On a lower bound on the Laplacian eigenvalues of a graph

Akihiro Munemasa (joint work with Gary Greaves and Anni Peng)

Graduate School of Information Sciences Tohoku University

May 22, 2016 JCCA 2016, Kyoto University

Laplacian Eigenvalue of a Graph

Definition

The Laplacian matrix L of Γ is a matrix indexed by $X = V(\Gamma)$ with

$$\mathcal{L}_{xy} = \begin{cases} \deg(x) & \text{if } x = y, \\ -1 & \text{if } x \sim y, \\ 0 & \text{if } x \nsim y. \end{cases}$$

Laplacian eigenvalues of Γ are eigenvalues of the matrix L.

Laplacian Eigenvalue of a Graph

Definition

The Laplacian matrix L of Γ is a matrix indexed by $X = V(\Gamma)$ with

$$\mathcal{L}_{xy} = \begin{cases} \deg(x) & \text{if } x = y, \\ -1 & \text{if } x \sim y, \\ 0 & \text{if } x \nsim y. \end{cases}$$

Laplacian eigenvalues of Γ are eigenvalues of the matrix L.

If |X| = n, then the Laplacian eigenvalues are

$$\mu_1 \geq \mu_2 \geq \cdots > \underbrace{0 = \cdots = 0}_{c} = \mu_n,$$

where c is the number of connected components.

Laplacian Eigenvalue of a Graph

Definition

The Laplacian matrix L of Γ is a matrix indexed by $X = V(\Gamma)$ with

$$L_{xy} = \begin{cases} \deg(x) & \text{if } x = y, \\ -1 & \text{if } x \sim y, \\ 0 & \text{if } x \nsim y. \end{cases}$$

Laplacian eigenvalues of Γ are eigenvalues of the matrix L.

If Γ' is obtained from Γ by deleting an edge, then $\mu_m(\Gamma) \ge \mu_m(\Gamma')$ for all $m \in \{1, 2, ..., n\}$.

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$d_1 \geq d_2 \geq \cdots \geq d_n$$

and Laplacian eigenvalues

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0.$$

Let
$$m \in \{1, 2, \dots, n\}$$
.
If $\Gamma \neq K_m \cup (n - m)K_1$, then $\mu_m \ge d_m - m + 2$.

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$d_1 \geq d_2 \geq \cdots \geq d_n,$$

and Laplacian eigenvalues

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0.$$

Let
$$m \in \{1, 2, \dots, n\}$$
.
If $\Gamma \neq K_m \cup (n-m)K_1$, then $\mu_m \geq d_m - m + 2$.

- m = 1: by Grone and Merris (1994).
- *m* = 2: by Li and Pan (2000).
- m = 3: by Guo (2007), and conjectured the above theorem.

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$d_1 \geq d_2 \geq \cdots \geq d_n$$

and Laplacian eigenvalues

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0.$$

Let $m \in \{1, 2, \dots, n\}$. If $\Gamma \neq K_m \cup (n - m)K_1$, then $\mu_m \ge d_m - m + 2$.

$$\mu_m(\mathbf{K}_m \cup (n-m)\mathbf{K}_1) = \mathbf{0} = d_m - m + 1.$$

∃ ► < ∃</p>

Theorem (Brouwer and Haemers, 2008)

Let Γ have vertex degrees

$$d_1 \geq d_2 \geq \cdots \geq d_n$$

and Laplacian eigenvalues

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n = 0.$$

Let
$$m \in \{1, 2, \dots, n\}$$
.
If $\Gamma \neq K_m \cup (n - m)K_1$, then $\mu_m \ge d_m - m + 2$.

Problem. Characterize graphs Γ which achieve equality:

$$\mu_m=d_m-m+2.$$

Proof Technique

Lemma (Interlacing)

Let N be a real symmetric matrix of order n.

$$\lambda_1(N) \geq \cdots \geq \lambda_n(N).$$

If M is a principal submatrix of N, or a quotient matrix of N, with eigenvalues

$$\lambda_1(M) \geq \cdots \geq \lambda_m(M),$$

then the eigenvalues of M interlace those of N, that is

$$\lambda_i(N) \geq \lambda_i(M) \geq \lambda_{n-m+i}(N)$$
 for $i = 1, \dots, m$.

Proof Technique

Lemma (Interlacing)

Let N be a real symmetric matrix of order n.

$$\lambda_1(N) \geq \cdots \geq \lambda_n(N).$$

If M is a principal submatrix of N, or a quotient matrix of N, with eigenvalues

$$\lambda_1(M) \geq \cdots \geq \lambda_m(M),$$

then the eigenvalues of M interlace those of N, that is

$$\lambda_i(N) \ge \lambda_i(M) \ge \lambda_{n-m+i}(N)$$
 for $i = 1, \dots, m$.

The quotient matrix of N with respect to a partition X_1, \ldots, X_m of $\{1, \ldots, n\}$, have average row sums of N as entries.

Reduction

Assume Γ : graph with *n* vertices, $1 \le m \le n$.

$$\mu_m=d_m-m+2.$$

Let $S = \{x_1, \ldots, x_m\}$ be a set of vertices with largest degrees: deg $x_i = d_i$ $(1 \le i \le m), d_1 \ge \cdots \ge d_m \ge \cdots \ge d_n.$

- (三) (三)

$$\mu_m=d_m-m+2.$$

Let $S = \{x_1, \ldots, x_m\}$ be a set of vertices with largest degrees: deg $x_i = d_i$ $(1 \le i \le m)$, $d_1 \ge \cdots \ge d_m \ge \cdots \ge d_n$. Deleting an edge outside S does not change d_m , and μ_m will not increase:

.

$$\mu_m(\Gamma)=d_m(\Gamma)-m+2.$$

Let $S = \{x_1, \ldots, x_m\}$ be a set of vertices with largest degrees: deg $x_i = d_i$ $(1 \le i \le m)$, $d_1 \ge \cdots \ge d_m \ge \cdots \ge d_n$. Deleting an edge outside S does not change d_m , and μ_m will not increase:

$$\mu_m(\Gamma) \geq \mu_m(\Gamma') \geq d_m(\Gamma') - m + 2 = d_m(\Gamma) - m + 2.$$

$$\mu_m(\Gamma)=d_m(\Gamma)-m+2.$$

Let $S = \{x_1, \ldots, x_m\}$ be a set of vertices with largest degrees: deg $x_i = d_i$ $(1 \le i \le m)$, $d_1 \ge \cdots \ge d_m \ge \cdots \ge d_n$. Deleting an edge outside S does not change d_m , and μ_m will not increase:

$$\mu_m(\Gamma) \geq \mu_m(\Gamma') \geq d_m(\Gamma') - m + 2 = d_m(\Gamma) - m + 2.$$

provided $\Gamma' \neq K_m \cup (n-m)K_1$.

$$\mu_m(\Gamma) = d_m(\Gamma) - m + 2.$$

Let $S = \{x_1, \ldots, x_m\}$ be a set of vertices with largest degrees: deg $x_i = d_i$ $(1 \le i \le m)$, $d_1 \ge \cdots \ge d_m \ge \cdots \ge d_n$. Deleting an edge outside S does not change d_m , and μ_m will not increase:

$$\mu_m(\Gamma) \geq \mu_m(\Gamma') \geq d_m(\Gamma') - m + 2 = d_m(\Gamma) - m + 2.$$

provided $\Gamma' \neq K_m \cup (n-m)K_1$.

Unless $S = K_m$ is a connected component, this reduction works, eventually we reach a graph Γ' in which there are no edges outside S.

・ロト ・回ト ・ヨト ・ヨト

Proposition

Assume Γ is edge-minimal subject to d_m.
If Γ satisfies μ_m = d_m - m + 2 > 0, then one of the following holds:
(i) μ_m = 1, and Γ is K_m with a pending edge attached at a vertex,
(ii) μ_m ≥ 2, and Γ is K_m with μ_m - 1 pending edges attached at a cach vertex,

(iii) m = 2 and $\Gamma = K_{2,d_m}$.

- (三) (三)

Proposition

Assume Γ is edge-minimal subject to d_m.
If Γ satisfies μ_m = d_m - m + 2 > 0, then one of the following holds:
(i) μ_m = 1, and Γ is K_m with a pending edge attached at a vertex,
(ii) μ_m ≥ 2, and Γ is K_m with μ_m - 1 pending edges attached at a certex,

(iii)
$$m = 2$$
 and $\Gamma = K_{2,d_m}$.

< ∃ > < ∃

Proposition

Assume Γ is edge-minimal subject to d_m.
If Γ satisfies μ_m = d_m − m + 2 > 0, then one of the following holds:
(i) μ_m = 1, and Γ is K_m with a pending edge attached at a vertex,
(ii) μ_m ≥ 2, and Γ is K_m with μ_m − 1 pending edges attached at a cach vertex,

(iii)
$$m = 2$$
 and $\Gamma = K_{2,d_m}$.

(K_m)

Our contribution for (i): If Δ satisfies $\mu_m = 1 = d_m - m + 2 > 0$, Δ reduces to the case (i) after deleting edges outside S, then Δ is K_m with pending edges attached at the same vertex.

Proposition

Assume Γ is edge-minimal subject to d_m.
If Γ satisfies μ_m = d_m - m + 2 > 0, then one of the following holds:
(i) μ_m = 1, and Γ is K_m with a pending edge attached at a vertex,
(ii) μ_m ≥ 2, and Γ is K_m with μ_m - 1 pending edges attached at a cach vertex,

(iii)
$$m = 2$$
 and $\Gamma = K_{2,d_m}$.

Our contribution for (i): If Δ satisfies $\mu_m = 1 = d_m - m + 2 > 0$, Δ reduces to the case (i) after deleting edges outside *S*, then Δ is K_m with pending edges attached at the same vertex. Similar result is false for (ii) and (iii).

Proposition

Assume Γ is edge-minimal subject to d_m.
If Γ satisfies μ_m = d_m - m + 2 > 0, then one of the following holds:
(i) μ_m = 1, and Γ is K_m with a pending edge attached at a vertex,
(ii) μ_m ≥ 2, and Γ is K_m with μ_m - 1 pending edges attached at each vertex,
(iii) m = 2 and Γ = K_{2 dm}.

$$K_m$$
 As for the case (ii)....

Case (ii) Γ is K_m with $\mu_m - 1$ pending edges at each vertex

$$L(\Delta) = \begin{bmatrix} (m + \mu_m - 1)I - J & -\mathbf{1}^\top \otimes I_m \\ -\mathbf{1} \otimes I_m & M \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} (m + \mu_m - 1)I - J & -(\mu_m - 1)I_m \\ -I_m & M' \end{bmatrix} \qquad (2m \times 2m)$$

$$\rightarrow \begin{bmatrix} (\mu_m - 1) & -(\mu_m - 1) \\ -1 & 1 \end{bmatrix} \qquad (2 \times 2)$$

A. Munemasa (Tohoku University)

< 4 ₽ >

< ∃ > <

Case (ii) Γ is K_m with $\mu_m - 1$ pending edges at each vertex

$$L(\Delta) = \begin{bmatrix} (m + \mu_m - 1)I - J & -\mathbf{1}^\top \otimes I_m \\ -\mathbf{1} \otimes I_m & M \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} (m + \mu_m - 1)I - J & -(\mu_m - 1)I_m \\ -I_m & M' \end{bmatrix} \qquad (2m \times 2m)$$

$$\rightarrow \begin{bmatrix} (\mu_m - 1) & -(\mu_m - 1) \\ -1 & 1 \end{bmatrix} \qquad (2 \times 2)$$

A. Munemasa (Tohoku University)

< 4 ₽ >

< ∃ > <

Case (ii) Γ is K_m with $\mu_m - 1$ pending edges at each vertex

$$L(\Delta) = \begin{bmatrix} (m + \mu_m - 1)I - J & -\mathbf{1}^\top \otimes I_m \\ -\mathbf{1} \otimes I_m & M \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} (m + \mu_m - 1)I - J & -(\mu_m - 1)I_m \\ -I_m & M' \end{bmatrix} \qquad (2m \times 2m)$$

$$\rightarrow \begin{bmatrix} (\mu_m - 1) & -(\mu_m - 1) \\ -1 & 1 \end{bmatrix} \qquad (2 \times 2)$$

 Δ achieves equality $\implies \lambda_1(M') \leq \frac{m(\mu_m - 1)}{m - 1}$.

Proposition

Assume Γ is edge-minimal subject to d_m. If Γ satisfies μ_m = d_m - m + 2 > 0, then one of the following holds:
(i) μ_m = 1, and Γ is K_m with a pending edge attached at a vertex,
(ii) μ_m ≥ 2, and Γ is K_m with μ_m - 1 pending edges attached at a cech vertex,

(iii) m = 2 and $\Gamma = K_{2,d_m}$.

What if $\mu_m = 0$?

イロト イヨト イヨト イヨト

Proposition

If
$$\mu_m = d_m - m + 2 = 0$$
, then one of the following holds:
(i) $m = 2$ and $\Gamma = nK_1$.
(ii) $m = 3$ and $\Gamma = 2K_2 \cup (n - 4)K_1$.
(iii) $\Gamma = (K_m - tK_2) \cup (n - m)K_1$ for some $0 < t \le \lfloor \frac{m}{2} \rfloor$.

イロト イ団ト イヨト イヨト

Proposition

If
$$\mu_m = d_m - m + 2 = 0$$
, then one of the following holds:
(i) $m = 2$ and $\Gamma = nK_1$.
(ii) $m = 3$ and $\Gamma = 2K_2 \cup (n - 4)K_1$.
(iii) $\Gamma = (K_m - tK_2) \cup (n - m)K_1$ for some $0 < t \le \lfloor \frac{m}{2} \rfloor$.

Thank you for your attention!

(3)