self-dual code $\rightarrow 5$-designs.

In our work we only consider orthogonality mod 2 . The 5 - $(12,6,1)$ design of Witt (1938) is not self-orthogonal.

5-designs from binary self-dual codes

$[24 m, 12 m, 4 m+4]$ code $\rightarrow 5-(24 m, 4 m+4, \lambda)$ design.

- $m=1$: Witt design; related designs were characterized by Tonchev (1986)
- $m=2$: Harada-M.-Tonchev (2005)

For $m \geq 3$, existence is unknown:

- $m=3$ by Harada-M.-Kitazume (2004), $m=4$ by Harada (2005), $m \geq 5$ by de la Cruz and Willems (2012).

For a systematic study:

- Lalaude-Labayle (2001)
- A.M., RIMS talk (2005)

Design theoretic viewpoint

Instead of considering the problem: "given a self-dual code C of length v and k, what is the maximum t such that

$$
\mathcal{B}=\{\operatorname{supp}(x) \mid x \in C, \operatorname{wt}(x)=k\}
$$

is a t-design?",
let C be the code of a self-orthogonal design. Then

$$
\mathcal{B} \subset\{x \in C \mid \operatorname{wt}(x)=k\} \subset C \subset C^{\perp} .
$$

In the previously considered situation

$$
\mathcal{B}=\left\{x \in C=C^{\perp} \mid \operatorname{wt}(x)=k\right\} .
$$

"saturated".

$C=$ the code of a design (X, \mathcal{B})

Suppose (X, \mathcal{B}) is self-orthogonal, i.e., $C \subset C^{\perp}$. Unsaturated case:
(1) $C \varsubsetneqq C^{\perp}$
(2) $\mathcal{B} \varsubsetneqq\{x \in C \mid \operatorname{wt}(x)=k\}$
(0) $k>\min \{\operatorname{wt}(x) \mid x \in C, x \neq 0\}$

Mendelsohn equations

Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design, $S \subset X$.

$$
n_{j}=|\{B \in \mathcal{B}|j=|B \cap S|\} \mid
$$

Then

$$
\sum_{j \geq 1}\binom{j}{i} n_{j}=\lambda_{i}\binom{|S|}{i} \quad(i=1, \ldots, t)
$$

a system of t linear equations in unknowns n_{1}, n_{2}, \ldots (at most $\min \{k,|S|\})$.
If $S \in C^{\perp}$, then $n_{j}=0$ for j odd.
If $k=\min C^{\perp}$, then $n_{j}=0$ for $j>k / 2$.

Dual weight 4

The dual code C^{\perp} of the code C of a t-design has minimum weight at least $t+1$.

Lemma

If (X, \mathcal{B}) is a self-orthogonal $3-(v, k, \lambda)$ design, and the dual code of its code has minimum weight 4 , then $v=2 k$.

Proof.

There are $t=3$ Mendelsohn equations for 2 unknowns n_{2}, n_{4}.

Recall 3-(8, 4, 1) design exists.

\nexists self-orthogonal 3-(12, $6, \lambda)$ design

Witt: 5 - $(12,6,1)$ design which is $3-(12,6,12)$ design (not self-orthogonal).

- Divisibility implies $\lambda \equiv 0(\bmod 2)$.
- $|\mathcal{B}|=11 \lambda$.
- C is contained in the unique self-dual $[12,6,4]$ code which has 32 vectors of weight 6 , so $\lambda \leq 2$, hence $\lambda=2$.
- 3-(12,6,2) design is an extension of a symmetric 2 -($11,5,2$) design, so it cannot be self-orthogonal.
- Alternatively, Mendelsohn equation w.r.t. a block leads to a contradiction for all λ.

$3-(16,8, \lambda)$ design

- Divisibility implies $\lambda \equiv 0(\bmod 3)$.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length $16 \Longrightarrow \lambda \leq 18$.
$\lambda=3$: Hadamard designs.

$$
\lambda=6,9,12,15,18 ?
$$

Theorem

Let $\lambda=3 \mu$. The following are equivalent:
(1) \exists a self-orthogonal $3-(16,8, \lambda)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

In particular, there is no self-orthogonal 3-(16, 8,18$)$ design.

The folded halved 8-cube

The 8 -cube is the graph with vertex set $\{0,1\}^{8}$, two vertices are adjacent whenever they differ by exactly one coordinate.
'halved' = even-weight vectors
'folded' $=$ identify with complement
The folded halved 8 -cube Γ has 2^{6} vertices, and it is 28-regular.

Equitable partition: $A=$ adjacency matrix of Γ,

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], \quad A_{i j} \mathbf{1}=q_{i j} \mathbf{1}, \quad Q=\left(q_{i j}\right)
$$

Theorem

Let $\lambda=3 \mu$. The following are equivalent:
(1) \exists a self-orthogonal $3-(16,8, \lambda)$ design,
(2) \exists an equitable partition of the folded halved 8 -cube with quotient matrix

$$
\left[\begin{array}{cc}
4(\mu-1) & 4(8-\mu) \\
4 \mu & 4(7-\mu)
\end{array}\right]
$$

(3) $\mu \in\{1,2,3,4,5\}$.

$3-(20,10, \lambda)$ design

Theorem

There is no self-orthogonal $3-(20,10, \lambda)$ design.

Proof.

Compare the solution of the Mendelsohn equations with the weight distribution of the self-dual codes of length 20 whose classification is already known.

$3-(24,12, \lambda)$ design

Assmus-Mattson theorem implies that there is a 5 - $(24,12,48)$ design which is $3-(24,12,280)$ design.

Does there exist other self-orthogonal $3-(24,12, \lambda)$ designs?

