Self-Orthogonal Designs and Equitable Partitions

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
(joint work with Masaaki Harada and Tsuyoshi Miezaki)
September 30, 2015
RIMS, Kyoto University

A $t-(v, k, \lambda)$ design $(\boldsymbol{X}, \boldsymbol{B})$

- \boldsymbol{X} is a finite set, $|\boldsymbol{X}|=\boldsymbol{v}$,
- $\mathcal{B} \subset\binom{\boldsymbol{X}}{k}=\{k$-element subsets of $\boldsymbol{X}\}$,
- $\forall \boldsymbol{T} \in\binom{X}{t}$,

$$
\lambda=|\{B \in \mathcal{B} \mid B \supset T\}| \quad \text { (constant). }
$$

Elements of \boldsymbol{X} are called "points", those of \mathcal{B} "blocks". Woolhouse (1844), Kirkman (1847), Steiner (1853).

Example

5-(24, 8, 1) design, uniqueness was shown by Witt (1938), with automorphism group M_{24} of Mathieu (1873).

Existence problem

Given $t, \boldsymbol{v}, \boldsymbol{k}, \boldsymbol{\lambda}$, does there exist a $\boldsymbol{t}-(\boldsymbol{v}, \boldsymbol{k}, \boldsymbol{\lambda})$ design?
Before Teirlinck (1987), only a few \boldsymbol{t}-designs with $t \geq 5$ were known.

Theorem (Teirlinck)

Nontrivial t-designs exist for all $t \geq 1$, i.e.,

$$
\forall t \geq 1, \exists v, \exists \lambda \text { s.t. } \exists t-(v, t+1, \lambda) \text { design. }
$$

CRC Handbook of Combinatorial Designs, 2nd ed. (2006): $\exists 3$ - $(16,7,5)$ design?

A property of $5-(24,8,1)$ design of Witt

$(X, \mathcal{B}): 5-(24,8,1)$ design.

$$
\forall B, B^{\prime} \in \mathcal{B},\left|B \cap B^{\prime}\right| \in\{0,2,4,8\}
$$

Definition

A \boldsymbol{t} - $\boldsymbol{v}, \boldsymbol{k}, \boldsymbol{\lambda})$ design $(\boldsymbol{X}, \mathcal{B})$ is self-orthogonal if

$$
\left|B \cap B^{\prime}\right| \equiv 0 \quad(\bmod 2) \quad\left(\forall B, B^{\prime} \in \mathcal{B}\right)
$$

In particular $k \equiv 0(\bmod 2)$.

Hadamard 3-designs

If \boldsymbol{H} is a Hadamard matrix of order $8 \boldsymbol{n}$, i.e., \boldsymbol{H} is a $8 n \times 8 n$ matrix with entries in $\{ \pm 1\}$ satisfying $\boldsymbol{H} \boldsymbol{H}^{\top}=8 n I$,
\Longrightarrow a self-orthogonal 3 - $(8 n, 4 n, 2 n-1)$ design.
Indeed, after normalizing \boldsymbol{H} so that its first row is $\mathbf{1}$:

$$
\boldsymbol{H}=\left[\begin{array}{c}
1 \\
\boldsymbol{H}_{1}
\end{array}\right]
$$

an incidence matrix is given by

$$
M=\frac{1}{2}\left[\begin{array}{l}
J-H_{1} \\
J+H_{1}
\end{array}\right]
$$

3-($8,4,1)$ Hadamard design is self-orthogonal. $\nexists 3$ - $(8,4, \lambda)$ designs for $\lambda>1$

$(\boldsymbol{X}, \mathcal{B})$: self-orthogonal design

Let

$$
M=\mathcal{B}\left[\begin{array}{ll}
X \\
1 & B \ni x \\
0 & B \not \supset x
\end{array}\right]
$$

be the $|\mathcal{B}| \times|\boldsymbol{X}|$ block-point incidence matrix. Then

$$
\text { self-orthogonal } \Longleftrightarrow M M^{\top}=\mathbf{0} \text { over } \mathbb{F}_{2} .
$$

We call the row space \boldsymbol{C} of \boldsymbol{M} the (binary) code of the design. Then $C \subset C^{\perp}$.

For some Hadamard matrix \boldsymbol{H} of order 16, the code C of the design \boldsymbol{D} obtained from \boldsymbol{H} satisfies $\boldsymbol{C}=\boldsymbol{C}^{\perp}$.

Search $\sigma \in \operatorname{Aut}(C), \mathcal{B} \cup \sigma(\mathcal{B}) \subset C$, using magma (method 2).

Dual weight 4

The dual code C^{\perp} of the code \boldsymbol{C} of a \boldsymbol{t}-design has minimum weight at least $\boldsymbol{t}+\mathbf{1}$.

Lemma

If $(\boldsymbol{X}, \mathcal{B})$ is a self-orthogonal $3-(\boldsymbol{v}, \boldsymbol{k}, \boldsymbol{\lambda})$ design, and the dual code of its code has minimum weight 4 , then $v=2 k \equiv 0$ $(\bmod 4)$.

Recall 3-(8, 4, 1) Hadamard design exists.
\nexists self-orthogonal $3-(12,6, \lambda)$ design.
\exists self-orthogonal 3 - $(16,8, \lambda)$ design?
$\lambda \equiv 0(\bmod 3)$ is necessary.

$3-(16,8, \lambda)$ design

$$
\lambda \leq\binom{ 16}{8}\binom{8}{3}\binom{16}{3}^{-1}=1287
$$

if we don't require self-orthogonality.

- Divisibility implies $\boldsymbol{\lambda} \equiv 0(\bmod 3)$.

Write $\boldsymbol{\lambda}=3 \boldsymbol{\mu}$.
$\mu=1$: Hadamard designs.
Need to choose $|\mathcal{B}|=10 \lambda=30 \mu$ blocks out of

$$
\binom{16}{8}=12870
$$

(X, \mathcal{B}) : self-orthogonal 3 - $(16,8, \lambda)$ design

Let \boldsymbol{C} be the code of $(\boldsymbol{X}, \mathcal{B})$. Then

$$
C \subset C^{\perp}
$$

so

$$
C \subset \tilde{C}=\tilde{C}^{\perp} \subset C^{\perp}
$$

There are only two such codes $\tilde{\boldsymbol{C}}, e_{8} \oplus e_{8}$ and \boldsymbol{d}_{16}. \boldsymbol{d}_{16} is the row space of
$\left[\begin{array}{cccccccc}01 & 01 & 01 & 01 & 01 & 01 & 01 & 01 \\ 11 & & & & & & & 11 \\ & 11 & & & & & & 11 \\ & & \ddots & & & & & \vdots \\ & & & & & & 11 & 11\end{array}\right]$

The code d_{16}

$$
d_{16}=\text { row sp. }\left[\begin{array}{cccccccc}
01 & 01 & 01 & 01 & 01 & 01 & 01 & 01 \\
11 & & & & & & & 11 \\
& 11 & & & & & & 11 \\
& & \ddots & & & & & \vdots \\
& & & & & & 11 & 11
\end{array}\right]
$$

\boldsymbol{d}_{16} has $128+70$ vectors of weight 8 ,
$64+35$ complementary pairs of vectors of weight 8 .
Self-orthogonal $3-(16,8, \lambda)$ design (X, \mathcal{B}) with $\lambda=3 \mu$ has

$$
|\mathcal{B}|=30 \mu \quad(15 \mu \text { pairs })
$$

$\mu=1$: Hadamard 3-design
$\mu=2$: method 21

$64+35$ pairs of vectors of weight 8 in d_{16}

Define a graph structure on $\mathbf{6 4}+\mathbf{3 5}$ pairs:

$$
\left\{B_{1}, B_{1}^{c}\right\} \sim\left\{B_{2}, B_{2}^{c}\right\} \Longleftrightarrow\left|B_{1} \cap B_{2}\right| \in\{2,6\}
$$

Then
$64=$ folded halved 8 -cube
valence $=28$

$$
\begin{gathered}
35=\text { lines of } P^{3}\left(\mathbb{F}_{2}\right) \\
\text { valence }=16
\end{gathered}
$$

The folded halved 8-cube, $P^{3}\left(\mathbb{F}_{2}\right)$

The 8 -cube is the graph with vertex set $\{0,1\}^{8}$, two vertices are adjacent whenever they differ by exactly one coordinate.
'halved' = even-weight vectors
'folded' = identify with complement
The folded halved 8 -cube Γ has $2^{6}=64$ vertices, and its valence is 28 .

The set of 35 lines of $P^{3}\left(\mathbb{F}_{2}\right)$ naturally carries the structure of a graph.

$64+35$ pairs of vectors of weight 8

Need to choose $|\mathcal{B}| / 2=15 \mu$ pairs out of $64+35$.
$(\boldsymbol{X}, \mathcal{B})$ is a self-orthogonal $3-(16,8,3 \mu)$ design iff
valence

$$
\begin{array}{llll}
8 \mu \quad 4(\mu-1) & 64-8 \mu \quad 4(7-\mu) \quad & 64= \\
& & & \text { folded halved } \\
& 8 \text {-cube }
\end{array}
$$

$$
\begin{array}{lll}
7 \mu & 6 \mu & 35-7 \mu \quad 4(4-\mu)
\end{array} \begin{aligned}
& 35= \\
& \text { lines of } P^{3}\left(\mathbb{F}_{2}\right)
\end{aligned}
$$

Easy to find a subgraph of size 7μ, valence $\mathbf{6 \mu}$ in $\boldsymbol{P}^{\mathbf{3}}\left(\mathbb{F}_{2}\right)$ for $1 \leq \mu \leq 5$.

The folded halved 8-cube

Need to find a partition into two subgraphs (equitable partition)

$$
\begin{cases}\text { size } 8 \mu & \text { valence } 4(\mu-1) \\ \text { size } 64-8 \mu & \text { valence } 4(7-\mu)\end{cases}
$$

for $\mu=3,4$.
(1) $\mu=4$: find an equitable partition, both of size 32 and valence 12, using magma (method 3).
(2) $\boldsymbol{\mu}=3$: find an equitable partition,

$$
\begin{cases}\text { size } 24 & \text { valence } 8 \\ \text { size } 40 & \text { valence } 16\end{cases}
$$

using magma (method 4).
Different methods were employed:
(1) use an appropriate subgroup of the automorphism group,
(2) zero-one optimization.

Zero-one optimization

Need to find an equitable partition,

$$
\begin{cases}\text { size } 24 & \text { valence } 8 \\ \text { size } 40 & \text { valence } 16\end{cases}
$$

Let \boldsymbol{A}

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
\boldsymbol{A}_{21} & A_{22}
\end{array}\right]
$$

be the 64×64 adjacency matrix of the folded halved 8 -cube.
Then

$$
A_{11} 1=81, \quad A_{22} 1=161, \quad A 1=281
$$

so

$$
\begin{gathered}
{\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
81 \\
121
\end{array}\right]=\left[\begin{array}{l}
121 \\
121
\end{array}\right]-\left[\begin{array}{c}
41 \\
0
\end{array}\right] .} \\
A x=121-4 x, \text { i.e., }(A+4 I) x=121 .
\end{gathered}
$$

Zero-one optimization to solve $(A+4 I) x=12$

Let A be the $\mathbf{6 4} \times \mathbf{6 4}$ adjacency matrix of the folded halved 8 -cube.
We need to find a $(0,1)$-vector x of weight 24 satisfying

$$
(A+4 I) x=121
$$

\rightarrow method 4.
Search for "maximal" $(0,1)$-vector satisfying

$$
(A+4 I) x \leq 121
$$

to see if \boldsymbol{x} has weight 24 .

We found an equitable partition

$$
\begin{cases}\text { size } 24 & \text { valence } 8 \\ \text { size } 40 & \text { valence } 16\end{cases}
$$

To summarize

Theorem

The following are equivalent:
(1) \exists a self-orthogonal 3 - $(16,8,3 \mu)$ design,
(2) \exists an equitable partition, of the folded halved 8 -cube,

$$
\begin{cases}\text { size } 8 \mu & \text { valence } 4(\mu-1) \\ \text { size } 64-8 \mu & \text { valence } 4(7-\mu)\end{cases}
$$

(0) $\mu \in\{1,2,3,4,5\}$.

Thank you for your attention!

