Self-Orthogonal Designs and Equitable Partitions

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University (joint work with Masaaki Harada and Tsuyoshi Miezaki)

> September 30, 2015 RIMS, Kyoto University

A $t ext{-}(v,k,\lambda)$ design (X,\mathcal{B})

• X is a finite set,
$$|X| = v$$
,
• $\mathcal{B} \subset {X \choose k} = \{k \text{-element subsets of } X\}$,
• $\forall T \in {X \choose t}$,

$$\lambda = |\{B \in \mathcal{B} \mid B \supset T\}|$$
 (constant).

Elements of X are called "points", those of \mathcal{B} "blocks". Woolhouse (1844), Kirkman (1847), Steiner (1853).

Example

5-(24, 8, 1) design, uniqueness was shown by Witt (1938), with automorphism group M_{24} of Mathieu (1873).

Given t, v, k, λ , does there exist a t- (v, k, λ) design?

Before Teirlinck (1987), only a few *t*-designs with $t \ge 5$ were known.

Theorem (Teirlinck)

Nontrivial *t*-designs exist for all $t \ge 1$, i.e.,

$$\forall t \geq 1, \ \exists v, \exists \lambda \text{ s.t. } \exists t \cdot (v, t+1, \lambda) \text{ design.}$$

CRC Handbook of Combinatorial Designs, 2nd ed. (2006): $\exists 3-(16,7,5) \text{ design}$?

A property of 5-(24, 8, 1) design of Witt

 (X, \mathcal{B}) : 5-(24, 8, 1) design.

$$orall B,B'\in \mathcal{B},\;|B\cap B'|\in\{0,2,4,8\}.$$

Definition

A t- (v, k, λ) design (X, \mathcal{B}) is self-orthogonal if

$$|B \cap B'| \equiv 0 \pmod{2} \quad (orall B, B' \in \mathcal{B}).$$

In particular $k \equiv 0 \pmod{2}$.

Hadamard 3-designs

If H is a Hadamard matrix of order 8n, i.e., H is a $8n \times 8n$ matrix with entries in $\{\pm 1\}$ satisfying $HH^{\top} = 8nI$, \implies a self-orthogonal 3-(8n, 4n, 2n - 1) design. Indeed, after normalizing H so that its first row is 1:

$$H = \begin{bmatrix} 1 \\ H_1 \end{bmatrix},$$

an incidence matrix is given by

$$M=rac{1}{2}egin{bmatrix}J-H_1\J+H_1\end{bmatrix}.$$

3-(8, 4, 1) Hadamard design is self-orthogonal. \nexists 3-(8, 4, λ) designs for $\lambda > 1$

(X,\mathcal{B}) : self-orthogonal design

Let

$$M = egin{array}{ccc} X \ 1 & B
ightarrow x \ 0 & B
ot ightarrow x \end{bmatrix}$$

be the $|\mathcal{B}| imes |X|$ block-point incidence matrix. Then

self-orthogonal
$$\iff MM^{\top} = 0$$
 over \mathbb{F}_2 .

We call the row space C of M the (binary) code of the design. Then $C \subset C^{\perp}$.

For some Hadamard matrix H of order 16, the code C of the design D obtained from H satisfies $C = C^{\perp}$.

Search $\sigma \in Aut(C)$, $\mathcal{B} \cup \sigma(\mathcal{B}) \subset C$, using magma (method 2).

The dual code C^{\perp} of the code C of a *t*-design has minimum weight at least t + 1.

Lemma

If (X, \mathcal{B}) is a self-orthogonal 3- (v, k, λ) design, and the dual code of its code has minimum weight 4, then $v = 2k \equiv 0 \pmod{4}$.

Recall 3-(8, 4, 1) Hadamard design exists. $\not\exists$ self-orthogonal 3-(12, 6, λ) design. \exists self-orthogonal 3-(16, 8, λ) design? $\lambda \equiv 0 \pmod{3}$ is necessary. $3 ext{-}(16,8,\lambda)$ design

$$\lambda \leq {\binom{16}{8}}{\binom{8}{3}}{\binom{16}{3}}^{-1} = 1287$$

if we don't require self-orthogonality.

• Divisibility implies $\lambda \equiv 0 \pmod{3}$.

Write $\lambda = 3\mu$. $\mu = 1$: Hadamard designs. Need to choose $|\mathcal{B}| = 10\lambda = 30\mu$ blocks out of

$$\binom{16}{8} = 12870.$$

(X,\mathcal{B}) : self-orthogonal $3 ext{-}(16,8,\lambda)$ design

Let C be the code of (X, \mathcal{B}) . Then

 $C \subset C^{\perp}$

SO

$$C\subset ilde{C}= ilde{C}^{\perp}\subset C^{\perp}.$$

There are only two such codes $ilde{C}$, $e_8 \oplus e_8$ and d_{16} .

 d_{16} is the row space of

01	01	01	01	01	01	01	$\begin{bmatrix} 01\\11\\11 \end{bmatrix}$
11							11
	11						11
		·					:
L						11	11

 d_{16} has 128 + 70 vectors of weight 8, 64 + 35 complementary pairs of vectors of weight 8. Self-orthogonal 3- $(16, 8, \lambda)$ design (X, \mathcal{B}) with $\lambda = 3\mu$ has

 $|\mathcal{B}| = 30\mu$ (15 μ pairs).

 $\mu = 1$: Hadamard 3-design $\mu = 2$: method 21

64+35 pairs of vectors of weight 8 in d_{16}

Define a graph structure on 64 + 35 pairs:

$$\{B_1,B_1^c\} \sim \{B_2,B_2^c\} \iff |B_1 \cap B_2| \in \{2,6\}.$$

Then

64= folded halved 8-cube, valence =2835= lines of $P^3(\mathbb{F}_2)$ valence =16 The 8-cube is the graph with vertex set $\{0,1\}^8$, two vertices are adjacent whenever they differ by exactly one coordinate.

'halved' = even-weight vectors 'folded' = identify with complement

The folded halved 8-cube Γ has $2^6 = 64$ vertices, and its valence is 28.

The set of 35 lines of $P^3(\mathbb{F}_2)$ naturally carries the structure of a graph.

64 + 35 pairs of vectors of weight 8

Need to choose $|\mathcal{B}|/2 = 15\mu$ pairs out of 64 + 35. (X, B) is a self-orthogonal 3-(16, 8, 3 μ) design iff

valence

$$\begin{array}{rcl} 8\mu & 4(\mu-1) & 64-8\mu & 4(7-\mu) & 64 = & & \\ & & \text{folded halved} & & \\ 8\text{-cube} & & \\ 7\mu & 6\mu & 35-7\mu & 4(4-\mu) & 35 = & \\ & & \text{lines of } P^3(\mathbb{F}_2) \end{array}$$

Easy to find a subgraph of size 7μ , valence 6μ in $P^3(\mathbb{F}_2)$ for $1\leq\mu\leq 5$.

The folded halved 8-cube

Need to find a partition into two subgraphs (equitable partition)

 $\left\{ \begin{array}{ll} {\rm size}\; 8\mu & {\rm valence}\; 4(\mu-1) \\ {\rm size}\; 64-8\mu & {\rm valence}\; 4(7-\mu), \end{array} \right.$

for $\mu=3,4$.

- µ = 4: find an equitable partition, both of size 32 and valence 12, using magma (method 3).
- 2 $\mu = 3$: find an equitable partition,

 $\left\{ \begin{array}{ll} {\rm size} \ 24 & {\rm valence} \ 8 \\ {\rm size} \ 40 & {\rm valence} \ 16, \end{array} \right.$

using magma (method 4).

Different methods were employed:

- use an appropriate subgroup of the automorphism group,
- 2 zero-one optimization.

Zero-one optimization

Need to find an equitable partition,

 $\left\{ \begin{array}{ll} {\rm size} \ 24 & {\rm valence} \ 8 \\ {\rm size} \ 40 & {\rm valence} \ 16, \end{array} \right.$

Let A

SO

$$A = egin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}.$$

be the 64×64 adjacency matrix of the folded halved 8-cube. Then

$$A_{11}1 = 81, \qquad A_{22}1 = 161, \qquad A1 = 281,$$
$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 81 \\ 121 \end{bmatrix} = \begin{bmatrix} 121 \\ 121 \end{bmatrix} - \begin{bmatrix} 41 \\ 0 \end{bmatrix}.$$
$$Ax = 121 - 4x, \text{ i.e., } (A + 4I)x = 121.$$

Zero-one optimization to solve (A+4I)x=12 l

Let A be the 64×64 adjacency matrix of the folded halved 8-cube.

We need to find a (0,1)-vector x of weight 24 satisfying

$$(A+4I)x = 121.$$

 \rightarrow method 4. Search for "maximal" (0,1)-vector satisfying

$$(A+4I)x \leq 12\mathbf{1},$$

to see if x has weight 24.

We found an equitable partition

To summarize

Theorem

The following are equivalent:

- () \exists a self-orthogonal 3- $(16, 8, 3\mu)$ design,
- ② ∃ an equitable partition, of the folded halved 8-cube,

$$\begin{cases} \text{ size } 8\mu & \text{ valence } 4(\mu-1) \\ \text{ size } 64-8\mu & \text{ valence } 4(7-\mu), \end{cases}$$

,

3 $\mu \in \{1, 2, 3, 4, 5\}.$

Thank you for your attention!