Group theoretic aspects of the theory of association schemes

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
October 29, 2016
International Workshop on Algebraic Combinatorics Anhui University

Association schemes

Bannai and Ito, "Algebraic Combinatorics I" (1984).

- P- and Q-polynomial schemes

Association schemes

Bannai and Ito, "Algebraic Combinatorics I" (1984).

- P- and Q-polynomial schemes
- designs and codes (Delsarte theory)

Association schemes

Bannai and Ito, "Algebraic Combinatorics I" (1984).

- P- and Q-polynomial schemes
- designs and codes (Delsarte theory)
- spherical designs

Association schemes

Bannai and Ito, "Algebraic Combinatorics I" (1984).

- P- and Q-polynomial schemes \rightarrow Terwilliger algebras
- designs and codes (Delsarte theory)
- spherical designs

Association schemes

Bannai and Ito, "Algebraic Combinatorics I" (1984).

- P- and Q-polynomial schemes \rightarrow Terwilliger algebras
- designs and codes (Delsarte theory) \rightarrow SDP
- spherical designs

Association schemes

Bannai and Ito, "Algebraic Combinatorics I" (1984).

- P- and Q-polynomial schemes \rightarrow Terwilliger algebras
- designs and codes (Delsarte theory) \rightarrow SDP
- spherical designs \rightarrow Euclidean designs

Permutation representations

association scheme \approx multiplicity-free
permutation representation
\subset ordinary representation theory

Permutation representations

association scheme \approx multiplicity-free
permutation representation
\subset ordinary representation theory
\exists inequivalent permutation representations which are equivalent as representations

Permutation representations

association scheme \approx multiplicity-free
permutation representation
\subset ordinary representation theory
\exists inequivalent permutation representations
which are equivalent as representations
(like cospectral graphs)

Permutation representations

association scheme \approx multiplicity-free
permutation representation
\subset ordinary representation theory
\exists inequivalent permutation representations
which are equivalent as representations
(like cospectral graphs)
ordinary representation \rightarrow centralizer $=$ algebra permutation representation \rightarrow combinatorial object

Centralizer

Multiplicity-free permutation representation of a finite group G acting on a set $X \rightarrow$ centralizer algebra has a basis consisting of $(0,1)$-matrices

$$
A_{0}=I, A_{1}, \ldots, A_{d} \text { with } \sum_{i=0}^{d} A_{i}=J
$$

These matrices represent orbitals:

$$
X \times X=\bigcup_{i=0}^{d} R_{i} \quad(G \text {-orbits })
$$

Association scheme

Since it is a basis of an algebra,

$$
\begin{align*}
A_{i} A_{j} & =\sum_{k=0}^{d} p_{i j}^{k} A_{k} \tag{1}\\
\left\{A_{0}=I, A_{1}, \ldots, A_{d}\right\} & =\left\{A_{0}^{\top}=I, A_{1}^{\top}, \ldots, A_{d}^{\top}\right\} \tag{2}
\end{align*}
$$

This allows one to forget the group G to define an association scheme: $\left(X,\left\{R_{i}\right\}_{i=0}^{d}\right)$; where we require the matrices representing the partition $\left\{R_{i}\right\}_{i=0}^{d}$ of $X \times X$ satisfy (1) and (2).

Association scheme

Since it is a basis of an algebra,

$$
\begin{align*}
A_{i} A_{j} & =\sum_{k=0}^{d} p_{i j}^{k} A_{k} \tag{1}\\
\left\{A_{0}=I, A_{1}, \ldots, A_{d}\right\} & =\left\{A_{0}^{\top}=I, A_{1}^{\top}, \ldots, A_{d}^{\top}\right\} \tag{2}
\end{align*}
$$

This allows one to forget the group G to define an association scheme: $\left(X,\left\{R_{i}\right\}_{i=0}^{d}\right)$; where we require the matrices representing the partition $\left\{R_{i}\right\}_{i=0}^{d}$ of $X \times X$ satisfy (1) and (2). multiplicity-free \Longrightarrow commutative.

Krein parameters $q_{i j}^{k} \geq 0$

Multiplicity-free permutation representation of a finite group G acting on a set X has centralizer algebra

$$
\mathcal{A}=\left\langle A_{0}=I, A_{1}, \ldots, A_{d}\right\rangle
$$

$V=\mathbb{C}^{X}=L(X)$ decomposes as $\mathbb{C}[G]$-module:

$$
V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{d}
$$

$V_{0}=$ constant. The orthogonal projections $E_{i}: V \rightarrow V_{i}$ form another basis of \mathcal{A}, so

$$
E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{i=0}^{d} q_{i j}^{k} E_{k}
$$

Scott's theorem

$$
\begin{aligned}
V & =V_{0} \oplus V_{1} \oplus \cdots \oplus V_{d}, \\
\theta & =\chi_{0}+\chi_{1}+\cdots+\chi_{d} \quad \text { permutation character }
\end{aligned}
$$

$E_{i}: V \rightarrow V_{i}$: the orthogonal projection,

$$
E_{i} \circ E_{j}=\frac{1}{|X|} \sum_{i=0}^{d} q_{i j}^{k} E_{k} .
$$

Theorem (Scott (1977))

$q_{i j}^{k} \neq 0 \Longrightarrow\left(\chi_{i} \chi_{j}, \chi_{k}\right) \neq 0$.
$q_{i j}^{k} \neq 0 \Longrightarrow\left(\chi_{i} \chi_{j}, \chi_{k}\right) \neq 0$

Problem (Bannai and Ito, p.130)

To what extent is the converse of Scott's theorem true?
A counterexample:

$$
\operatorname{Ind}_{S_{n} \times S_{n}}^{S_{2 n}}
$$

(Johnson scheme $J(2 n, n)$).
$q_{i j}^{k} \neq 0 \Longrightarrow\left(\chi_{i} \chi_{j}, \chi_{k}\right) \neq 0$

Problem (Bannai and lto, p.130)

To what extent is the converse of Scott's theorem true?
A counterexample:

$$
\operatorname{Ind}_{S_{n} \times S_{n}}^{S_{2 n}}
$$

(Johnson scheme $J(2 n, n)$).
But this is imprimitive: $S_{n} \times S_{n} \leq S_{n} 乙 S_{2} \leq S_{2 n}$.
$q_{i j}^{k} \neq 0 \Longrightarrow\left(\chi_{i} \chi_{j}, \chi_{k}\right) \neq 0$

Problem (Bannai and Ito, p.130)

To what extent is the converse of Scott's theorem true?
A counterexample:

$$
\operatorname{Ind}_{S_{n} \times S_{n}}^{S_{2 n}}
$$

(Johnson scheme $J(2 n, n)$).
But this is imprimitive: $S_{n} \times S_{n} \leq S_{n} 乙 S_{2} \leq S_{2 n}$. Is there a primitive counterexample?

The primitive counterexample of the smallest degree is

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{20}
$$

of degree 66.

Eigenvalues of association schemes

Multiplicity-free permutation representation of a finite group G acting on a set $X=G / H$ has centralizer algebra

$$
\mathcal{A}=\left\langle A_{0}=I, A_{1}, \ldots, A_{d}\right\rangle
$$

$V=\mathbb{C}^{X}=L(X)$ decomposes as $\mathbb{C}[G]$-module:

$$
V=V_{0} \oplus V_{1} \oplus \cdots \oplus V_{d}
$$

$V_{0}=$ constant. A_{i} acts on V_{j} as a scalar:

$$
\frac{1}{|H|} \sum_{g \in H a_{i} H} \chi_{j}(g)
$$

Eigenvalues of association schemes

Multiplicity-free permutation representation of a finite group G acting on a set $X=G / H$ has centralizer algebra

$$
\mathcal{A}=\left\langle A_{0}=I, A_{1}, \ldots, A_{d}\right\rangle
$$

Eigenvalues of A_{i} are

$$
\left\{\left.\frac{1}{|H|} \sum_{g \in H a_{i} H} \chi_{j}(g) \right\rvert\, 0 \leq j \leq d\right\} \subset \mathbb{Q}\left(\exp \frac{2 \pi \sqrt{-1}}{e(G)}\right) .
$$

where $e(G)$ is the exponent of G.

Splitting fields of association schemes

Question (Bannai and Ito, p. 123)

Are there any association schemes in which eigenvalues of A_{i} 's are not all in a cyclotomic number field?

By the Kronecker-Weber theorem, this is equivalent to ask whether the Galois group of the splitting field of the characteristic polynomial of A_{i} is abelian.

Theorem (M. (1991), Coste-Gannon (1994))

If $q_{i j}^{k} \in \mathbb{Q}$, then eigenvalues of A_{i} 's are in a cyclotomic number field.

Unlike the converse to Scott's theorem, the question:

Question (Bannai and Ito, p.123)

Are there any association schemes in which eigenvalues of A_{i} 's are not all in a cyclotomic number field? makes sense for non-commutative association schemes as well.

Splitting fields of association schemes

Let

$$
\mathcal{A}=\left\langle A_{0}=I, A_{1}, \ldots, A_{d}\right\rangle
$$

be an algebra spanned by disjoint $(0,1)$-matrices.
(1) \mathcal{A} is the centralizer of a multiplicity-free permutation representation, then the formula for spherical functions implies that eigenvalues of A_{i} 's are cyclotomic.
(2) Bannai-Ito asks: the same holds if \mathcal{A} is commutative (without group action)?
(3) \mathcal{A} is the centralizer of a non-multiplicity-free permutation representation, then this is not true.

Non-multiplicity-free permutation group

A. Ryba and S. Smith:

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{8}
$$

of degree 165 .

Non-multiplicity-free permutation group

A. Ryba and S. Smith:

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{8}
$$

of degree 165 imprimitive.

$$
q_{i j}^{k}=0 \text { but }\left(\chi_{i} \chi_{j}, \chi_{k}\right) \neq 0 ?
$$

The primitive example of the smallest degree is

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{20}
$$

of degree 66 .

Non-cyclotomic numbers

$$
\sqrt{3}=e^{\pi \sqrt{-1} / 6}+e^{-\pi \sqrt{-1} / 6}
$$

Non-cyclotomic numbers

$$
\sqrt{3}=e^{\pi \sqrt{-1} / 6}+e^{-\pi \sqrt{-1} / 6}
$$

$\sqrt[4]{3} \notin$ cyclotomic field

Non-cyclotomic numbers

$$
\sqrt{3}=e^{\pi \sqrt{-1} / 6}+e^{-\pi \sqrt{-1} / 6}
$$

$\sqrt[4]{3} \notin$ cyclotomic field

A^{2}

has an irrational eigenvalue, then A is likely to have a non-cyclotomic eigenvalue.

Non-cyclotomic numbers

$$
\sqrt{3}=e^{\pi \sqrt{-1} / 6}+e^{-\pi \sqrt{-1} / 6}
$$

$\sqrt[4]{3} \notin$ cyclotomic field
If

$$
A^{2}-c l \quad \text { (distance-2 graph) }
$$

has an irrational eigenvalue, then A is likely to have a non-cyclotomic eigenvalue.

Non-multiplicity-free permutation group

A. Ryba and S. Smith:

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{24}
$$

has $1+\sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on $55+55$ vertices.

Non-multiplicity-free permutation group

A. Ryba and S. Smith:

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{24}
$$

has $1+\sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on $55+55$ vertices.
$\Longrightarrow 4+\sqrt{5}$ is an eigenvalue of A^{2}

Non-multiplicity-free permutation group

A. Ryba and S. Smith:

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{24}
$$

has $1+\sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on $55+55$ vertices.
$\Longrightarrow 4+\sqrt{5}$ is an eigenvalue of A^{2}
$\Longrightarrow \sqrt{4+\sqrt{5}}$ is an eigenvalue of A

Non-multiplicity-free permutation group

A. Ryba and S. Smith:

$$
G=P G L(2,11) \text { acting on } P G L(2,11) / D_{24}
$$

has $1+\sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on $55+55$ vertices.
$\Longrightarrow 4+\sqrt{5}$ is an eigenvalue of A^{2}
$\Longrightarrow \sqrt{4+\sqrt{5}}$ is an eigenvalue of A
$\Longrightarrow 1+\sqrt{4+\sqrt{5}}$ is an eigenvalue of the line graph
(G acts transitively, imprimitively).

Primitive counterexample

(1) The smallest primitive group with non-cyclotomic eigenvalue is $\operatorname{PSL}(2,19) / D_{20}$.
(2) The smallest (imprimitive) transitive group with non-cyclotomic eigenvalue is of degree 32 (due to classification of association schemes by Hanaki).
(3) Hanaki and Uno (2006). Even for a prime number of points, the question is unsettled.

Thank you for your attention!

