On a lower bound on the Laplacian eigenvalues of a graph

Akihiro Munemasa
(joint work with Gary Greaves and Anni Peng)

Graduate School of Information Sciences
Tohoku University

May 22, 2016
JCCA 2016, Kyoto University

Laplacian Eigenvalue of a Graph

Definition

The Laplacian matrix L of Γ is a matrix indexed by $X=V(\Gamma)$ with

$$
L_{x y}= \begin{cases}\operatorname{deg}(x) & \text { if } x=y \\ -1 & \text { if } x \sim y \\ 0 & \text { if } x \nsim y\end{cases}
$$

Laplacian eigenvalues of Γ are eigenvalues of the matrix L.

Laplacian Eigenvalue of a Graph

Definition

The Laplacian matrix L of Γ is a matrix indexed by $X=V(\Gamma)$ with

$$
L_{x y}= \begin{cases}\operatorname{deg}(x) & \text { if } x=y \\ -1 & \text { if } x \sim y \\ 0 & \text { if } x \nsim y\end{cases}
$$

Laplacian eigenvalues of Γ are eigenvalues of the matrix L.
If $|X|=n$, then the Laplacian eigenvalues are

$$
\mu_{1} \geq \mu_{2} \geq \cdots>\underbrace{0=\cdots=0}_{c}=\mu_{n},
$$

where c is the number of connected components.

Laplacian Eigenvalue of a Graph

Definition

The Laplacian matrix L of Γ is a matrix indexed by $X=V(\Gamma)$ with

$$
L_{x y}= \begin{cases}\operatorname{deg}(x) & \text { if } x=y \\ -1 & \text { if } x \sim y \\ 0 & \text { if } x \nsim y\end{cases}
$$

Laplacian eigenvalues of Γ are eigenvalues of the matrix L.
If Γ^{\prime} is obtained from Γ by deleting an edge, then $\mu_{m}(\Gamma) \geq \mu_{m}\left(\Gamma^{\prime}\right)$ for all $m \in\{1,2, \ldots, n\}$.

A Lower Bound

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$
d_{1} \geq d_{2} \geq \cdots \geq d_{n}
$$

and Laplacian eigenvalues

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0
$$

Let $m \in\{1,2, \ldots, n\}$.
If $\Gamma \neq K_{m} \cup(n-m) K_{1}$, then $\mu_{m} \geq d_{m}-m+2$.

A Lower Bound

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$
d_{1} \geq d_{2} \geq \cdots \geq d_{n}
$$

and Laplacian eigenvalues

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0
$$

Let $m \in\{1,2, \ldots, n\}$.
If $\Gamma \neq K_{m} \cup(n-m) K_{1}$, then $\mu_{m} \geq d_{m}-m+2$.

- $m=1$: by Grone and Merris (1994).
- $m=2$: by Li and Pan (2000).
- $m=3$: by Guo (2007), and conjectured the above theorem.

A Lower Bound

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$
d_{1} \geq d_{2} \geq \cdots \geq d_{n}
$$

and Laplacian eigenvalues

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0
$$

Let $m \in\{1,2, \ldots, n\}$.
If $\Gamma \neq K_{m} \cup(n-m) K_{1}$, then $\mu_{m} \geq d_{m}-m+2$.

$$
\mu_{m}\left(K_{m} \cup(n-m) K_{1}\right)=0=d_{m}-m+1
$$

A Lower Bound

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$
d_{1} \geq d_{2} \geq \cdots \geq d_{n}
$$

and Laplacian eigenvalues

$$
\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}=0
$$

Let $m \in\{1,2, \ldots, n\}$.
If $\Gamma \neq K_{m} \cup(n-m) K_{1}$, then $\mu_{m} \geq d_{m}-m+2$.
Problem. Characterize graphs Γ which achieve equality:

$$
\mu_{m}=d_{m}-m+2
$$

Proof Technique

Lemma (Interlacing)

Let N be a real symmetric matrix of order n.

$$
\lambda_{1}(N) \geq \cdots \geq \lambda_{n}(N)
$$

If M is a principal submatrix of N, or a quotient matrix of N, with eigenvalues

$$
\lambda_{1}(M) \geq \cdots \geq \lambda_{m}(M)
$$

then the eigenvalues of M interlace those of N, that is

$$
\lambda_{i}(N) \geq \lambda_{i}(M) \geq \lambda_{n-m+i}(N) \quad \text { for } i=1, \ldots, m
$$

Proof Technique

Lemma (Interlacing)

Let N be a real symmetric matrix of order n.

$$
\lambda_{1}(N) \geq \cdots \geq \lambda_{n}(N)
$$

If M is a principal submatrix of N, or a quotient matrix of N, with eigenvalues

$$
\lambda_{1}(M) \geq \cdots \geq \lambda_{m}(M)
$$

then the eigenvalues of M interlace those of N, that is

$$
\lambda_{i}(N) \geq \lambda_{i}(M) \geq \lambda_{n-m+i}(N) \quad \text { for } i=1, \ldots, m
$$

The quotient matrix of N with respect to a partition X_{1}, \ldots, X_{m} of $\{1, \ldots, n\}$, have average row sums of N as entries.

Reduction

Assume 「: graph with n vertices, $1 \leq m \leq n$.

$$
\mu_{m}=d_{m}-m+2 .
$$

Let $S=\left\{x_{1}, \ldots, x_{m}\right\}$ be a set of vertices with largest degrees: $\operatorname{deg} x_{i}=d_{i} \quad(1 \leq i \leq m), \quad d_{1} \geq \cdots \geq d_{m} \geq \cdots \geq d_{n}$.

Reduction

Assume Г: graph with n vertices, $1 \leq m \leq n$.

$$
\mu_{m}=d_{m}-m+2 .
$$

Let $S=\left\{x_{1}, \ldots, x_{m}\right\}$ be a set of vertices with largest degrees:
$\operatorname{deg} x_{i}=d_{i} \quad(1 \leq i \leq m), \quad d_{1} \geq \cdots \geq d_{m} \geq \cdots \geq d_{n}$.
Deleting an edge outside S does not change d_{m}, and μ_{m} will not increase:

Reduction

Assume Г: graph with n vertices, $1 \leq m \leq n$.

$$
\mu_{m}(\Gamma)=d_{m}(\Gamma)-m+2
$$

Let $S=\left\{x_{1}, \ldots, x_{m}\right\}$ be a set of vertices with largest degrees:
$\operatorname{deg} x_{i}=d_{i} \quad(1 \leq i \leq m), \quad d_{1} \geq \cdots \geq d_{m} \geq \cdots \geq d_{n}$.
Deleting an edge outside S does not change d_{m}, and μ_{m} will not increase:

$$
\mu_{m}(\Gamma) \geq \mu_{m}\left(\Gamma^{\prime}\right) \geq d_{m}\left(\Gamma^{\prime}\right)-m+2=d_{m}(\Gamma)-m+2 .
$$

Reduction

Assume Г: graph with n vertices, $1 \leq m \leq n$.

$$
\mu_{m}(\Gamma)=d_{m}(\Gamma)-m+2
$$

Let $S=\left\{x_{1}, \ldots, x_{m}\right\}$ be a set of vertices with largest degrees:
$\operatorname{deg} x_{i}=d_{i} \quad(1 \leq i \leq m), \quad d_{1} \geq \cdots \geq d_{m} \geq \cdots \geq d_{n}$.
Deleting an edge outside S does not change d_{m}, and μ_{m} will not increase:

$$
\mu_{m}(\Gamma) \geq \mu_{m}\left(\Gamma^{\prime}\right) \geq d_{m}\left(\Gamma^{\prime}\right)-m+2=d_{m}(\Gamma)-m+2
$$

provided $\Gamma^{\prime} \neq K_{m} \cup(n-m) K_{1}$.

Reduction

Assume Г: graph with n vertices, $1 \leq m \leq n$.

$$
\mu_{m}(\Gamma)=d_{m}(\Gamma)-m+2
$$

Let $S=\left\{x_{1}, \ldots, x_{m}\right\}$ be a set of vertices with largest degrees:
$\operatorname{deg} x_{i}=d_{i} \quad(1 \leq i \leq m), \quad d_{1} \geq \cdots \geq d_{m} \geq \cdots \geq d_{n}$.
Deleting an edge outside S does not change d_{m}, and μ_{m} will not increase:

$$
\mu_{m}(\Gamma) \geq \mu_{m}\left(\Gamma^{\prime}\right) \geq d_{m}\left(\Gamma^{\prime}\right)-m+2=d_{m}(\Gamma)-m+2
$$

provided $\Gamma^{\prime} \neq K_{m} \cup(n-m) K_{1}$.
Unless $S=K_{m}$ is a connected component, this reduction works, eventually we reach a graph Γ^{\prime} in which there are no edges outside S.

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

Assume Γ is edge-minimal subject to d_{m}. If Γ satisfies $\mu_{m}=d_{m}-m+2>0$, then one of the following holds:
(i) $\mu_{m}=1$, and Γ is K_{m} with a pending edge attached at a vertex,
(ii) $\mu_{m} \geq 2$, and Γ is K_{m} with $\mu_{m}-1$ pending edges attached at each vertex,
(iii) $m=2$ and $\Gamma=K_{2, d_{m}}$.

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

Assume Γ is edge-minimal subject to d_{m}.
If Γ satisfies $\mu_{m}=d_{m}-m+2>0$, then one of the following holds:
(i) $\mu_{m}=1$, and Γ is K_{m} with a pending edge attached at a vertex,
(ii) $\mu_{m} \geq 2$, and Γ is K_{m} with $\mu_{m}-1$ pending edges attached at each vertex,
(iii) $m=2$ and $\Gamma=K_{2, d_{m}}$.

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

Assume Γ is edge-minimal subject to d_{m}.
If Γ satisfies $\mu_{m}=d_{m}-m+2>0$, then one of the following holds:
(i) $\mu_{m}=1$, and Γ is K_{m} with a pending edge attached at a vertex,
(ii) $\mu_{m} \geq 2$, and Γ is K_{m} with $\mu_{m}-1$ pending edges attached at each vertex,
(iii) $m=2$ and $\Gamma=K_{2, d_{m}}$.

Our contribution for (i): If Δ satisfies $\mu_{m}=1=d_{m}-m+2>0$, Δ reduces to the case (i) after deleting edges outside S, then Δ is K_{m} with pending edges attached at the same vertex.

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

Assume Γ is edge-minimal subject to d_{m}.
If Γ satisfies $\mu_{m}=d_{m}-m+2>0$, then one of the following holds:
(i) $\mu_{m}=1$, and Γ is K_{m} with a pending edge attached at a vertex,
(ii) $\mu_{m} \geq 2$, and Γ is K_{m} with $\mu_{m}-1$ pending edges attached at each vertex,
(iii) $m=2$ and $\Gamma=K_{2, d_{m}}$.
$K_{m}<$
Our contribution for (i): If Δ satisfies $\mu_{m}=1=d_{m}-m+2>0$, Δ reduces to the case (i) after deleting edges outside S, then Δ is K_{m} with pending edges attached at the same vertex. Similar result is false for (ii) and (iii).

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

Assume Γ is edge-minimal subject to d_{m}.
If Γ satisfies $\mu_{m}=d_{m}-m+2>0$, then one of the following holds:
(i) $\mu_{m}=1$, and Γ is K_{m} with a pending edge attached at a vertex,
(ii) $\mu_{m} \geq 2$, and Γ is K_{m} with $\mu_{m}-1$ pending edges attached at each vertex,
(iii) $m=2$ and $\Gamma=K_{2, d_{m}}$.

As for the case (ii)....

Case (ii) Γ is K_{m} with $\mu_{m}-1$ pending edges at each vertex

$$
\begin{align*}
& L(\Delta)=\left[\begin{array}{cc}
\left(m+\mu_{m}-1\right) I-J & -\mathbf{1}^{\top} \otimes I_{m} \\
-\mathbf{1} \otimes I_{m} & M
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc}
\left(m+\mu_{m}-1\right) I-J & -\left(\mu_{m}-1\right) I_{m} \\
-I_{m} & M^{\prime}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc}
\left(\mu_{m}-1\right) & -\left(\mu_{m}-1\right) \\
-1 & 1
\end{array}\right]
\end{align*}
$$

(2×2)

Case (ii) Γ is K_{m} with $\mu_{m}-1$ pending edges at each vertex

$$
\begin{align*}
& L(\Delta)=\left[\begin{array}{cc}
\left(m+\mu_{m}-1\right) I-J & -\mathbf{1}^{\top} \otimes I_{m} \\
-\mathbf{1} \otimes I_{m} & M
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc}
\left(m+\mu_{m}-1\right) I-J & -\left(\mu_{m}-1\right) I_{m} \\
-I_{m} & M^{\prime}
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc}
\left(\mu_{m}-1\right) & -\left(\mu_{m}-1\right) \\
-1 & 1
\end{array}\right]
\end{align*}
$$

(2×2)

Case (ii) Γ is K_{m} with $\mu_{m}-1$ pending edges at each vertex

$$
\begin{aligned}
& L(\Delta)=\left[\begin{array}{cc}
\left(m+\mu_{m}-1\right) I-J & -\mathbf{1}^{\top} \otimes I_{m} \\
-\mathbf{1} \otimes I_{m} & M
\end{array}\right] \\
& \rightarrow\left[\begin{array}{cc}
\left(m+\mu_{m}-1\right) I-J & -\left(\mu_{m}-1\right) I_{m} \\
-I_{m} & M^{\prime}
\end{array}\right]
\end{aligned}(2 m \times 2 m)
$$

Δ achieves equality $\Longrightarrow \lambda_{1}\left(M^{\prime}\right) \leq \frac{m\left(\mu_{m}-1\right)}{m-1}$.

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

Assume Γ is edge-minimal subject to d_{m}. If Γ satisfies $\mu_{m}=d_{m}-m+2>0$, then one of the following holds:
(i) $\mu_{m}=1$, and Γ is K_{m} with a pending edge attached at a vertex,
(ii) $\mu_{m} \geq 2$, and Γ is K_{m} with $\mu_{m}-1$ pending edges attached at each vertex,
(iii) $m=2$ and $\Gamma=K_{2, d_{m}}$.

What if $\mu_{m}=\mathbf{0}$?

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

If $\mu_{m}=d_{m}-m+2=0$, then one of the following holds:
(i) $m=2$ and $\Gamma=n K_{1}$.
(ii) $m=3$ and $\Gamma=2 K_{2} \cup(n-4) K_{1}$.
(iii) $\Gamma=\left(K_{m}-t K_{2}\right) \cup(n-m) K_{1}$ for some $0<t \leq\left\lfloor\frac{m}{2}\right\rfloor$.

Γ : graph with n vertices, $1 \leq m \leq n$

Proposition

If $\mu_{m}=d_{m}-m+2=0$, then one of the following holds:
(i) $m=2$ and $\Gamma=n K_{1}$.
(ii) $m=3$ and $\Gamma=2 K_{2} \cup(n-4) K_{1}$.
(iii) $\Gamma=\left(K_{m}-t K_{2}\right) \cup(n-m) K_{1}$ for some $0<t \leq\left\lfloor\frac{m}{2}\right\rfloor$.

Thank you for your attention!

