Group theoretic aspects of the theory of association schemes

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

October 29, 2016 International Workshop on Algebraic Combinatorics Anhui University

• P- and Q-polynomial schemes

- P- and Q-polynomial schemes
- designs and codes (Delsarte theory)

- P- and Q-polynomial schemes
- designs and codes (Delsarte theory)
- spherical designs

- \bullet P- and Q-polynomial schemes \rightarrow Terwilliger algebras
- designs and codes (Delsarte theory)
- spherical designs

- \bullet P- and Q-polynomial schemes \rightarrow Terwilliger algebras
- \bullet designs and codes (Delsarte theory) \rightarrow SDP
- spherical designs

- \bullet P- and Q-polynomial schemes \rightarrow Terwilliger algebras
- \bullet designs and codes (Delsarte theory) \rightarrow SDP
- $\bullet\,$ spherical designs $\to\,$ Euclidean designs

 \exists inequivalent permutation representations which are equivalent as representations

 \exists inequivalent permutation representations which are equivalent as representations

(like cospectral graphs)

 \exists inequivalent permutation representations which are equivalent as representations

(like cospectral graphs)

ordinary representation \rightarrow centralizer = algebra permutation representation \rightarrow combinatorial object

Centralizer

Multiplicity-free permutation representation of a finite group G acting on a set $X \rightarrow$ centralizer algebra has a basis consisting of (0, 1)-matrices

$$A_0 = I, A_1, \dots, A_d$$
 with $\sum_{i=0}^d A_i = J.$

These matrices represent orbitals:

$$X imes X = igcup_{i=0}^d R_i$$
 (*G*-orbits).

Since it is a basis of an algebra,

$$A_i A_j = \sum_{k=0}^d p_{ij}^k A_k.$$
 (1)

$$\{A_0 = I, A_1, \dots, A_d\} = \{A_0^\top = I, A_1^\top, \dots, A_d^\top\}.$$
 (2)

This allows one to forget the group *G* to define an association scheme: $(X, \{R_i\}_{i=0}^d)$; where we require the matrices representing the partition $\{R_i\}_{i=0}^d$ of $X \times X$ satisfy (1) and (2).

Since it is a basis of an algebra,

$$A_i A_j = \sum_{k=0}^d p_{ij}^k A_k. \tag{1}$$

$$\{A_0 = I, A_1, \dots, A_d\} = \{A_0^\top = I, A_1^\top, \dots, A_d^\top\}.$$
 (2)

This allows one to forget the group G to define an association scheme: $(X, \{R_i\}_{i=0}^d)$; where we require the matrices representing the partition $\{R_i\}_{i=0}^d$ of $X \times X$ satisfy (1) and (2). multiplicity-free \implies commutative.

Krein parameters $q_{ii}^k \ge 0$

Multiplicity-free permutation representation of a finite group G acting on a set X has centralizer algebra

$$\mathcal{A} = \langle \mathcal{A}_0 = \mathcal{I}, \mathcal{A}_1, \dots, \mathcal{A}_d \rangle$$

 $V = \mathbb{C}^X = L(X)$ decomposes as $\mathbb{C}[G]$ -module:

$$V = V_0 \oplus V_1 \oplus \cdots \oplus V_d$$

 V_0 =constant. The orthogonal projections $E_i: V \to V_i$ form another basis of A, so

$$E_i \circ E_j = \frac{1}{|X|} \sum_{i=0}^d q_{ij}^k E_k.$$

$$V = V_0 \oplus V_1 \oplus \cdots \oplus V_d,$$

$$\theta = \chi_0 + \chi_1 + \cdots + \chi_d \text{ permutation character}$$

$$E_i : V \to V_i: \text{ the orthogonal projection,}$$

$$E_i \circ E_j = rac{1}{|X|} \sum_{i=0}^d oldsymbol{q}_{ij}^k E_k.$$

Theorem (Scott (1977))

$$q_{ij}^k \neq 0 \implies (\chi_i \chi_j, \chi_k) \neq 0.$$

 $q_{ii}^k
eq 0 \implies (\chi_i \chi_j, \chi_k)
eq 0$

Problem (Bannai and Ito, p.130)

To what extent is the converse of Scott's theorem true?

A counterexample:

(Johnson scheme
$$J(2n, n)$$
).

 $q_{ii}^{k} \neq 0 \implies (\chi_{i}\chi_{i},\chi_{k}) \neq 0$

Problem (Bannai and Ito, p.130)

To what extent is the converse of Scott's theorem true?

A counterexample:

$$\mathsf{Ind}_{S_n imes S_n}^{S_{2n}}$$

(Johnson scheme J(2n, n)).

But this is imprimitive: $S_n \times S_n \leq S_n \wr S_2 \leq S_{2n}$.

 $q_{ii}^{k} \neq 0 \implies (\chi_{i}\chi_{i},\chi_{k}) \neq 0$

Problem (Bannai and Ito, p.130)

To what extent is the converse of Scott's theorem true?

A counterexample:

$$\mathsf{Ind}_{S_n \times S_n}^{S_{2n}}$$

(Johnson scheme J(2n, n)).

But this is imprimitive: $S_n \times S_n \leq S_n \wr S_2 \leq S_{2n}$. Is there a primitive counterexample?

$$q_{ij}^k = 0$$
 but $(\chi_i \chi_j, \chi_k)
eq 0$?

The primitive counterexample of the smallest degree is

$$G = PGL(2,11)$$
 acting on $PGL(2,11)/D_{20}$

of degree 66.

Eigenvalues of association schemes

Multiplicity-free permutation representation of a finite group G acting on a set X = G/H has centralizer algebra

$$\mathcal{A} = \langle A_0 = I, A_1, \dots, A_d
angle$$

 $\mathcal{V} = \mathbb{C}^X = L(X)$ decomposes as $\mathbb{C}[G]$ -module:
 $\mathcal{V} = \mathcal{V}_0 \oplus \mathcal{V}_1 \oplus \dots \oplus \mathcal{V}_d$

 V_0 =constant. A_i acts on V_j as a scalar:

$$\frac{1}{|H|}\sum_{g\in Ha_iH}\chi_j(g).$$

Eigenvalues of association schemes

Multiplicity-free permutation representation of a finite group G acting on a set X = G/H has centralizer algebra

$$\mathcal{A} = \langle A_0 = I, A_1, \ldots, A_d \rangle$$

Eigenvalues of A_i are

$$\{rac{1}{|\mathcal{H}|}\sum_{g\in\mathcal{H}a_{j}\mathcal{H}}\chi_{j}(g)\mid 0\leq j\leq d\}\subset\mathbb{Q}(\exprac{2\pi\sqrt{-1}}{e(G)}).$$

where e(G) is the exponent of G.

Question (Bannai and Ito, p.123)

Are there any association schemes in which eigenvalues of A_i 's are not all in a cyclotomic number field?

By the Kronecker–Weber theorem, this is equivalent to ask whether the Galois group of the splitting field of the characteristic polynomial of A_i is abelian.

Theorem (M. (1991), Coste–Gannon (1994))

If $q_{ij}^k \in \mathbb{Q}$, then eigenvalues of A_i 's are in a cyclotomic number field.

Unlike the converse to Scott's theorem, the question:

Question (Bannai and Ito, p.123)

Are there any association schemes in which eigenvalues of A_i 's are not all in a cyclotomic number field?

makes sense for non-commutative association schemes as well.

Splitting fields of association schemes

Let

$$\mathcal{A} = \langle \mathcal{A}_0 = \mathcal{I}, \mathcal{A}_1, \dots, \mathcal{A}_d \rangle$$

be an algebra spanned by disjoint (0, 1)-matrices.

- A is the centralizer of a multiplicity-free permutation representation, then the formula for spherical functions implies that eigenvalues of A_i's are cyclotomic.
- Bannai–Ito asks: the same holds if A is commutative (without group action)?
- A is the centralizer of a non-multiplicity-free permutation representation, then this is not true.

A. Ryba and S. Smith:

G = PGL(2, 11) acting on $PGL(2, 11)/D_8$

of degree 165 .

A. Ryba and S. Smith:

G = PGL(2, 11) acting on $PGL(2, 11)/D_8$

of degree 165 imprimitive.

$$q_{ij}^k = 0$$
 but $(\chi_i \chi_j, \chi_k) \neq 0$?

The primitive example of the smallest degree is

G = PGL(2, 11) acting on $PGL(2, 11)/D_{20}$

of degree 66.

$$\sqrt{3} = e^{\pi\sqrt{-1}/6} + e^{-\pi\sqrt{-1}/6}$$

$$\sqrt{3} = e^{\pi\sqrt{-1}/6} + e^{-\pi\sqrt{-1}/6}$$

 $\sqrt[4]{3} \notin$ cyclotomic field

A. Munemasa (Tohoku University)

association schemes

Hefei 2016 16 / 18

< ≣ > <

$$\sqrt{3} = e^{\pi\sqrt{-1}/6} + e^{-\pi\sqrt{-1}/6}$$

 $\sqrt[4]{3} \notin$ cyclotomic field

 A^2

lf

has an irrational eigenvalue, then A is likely to have a non-cyclotomic eigenvalue.

$$\sqrt{3} = e^{\pi\sqrt{-1}/6} + e^{-\pi\sqrt{-1}/6}$$

 $\sqrt[4]{3} \notin$ cyclotomic field

lf

$$A^2 - cI$$
 (distance-2 graph)

has an irrational eigenvalue, then A is likely to have a non-cyclotomic eigenvalue.

A. Ryba and S. Smith:

G = PGL(2, 11) acting on $PGL(2, 11)/D_{24}$

has $1 + \sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on 55 + 55 vertices.

A. Ryba and S. Smith:

G = PGL(2,11) acting on $PGL(2,11)/D_{24}$

has $1 + \sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on 55 + 55 vertices. $\implies 4 + \sqrt{5}$ is an eigenvalue of A^2

A. Ryba and S. Smith:

G = PGL(2, 11) acting on $PGL(2, 11)/D_{24}$

has $1 + \sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on 55 + 55 vertices. $\implies 4 + \sqrt{5}$ is an eigenvalue of A^2 $\implies \sqrt{4 + \sqrt{5}}$ is an eigenvalue of A

A. Ryba and S. Smith:

G = PGL(2, 11) acting on $PGL(2, 11)/D_{24}$

has $1 + \sqrt{5}$ as an eigenvalue, which is a bipartite half of a bipartite 3-regular graph (flag-transitive incidence structure) on 55 + 55 vertices. $\implies 4 + \sqrt{5}$ is an eigenvalue of A^2

 $\implies \sqrt{4 + \sqrt{5}} \text{ is an eigenvalue of } A$ $\implies 1 + \sqrt{4 + \sqrt{5}} \text{ is an eigenvalue of the line graph}$ (G acts transitively, imprimitively).

- The smallest primitive group with non-cyclotomic eigenvalue is $PSL(2, 19)/D_{20}$.
- The smallest (imprimitive) transitive group with non-cyclotomic eigenvalue is of degree 32 (due to classification of association schemes by Hanaki).
- Hanaki and Uno (2006). Even for a prime number of points, the question is unsettled.

Thank you for your attention!