Self-orthogonal designs and equitable partitions

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
(joint work with Masaaki Harada and Tsuyoshi Miezaki)

September 20, 2015
International Workshop on Algebraic Combinatorics
Zhejiang University
Theorem

The following are equivalent:

1. ∃ a self-orthogonal 3-(16, 8, 3µ) design,
2. ∃ an equitable partition of the folded halved 8-cube with quotient matrix

\[
\begin{bmatrix}
4(\mu - 1) & 4(8 - \mu) \\
4\mu & 4(7 - \mu)
\end{bmatrix}.
\]

3. µ ∈ \{1, 2, 3, 4, 5\}.

Akihiro Munemasa Self-orthogonal designs
Theorem

The following are equivalent:

1. \exists a self-orthogonal 3-$(16, 8, 3\mu)$ design,
2. \exists an equitable partition of the folded halved 8-cube with quotient matrix
 \[
 \begin{bmatrix}
 4(\mu - 1) & 4(8 - \mu) \\
 4\mu & 4(7 - \mu)
 \end{bmatrix}
 .
 \]
3. $\mu \in \{1, 2, 3, 4, 5\}$.
Theorem

The following are equivalent:

1. ∃ a self-orthogonal 3-(16, 8, 3μ) design,
2. ∃ an equitable partition of the folded halved 8-cube with quotient matrix
 \[
 \begin{bmatrix}
 4(\mu - 1) & 4(8 - \mu) \\
 4\mu & 4(7 - \mu)
 \end{bmatrix}.
 \]
3. \(\mu \in \{1, 2, 3, 4, 5\} \).
Theorem

The following are equivalent:

1. ∃ a self-orthogonal 3-(16, 8, 3\(\mu\)) design,
2. ∃ an equitable partition of the folded halved 8-cube with quotient matrix

\[
\begin{bmatrix}
4(\mu - 1) & 4(8 - \mu) \\
4\mu & 4(7 - \mu)
\end{bmatrix}.
\]

3. \(\mu \in \{1, 2, 3, 4, 5\}\).
Theorem

The following are equivalent:

1. ∃ a self-orthogonal $3-(16, 8, 3\mu)$ design,
2. ∃ an equitable partition of the folded halved 8-cube with quotient matrix

$$
\begin{bmatrix}
4(\mu - 1) & 4(8 - \mu) \\
4\mu & 4(7 - \mu)
\end{bmatrix}.
$$

3. $\mu \in \{1, 2, 3, 4, 5\}$.

Akihiro Munemasa

Self-orthogonal designs
Theorem

The following are equivalent:

1. \(\exists \) a self-orthogonal 3-\((16, 8, 3\mu)\) design,
2. \(\exists \) an equitable partition of the folded halved 8-cube with quotient matrix

\[
\begin{bmatrix}
4(\mu - 1) & 4(8 - \mu) \\
4\mu & 4(7 - \mu)
\end{bmatrix}.
\]

3. \(\mu \in \{1, 2, 3, 4, 5\} \).
Theorem

The following are equivalent:

1. ∃ a self-orthogonal 3-(16, 8, 3μ) design,
2. ∃ an equitable partition of the folded halved 8-cube with quotient matrix
 \[
 \begin{bmatrix}
 4(μ - 1) & 4(8 - μ) \\
 4μ & 4(7 - μ)
 \end{bmatrix}
 \]
3. μ ∈ \{1, 2, 3, 4, 5\}.

Akihiro Munemasa
Self-orthogonal designs
A t-(ν, k, λ) design (X, \mathcal{B})

e.g., 3-$(16, 8, 3\mu)$ design

- X is a finite set, $|X| = \nu,$
- $\mathcal{B} \subset \binom{X}{k} = \{k$-element subsets of $X\},$
- $\forall T \in \binom{X}{t},$

$$\lambda = |\{B \in \mathcal{B} \mid B \supset T\}|.$$

Elements of X are called “points”, elements of \mathcal{B} are called “blocks”.
A $t-(v, k, \lambda)$ design (X, \mathcal{B}) is **self-orthogonal** if

$$|B \cap B'| \equiv 0 \pmod{2} \quad (\forall B, B' \in \mathcal{B}).$$

In particular $k \equiv 0 \pmod{2}$.
A $t-(v, k, \lambda)$ design (X, \mathcal{B}) is self-orthogonal if

$$|B \cap B'| \equiv 0 \pmod{2} \quad (\forall B, B' \in \mathcal{B}).$$

In particular $k \equiv 0 \pmod{2}$.

Let M be the block-point incidence matrix. Then

self-orthogonal $\iff MM^\top = 0$ over \mathbb{F}_2.

We call the row space C of M the (binary) code of the design. Then $C \subset C^\perp$.

(Often $C \subset D = D^\perp \subset C^\perp$.)
If H is a Hadamard matrix of order $8n$, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^\top = 8nI$,

\implies a self-orthogonal $3-(8n, 4n, 2n - 1)$ design.
Hadamard 3-designs

If H is a Hadamard matrix of order $8n$, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^\top = 8nI$,

\implies a self-orthogonal 3-$(8n, 4n, 2n - 1)$ design.

Indeed, after normalizing H so that its first row is 1:

$$H = \left[\begin{array}{c} 1 \\ H_1 \end{array} \right],$$

an incidence matrix is given by

$$M = \frac{1}{2} \left[\begin{array}{c} J - H_1 \\ J + H_1 \end{array} \right].$$
If \(H \) is a Hadamard matrix of order \(8n \), i.e., \(H \) is a \(8n \times 8n \) matrix with entries in \(\{\pm 1\} \) satisfying \(HH^\top = 8nI \),

\[\implies \text{a self-orthogonal } 3-(8n,4n,2n-1) \text{ design.} \]

Indeed, after normalizing \(H \) so that its first row is \(1 \):

\[H = \begin{bmatrix} 1 \\ H_1 \end{bmatrix}, \]

an incidence matrix is given by

\[M = \frac{1}{2} \begin{bmatrix} J - H_1 \\ J + H_1 \end{bmatrix}. \]
Hadamard 3-designs

If H is a Hadamard matrix of order $8n$, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^\top = 8nI$,

\implies a self-orthogonal 3-$(8n, 4n, 2n - 1)$ design.

3-$(16, 8, 3)$ Hadamard design is self-orthogonal. Do there exist 3-$(16, 8, 3\mu)$ designs for $\mu > 1$?
Hadamard 3-designs

If H is a Hadamard matrix of order $8n$, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^\top = 8nI$, \implies a self-orthogonal 3-$(8n, 4n, 2n - 1)$ design.

3-$(16, 8, 3)$ Hadamard design is self-orthogonal. Do there exist 3-$(16, 8, 3\mu)$ designs for $\mu > 1$? (take union?)
Existence problem

Given \(t, v, k, \lambda \), does there exist a \(t-(v, k, \lambda) \) design?

Before Teirlinck (1987), only a few \(t \)-designs with \(t \geq 5 \) were known.
Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?

Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The $5-(24, 8, 1)$ design by Witt (1938) is self-orthogonal.
Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?

Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The 5-(24, 8, 1) design by Witt (1938) is self-orthogonal.

Existence problem

Given t, v, k, λ, does there exist a $t-(v, k, \lambda)$ design?

Before Teirlinck (1987), only a few t-designs with $t \geq 5$ were known.

The $5-(24, 8, 1)$ design by Witt (1938) is self-orthogonal.

In our work we only consider orthogonality mod 2. The $5-(12, 6, 1)$ design of Witt (1938) is not self-orthogonal.
A k-dimensional subspace of \mathbb{F}_2^n is called an $[n, k]$ code. For an $[n, k]$ code C, its minimum weight is

$$\min C = \min\{\text{wt}(x) \mid 0 \neq x \in C\}.$$

and C is called an $[n, k, d]$ code if $d = \min C$.
A k-dimensional subspace of \mathbb{F}_2^n is called an $[n, k]$ code. For an $[n, k]$ code C, its minimum weight is

$$\min C = \min \{ \text{wt}(x) \mid 0 \neq x \in C \}.$$

and C is called an $[n, k, d]$ code if $d = \min C$. A code C is doubly even if

$$\text{wt}(x) \equiv 0 \pmod{4} \quad (\forall x \in C),$$

self-orthogonal if

$$C \subset C^\perp,$$

self-dual if

$$C = C^\perp.$$
A consequence of the Assmus–Mattson theorem: Doubly even self-dual \([24m, 12m, 4m + 4]\) code \(\rightarrow 5-(24m, 4m + 4, \lambda)\) design.
A consequence of the Assmus–Mattson theorem: Doubly even self-dual \([24m, 12m, 4m + 4]\) code \(\rightarrow 5-(24m, 4m + 4, \lambda)\) design.

- \(m = 1\): Witt design; related designs were characterized by Tonchev (1986)
- \(m = 2\): Harada-M.-Tonchev (2005)
- \(m \geq 3\): existence is unknown: Harada-M.-Kitazume (2004), \(m = 4\) by Harada (2005), \(m \geq 5\) by de la Cruz and Willems (2012).
A consequence of the Assmus–Mattson theorem: Doubly even self-dual \([24m, 12m, 4m + 4]\) code \(\rightarrow 5-(24m, 4m + 4, \lambda)\) design.

- \(m = 1\): Witt design; related designs were characterized by Tonchev (1986)
- \(m = 2\): Harada-M.-Tonchev (2005)

For \(m \geq 3\), existence is unknown:

- \(m = 3\) by Harada-M.-Kitazume (2004),
- \(m = 4\) by Harada (2005),
- \(m \geq 5\) by de la Cruz and Willems (2012).
Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Motivated by spherical analogue:

Venkov’s theorem on spherical designs supported by an even unimodular lattice

Martinet (2001): lattices of min ≤ 3 with spherical 5-design, min ≤ 5 with spherical 7-design

Nossek (2014): lattices of min ≤ 7 with spherical 9-design, min ≤ 9 with spherical 11-design, $\not\exists$ lattices of min ≤ 11 with spherical 13-design.
Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. \(k \) whose min. wt. codewords support:

- 3-design for \(k \leq 10 \),
- 5-design for \(k \leq 18 \).

Motivated by spherical analogue:

- Venkov’s theorem on spherical designs supported by an even unimodular lattice
- Martinet (2001): lattices of min \(\leq 3 \) with spherical 5-design, min \(\leq 5 \) with spherical 7-design
Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Motivated by spherical analogue:

- Venkov’s theorem on spherical designs supported by an even unimodular lattice
- Martinet (2001): lattices of min ≤ 3 with spherical 5-design, min ≤ 5 with spherical 7-design
- Nossek (2014): lattices of min ≤ 7 with spherical 9-design, min ≤ 9 with spherical 11-design, $\not\exists$ lattices of min ≤ 11 with spherical 13-design.
Design theoretic viewpoint

Instead of classifying self-orthogonal codes C of min. wt. k such that

$$B = \{ \text{supp}(x) \mid x \in C, \text{wt}(x) = k \}$$

forms a t-design,
Design theoretic viewpoint

Instead of classifying self-orthogonal codes \(C \) of min. wt. \(k \) such that

\[
\mathcal{B} = \{ \text{supp}(x) \mid x \in C, \ \text{wt}(x) = k \}
\]

forms a \(t \)-design,

we hope to classify self-orthogonal designs:

\[
\mathcal{B} \subset \{ x \in C \mid \text{wt}(x) = k \} \subset C \subset C^\perp.
\]
Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Note: k is even.

Mendelsohn equations are "overdetermined" system.
Lalaude-Labayle (2001), determined binary self-orthogonal codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

More generally, we assume

$$t \geq \left\lceil \frac{k}{4} \right\rceil + 1.$$

Note: k is even.

Mendelsohn equations are “overdetermined” system.
Let (X, \mathcal{B}) be a $t-(v, k, \lambda)$ design, $S \subset X$.

$$n_j = \left| \{ B \in \mathcal{B} \mid j = |B \cap S| \} \right|.$$

Then

$$\sum_{j \geq 1} \binom{j}{i} n_j = \lambda_i \binom{|S|}{i} \quad (i = 1, \ldots, t),$$

a system of t linear equations in unknowns n_1, n_2, \ldots (at most $\min\{k, |S|\}$).
Mendelsohn equations

Let \((X, \mathcal{B})\) be a \(t-(v, k, \lambda)\) design, \(S \subset X\).

\[n_j = |\{B \in \mathcal{B} \mid j = |B \cap S|\}|. \]

Then

\[\sum_{j \geq 1} \binom{j}{i} n_j = \lambda_i \binom{|S|}{i} \quad (i = 1, \ldots, t), \]

a system of \(t\) linear equations in unknowns \(n_1, n_2, \ldots\) (at most \(\min\{k, |S|\}\)).

If \(S \in \mathcal{C}^\perp\), then \(n_j = 0\) for \(j\) odd.

If \(S \in \mathcal{B}\) and \(k = \min \mathcal{C}^\perp\), then \(n_j = 0\) for \(j > k/2\), so there are \(\lfloor k/4 \rfloor\) unknowns.

Akihiro Munemasa

Self-orthogonal designs
The dual code C^\perp of the code C of a t-design has minimum weight at least $t + 1$.
The dual code C^\perp of the code C of a t-design has minimum weight at least $t + 1$.

Lemma

If (X, \mathcal{B}) is a self-orthogonal 3-(v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.
The dual code C^\perp of the code C of a t-design has minimum weight at least $t + 1$.

Lemma

If (X, \mathcal{B}) is a self-orthogonal 3-(v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.

Recall 3-$(8, 4, 1)$ Hadamard design exists.
The dual code C^\perp of the code C of a t-design has minimum weight at least $t + 1$.

Lemma

If (X, B) is a self-orthogonal 3-(v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.

Recall 3-$(8, 4, 1)$ Hadamard design exists. No self-orthogonal 3-$(12, 6, \lambda)$ design.
3-(16, 8, \lambda) design

\lambda \leq \binom{16}{8} \binom{8}{3} \binom{16}{3}^{-1} = 1287

if we don’t require self-orthogonality.

- Divisibility implies \(\lambda \equiv 0 \pmod{3} \).
3-(16, 8, \lambda) \text{ design}

\lambda \leq \binom{16}{8} \binom{8}{3} \binom{16}{3}^{-1} = 1287

if we don’t require self-orthogonality.

- Divisibility implies \lambda \equiv 0 \pmod{3}.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length 16
 \implies \lambda \leq 18.
3-(16, 8, λ) design

$$\lambda \leq \binom{16}{8} \binom{8}{3} \binom{16}{3}^{-1} = 1287$$

if we don’t require self-orthogonality.

- Divisibility implies $\lambda \equiv 0 \pmod{3}$.
- Largest number of vectors of weight 8 in a self-orthogonal codes of length 16
 $\implies \lambda \leq 18$.

$\lambda = 3$: Hadamard designs.

$\lambda = 6, 9, 12, 15, 18$? disjoint union?
Theorem

The following are equivalent:

1. \(\exists \) a self-orthogonal 3-(16, 8, 3\(\mu \)) design,
2. \(\exists \) an equitable partition of the folded halved 8-cube with quotient matrix
 \[
 \begin{bmatrix}
 4(\mu - 1) & 4(8 - \mu) \\
 4\mu & 4(7 - \mu)
 \end{bmatrix}.
 \]
3. \(\mu \in \{1, 2, 3, 4, 5\} \).

In particular, there is no self-orthogonal 3-(16, 8, 18) design.
The 8-cube is the graph with vertex set \(\{0, 1\}^8 \), two vertices are adjacent whenever they differ by exactly one coordinate.
The 8-cube is the graph with vertex set $\{0, 1\}^8$, two vertices are adjacent whenever they differ by exactly one coordinate.

‘halved’ = even-weight vectors
‘folded’ = identify with complement

The folded halved 8-cube Γ has 2^6 vertices, and it is 28-regular.

$$SRG(64, 28, 12, 12)$$
Let Γ be a regular graph. An equitable partition with quotient matrix Q means: the adjacency matrix A is of the form

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}, \quad A_{ij} \mathbf{1} = q_{ij} \mathbf{1}, \quad Q = (q_{ij}).
\]
Theorem

The following are equivalent:

1. ∃ a self-orthogonal 3-(16, 8, 3μ) design,
2. ∃ an equitable partition of the folded halved 8-cube with quotient matrix

\[
\begin{bmatrix}
4(\mu - 1) & 4(8 - \mu) \\
4\mu & 4(7 - \mu)
\end{bmatrix}
\]

3. \(\mu \in \{1, 2, 3, 4, 5\} \).
The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16, 8]$ code. There are only two such codes, $e_8 \oplus e_8$ and d_{16}.
The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16, 8]$ code. There are only two such codes, $e_8 \oplus e_8$ and d_{16}. The code d_{16} has $128 + 70$ codewords of weight 8,
The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16, 8]$ code. There are only two such codes, $e_8 \oplus e_8$ and d_{16}. The code d_{16} has $128 + 70$ codewords of weight 8, $64 + 35$ complementary pairs of codewords of weight 8.
The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16, 8]$ code. There are only two such codes, $e_8 \oplus e_8$ and d_{16}. The code d_{16} has $128 + 70$ codewords of weight 8, $64 + 35$ complementary pairs of codewords of weight 8.

\[|\mathcal{B}| = 30\mu \quad (15\mu \text{ pairs}). \]
The code d_{16}

The code of a self-orthogonal design is contained in a doubly even self-dual $[16, 8]$ code. There are only two such codes, $e_8 \oplus e_8$ and d_{16}. The code d_{16} has $128 + 70$ codewords of weight 8, $64 + 35$ complementary pairs of codewords of weight 8.

$$|\mathcal{B}| = 30\mu \quad (15\mu \text{ pairs}).$$

$$8\mu \quad 64 = \left|\frac{1}{2}H(8, 2)\right|$$

* $7\mu \quad 35 = \left|\frac{1}{2}J(8, 4)\right|$

$$= |J_2(4, 2)| = |PG(3, 2)|$$
Theorem
The following are equivalent:

1. ∃ a self-orthogonal 3-(16, 8, 3μ) design,
2. ∃ an equitable partition of $\frac{1}{2}H(8, 2)$ with quotient matrix

$$
\begin{bmatrix}
4(\mu - 1) & 4(8 - \mu) \\
4\mu & 4(7 - \mu)
\end{bmatrix}.
$$

3. μ ∈ {1, 2, 3, 4, 5}.
Self-orthogonal 3-design

- ∃ 3-(8, 4, 1) Hadamard design
- ∄ 3-(12, 6, \(\lambda\)) design
- ∃ 3-(16, 8, 3\(\mu\)) design for \(\mu \in \{1, \ldots, 5\}\)
Self-orthogonal 3-design

- \exists 3-(8, 4, 1) Hadamard design
- \nexists 3-(12, 6, λ) design
- \exists 3-(16, 8, 3μ) design for $\mu \in \{1, \ldots, 5\}$
- \nexists 3-(20, 10, λ) design
Self-orthogonal 3-design

- \exists 3-$(8, 4, 1)$ Hadamard design
- $\not\exists$ 3-$(12, 6, \lambda)$ design
- \exists 3-$(16, 8, 3\mu)$ design for $\mu \in \{1, \ldots, 5\}$
- $\not\exists$ 3-$(20, 10, \lambda)$ design

These satisfy $\lfloor k/4 \rfloor + 1 \leq t = 3$.
Self-orthogonal 3-design

- \exists 3-(8, 4, 1) Hadamard design
- \nexists 3-(12, 6, λ) design
- \exists 3-(16, 8, 3μ) design for $\mu \in \{1, \ldots, 5\}$
- \nexists 3-(20, 10, λ) design

These satisfy $\lfloor k/4 \rfloor + 1 \leq t = 3$.

- \exists 5-(24, 12, 48) design (Uniqueness by Tonchev, 1986)
Lalaude-Labayle (2001), determined binary codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

Akihiro Munemasa

Self-orthogonal designs
Lalaude-Labayle (2001), determined binary codes of min. wt. k whose min. wt. codewords support:

- 3-design for $k \leq 10$,
- 5-design for $k \leq 18$.

More generally, we assume

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \quad k = \min C,$$

but we allow

$$\mathcal{B} \subseteq \{ x \in C \mid \text{wt}(x) = k \}.$$
Theorem

∃ self-orthogonal \(t-(\nu, k, \lambda) \) design with code \(C \),

\[
t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \quad k = \min C.
\]

Then

\[
2^{2t-1}t \binom{k/2}{k/2-t} \prod_{j=i}^{t-1} (k - j) \prod_{j=i}^{t-1} (\nu - j) \in \mathbb{Z}.
\]

Note: Given \(k \), there are only finitely many \(\nu \) satisfying the conclusion. Lalaude-Labayle: \(k \leq 18 \).

The only \(k > 18 \) we found which satisfies the conclusion is \(k = 24, \nu = 120, t = 7 \) (but \(\not\exists \)).
There exists self-orthogonal t-(v, k, λ) design (X, \mathcal{B}) with code C, $d^\perp = \min C^\perp$,

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \quad \mathcal{B} \neq \{x \in C^\perp \mid \text{wt}(x) = d^\perp \}.$$

Then

$$\sum_{i=1}^{t} i(-2)^{i-1} \binom{2t - i - 1}{t - 1} \binom{d^\perp}{i} \prod_{j=i}^{t-1} \frac{v - j}{k - j} = 0.$$

Problem Determine all the solutions of this Diophantine equation in (d^\perp, k, v).

Thank you for your attention!

Akihiro Munemasa

Self-orthogonal designs
Theorem

∃ self-orthogonal t-(v, k, λ) design (X, \mathcal{B}) with code C, $d_{\perp} = \min C_{\perp}$,

$$t = \left\lfloor \frac{k}{4} \right\rfloor + 1, \mathcal{B} \neq \{ x \in C_{\perp} \mid \text{wt}(x) = d_{\perp} \}.$$

Then

$$\sum_{i=1}^{t} i (-2)^{i-1} \binom{2t - i - 1}{t - 1} \binom{d_{\perp}}{i} \prod_{j=i}^{t-1} \frac{v - j}{k - j} = 0.$$

Problem Determine all the solutions of this Diophantine equation in (d_{\perp}, k, v).

Thank you for your attention!