Covering radii and shadows of binary self-dual codes

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University (joint work with Masaaki Harada)

December 15, 2015 AC2015 Tokyo Metropolitan University

We want to determine the image of the mapping

$$\{C \mid C \subset \mathbb{F}_2^n, \ C = C^{\perp}\} \to \mathbb{Z}[x, y]$$

defined by $C \mapsto W_C(x, y)$, where

$$W_C(x,y) = \sum_{c \in C} x^{n - \operatorname{wt}(c)} y^{\operatorname{wt}(c)},$$

$$\operatorname{wt}(c) = |\{i \mid c_i \neq 0\}| \quad (c \in \mathbb{F}_2^n).$$

We want to determine the image of the mapping

$$\{C \mid C \subset \mathbb{F}_2^n, \ C = C^{\perp}\} \to \mathbb{Z}[x, y]$$

defined by $C \mapsto W_C(x,y)$, where

$$W_C(x, y) = \sum_{c \in C} x^{n - \operatorname{wt}(c)} y^{\operatorname{wt}(c)},$$

$$\operatorname{wt}(c) = |\{i \mid c_i \neq 0\}| \quad (c \in \mathbb{F}_2^n)$$

If we restrict the domain to the set of doubly even codes, i.e.,

$$\operatorname{wt}(c) \equiv 0 \pmod{4} \quad (\forall c \in C),$$

then the image is contained in

$$R = \mathbb{Q}[x^8 + 14x^4y^4 + y^8, W_{\text{Golay}}(x, y)]$$

Determining $W_C(x, y)$ for a given C is computationally difficult $(|C| = 2^{n/2})$.

 $R = \mathbb{Q}[x^8 + 14x^4y^4 + y^8, W_{\mathsf{Golay}}(x, y)]$

$$\begin{split} W_{\mathsf{Golay}}(x,y) &= x^{24} + y^{24} + 759(x^{16}y^8 + x^8y^{16}) + 2576x^{12}y^{12}.\\ \mathsf{So} \\ \dim R_{(n)} &= 1 + \lfloor n/24 \rfloor \quad (\mathsf{if} \; 8 \mid n). \end{split}$$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 臣 ○ のへで

 $R = \mathbb{Q}[x^8 + 14x^4y^4 + y^8, W_{\text{Golay}}(x, y)]$

$$W_{\rm Golay}(x,y) = x^{24} + y^{24} + 759(x^{16}y^8 + x^8y^{16}) + 2576x^{12}y^{12}.$$
 So

$$\dim R_{(n)} = 1 + \lfloor n/24 \rfloor \quad (\text{if } 8 \mid n).$$

An extremal weight enumerator is the unique homogeneous polynomial of degree n whose coefficient of x^n is 1, and those of

$$\underbrace{x^{n-4}y^4, x^{n-8}y^8, \dots, x^{n-4\lfloor n/24 \rfloor}y^{4\lfloor n/24 \rfloor}}_{\lfloor n/24 \rfloor}$$

are all zero. For example, $W_{Golay}(x, y)$. A code C is called extremal if $W_C(x, y)$ is extremal. Equivalently, C has minimum weight $4\lfloor n/24 \rfloor + 4$, i.e.,

$$\forall c \in C, \ \operatorname{wt}(c) \neq 4, 8, \dots, 4\lfloor n/24 \rfloor.$$

Extremal doubly even self-dual codes

$$C = C^{\perp} \subset \mathbb{F}_2^n$$
, $8 \mid n$,
all weights $\equiv 0 \pmod{4}$,
minimum weight $4\lfloor n/24 \rfloor + 4$.

k	0	1	2	3	≥ 4	
n = 24k	—	1	1	???	?	$\not\exists k \ge 154$
n = 24k + 8	1	5	many?	many?	•••	$\not\exists k \ge 159$
n = 24k + 16	2	16470	many?	many?	• • •	$\not\exists k \ge 164$

- n = 72 open since Sloane (1973).
- Nonexistence for large n by Zhang (1999).
- Uniqueness for n = 48 by Houghten-Lam-Thiel-Parker (2003)
- Classification for n = 40 by Betsumiya–Harada–M. (2012)

The covering radius $r({\boldsymbol{C}})$ is defined as

 $r(C) = \max\{\min\{\operatorname{wt}(u) \mid u \in v + C\} \mid v + C \in \mathbb{F}_2^n / C\}.$

Computationally difficult. Delsarte bound for extremal doubly even self-dual codes:

$$r(C) \leq \begin{cases} 4k & \text{if } n = 24k, \\ 4k + 2 & \text{if } n = 24k + 8, \\ 4k + 4 & \text{if } n = 24k + 16. \end{cases}$$

The covering radius r(C) is defined as

 $r(C) = \max\{\min\{\operatorname{wt}(u) \mid u \in v + C\} \mid v + C \in \mathbb{F}_2^n / C\}.$

Computationally difficult. Delsarte bound for extremal doubly even self-dual codes:

$$r(C) \leq \begin{cases} 4k & \text{if } n = 24k, \\ 4k + 2 & \text{if } n = 24k + 8, \\ 4k + 4 & \text{if } n = 24k + 16. \end{cases}$$

Extremal doubly even self-dual codes

$$\begin{split} C &= C^{\perp} \subset \mathbb{F}_2^n, \, 8 \mid n, \\ \text{all weights} &\equiv 0 \pmod{4}, \\ \text{minimum weight } 4\lfloor n/24 \rfloor + 4. \\ r(C) &\leq \text{Delsarte bound.} \end{split}$$

k	0	1	2	3	≥ 4
n = 24k	—	1	1	?	?
r(C)		4 = 4	8 = 8	?	
n = 24k + 8	1	5	many	many?	• • •
r(C)		6 = 6	10? = 10	12, 13 < 14	
n = 24k + 16	2	16470	many?	many?	• • •
r(C)		$7,8 \le 8$?		

We now focus on the case n = 24k + 8.

Delsarte: $r(C) \leq 4k + 2$.

Suppose that a coset u + C has minimum weight 4k + 2. Let

 $C_0 = C \cap \langle u \rangle^{\perp},$ $C' = \langle C_0, u \rangle.$

Then $C' = C'^{\perp}$ has minimum weight 4k + 2 (not doubly even). $S = C_0^{\perp} \setminus C'$ is called the shadow of C'.

Delsarte: $r(C) \leq 4k + 2$.

Suppose that a coset u + C has minimum weight 4k + 2. Let

 $C_0 = C \cap \langle u \rangle^{\perp},$ $C' = \langle C_0, u \rangle.$

Then $C' = C'^{\perp}$ has minimum weight 4k + 2 (not doubly even). $S = C_0^{\perp} \setminus C'$ is called the shadow of C'.

C'

$$\min(u+C) = 4k+2 \implies \min S = 4k+4$$

Delsarte: $r(C) \leq 4k + 2$.

Suppose that a coset u + C has minimum weight 4k + 2. Let

 $C_0 = C \cap \langle u \rangle^{\perp},$ $C' = \langle C_0, u \rangle.$

Then $C' = C'^{\perp}$ has minimum weight 4k + 2 (not doubly even). $S = C_0^{\perp} \setminus C'$ is called the shadow of C'.

C'

$$\min(u+C) = 4k+2 \implies \min S = 4k+4$$

- \exists extremal doubly even self-dual code C of length n with covering radius 4k + 2,
- **2** \exists self-dual code C' of length n with minimum weight 4k + 2 and its shadow has minimum weight 4k + 4.

Bachoc–Gaborit (2004) showed: if a (not doubly even) self-dual code C' of length n with minimum weight d and its shadow has minimum weight s, and

$$2d+s = \frac{n}{2}+4,$$

then $W_{C'}(x,y)$ and $W_S(x,y)$ are uniquely determined.

$$2(4k+2) + (4k+4) = \frac{24k+8}{2} + 4.$$

- \exists extremal doubly even self-dual code C of length n with covering radius 4k + 2,
- **2** \exists self-dual code C' of length n with minimum weight 4k + 2 and its shadow has minimum weight 4k + 4.

$$W_{C'}(x,y) = \sum_{j=0}^{n/8} a_j (x^2 + y^2)^{n/2 - 4j} (x^2 y^2 (x^2 - y^2)^2)^j,$$

$$W_S(x,y) = \sum_{j=0}^{n/8} a_j (-1)^j 2^{n/2 - 6j} (xy)^{n/2 - 4j} (x^4 - y^4)^{2j},$$

the coefficients a_j are uniquely determined.

- I = extremal doubly even self-dual code C of length n with covering radius 4k + 2, (thus k ≤ 158 by Zhang)
- **2** \exists self-dual code C' of length n with minimum weight 4k + 2 and its shadow has minimum weight 4k + 4.

$$W_{C'}(x,y) = \sum_{j=0}^{n/8} a_j (x^2 + y^2)^{n/2 - 4j} (x^2 y^2 (x^2 - y^2)^2)^j,$$

$$W_S(x,y) = \sum_{j=0}^{n/8} a_j (-1)^j 2^{n/2 - 6j} (xy)^{n/2 - 4j} (x^4 - y^4)^{2j},$$

the coefficients a_j are uniquely determined.

- \exists extremal doubly even self-dual code C of length n with covering radius 4k + 2, (thus $k \leq 158$ by Zhang)
- **2** \exists self-dual code C' of length n with minimum weight 4k + 2 and its shadow has minimum weight 4k + 4.

$$W_{C'}(x,y) = \sum_{j=0}^{n/8} a_j (x^2 + y^2)^{n/2 - 4j} (x^2 y^2 (x^2 - y^2)^2)^j,$$

$$W_S(x,y) = \sum_{j=0}^{n/8} a_j (-1)^j 2^{n/2 - 6j} (xy)^{n/2 - 4j} (x^4 - y^4)^{2j},$$

the coefficients a_j are uniquely determined. W_S shows $k \leq 136$.

- I = extremal doubly even self-dual code C of length n with covering radius 4k + 2, (thus k ≤ 158 by Zhang)
- **2** \exists self-dual code C' of length n with minimum weight 4k + 2 and its shadow has minimum weight 4k + 4.

$$W_{C'}(x,y) = \sum_{j=0}^{n/8} a_j (x^2 + y^2)^{n/2 - 4j} (x^2 y^2 (x^2 - y^2)^2)^j,$$

$$W_S(x,y) = \sum_{j=0}^{n/8} a_j (-1)^j 2^{n/2 - 6j} (xy)^{n/2 - 4j} (x^4 - y^4)^{2j},$$

the coefficients a_j are uniquely determined. W_S shows $k \leq 136$. Thank you for your attention!