
Group theoretic aspects of the theory of
association schemes

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

October 29, 2016
International Workshop on Algebraic Combinatorics

Anhui University

A. Munemasa (Tohoku University) association schemes Hefei 2016 1 / 18



Association schemes

Bannai and Ito, “Algebraic Combinatorics I” (1984).

P- and Q-polynomial schemes

→ Terwilliger
algebras

designs and codes (Delsarte theory)

→ SDP

spherical designs

→ Euclidean designs
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Permutation representations

association scheme ≈ multiplicity-free

permutation representation

⊂ ordinary representation theory

∃ inequivalent permutation representations
which are equivalent as representations

(like cospectral graphs)

ordinary representation → centralizer = algebra

permutation representation → combinatorial object
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Centralizer

Multiplicity-free permutation representation of a finite
group G acting on a set X → centralizer algebra has a
basis consisting of (0, 1)-matrices

A0 = I ,A1, . . . ,Ad with
d∑

i=0

Ai = J .

These matrices represent orbitals:

X × X =
d⋃

i=0

Ri (G -orbits).
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Association scheme

Since it is a basis of an algebra,

AiAj =
d∑

k=0

pkijAk . (1)

{A0 = I ,A1, . . . ,Ad} = {A>
0 = I ,A>

1 , . . . ,A
>
d }. (2)

This allows one to forget the group G to define an
association scheme: (X , {Ri}di=0); where we require the
matrices representing the partition {Ri}di=0 of X × X
satisfy (1) and (2).

multiplicity-free =⇒ commutative.
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Krein parameters qkij ≥ 0

Multiplicity-free permutation representation of a finite
group G acting on a set X has centralizer algebra

A = 〈A0 = I ,A1, . . . ,Ad〉

V = CX = L(X ) decomposes as C[G ]-module:

V = V0 ⊕ V1 ⊕ · · · ⊕ Vd

V0=constant. The orthogonal projections Ei : V → Vi

form another basis of A, so

Ei ◦ Ej =
1

|X |

d∑
i=0

qkijEk .
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Scott’s theorem

V = V0 ⊕ V1 ⊕ · · · ⊕ Vd ,

θ = χ0 + χ1 + · · ·+ χd permutation character

Ei : V → Vi : the orthogonal projection,

Ei ◦ Ej =
1

|X |

d∑
i=0

qkijEk .

Theorem (Scott (1977))

qkij 6= 0 =⇒ (χiχj , χk) 6= 0.
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qkij 6= 0 =⇒ (χiχj , χk) 6= 0

Problem (Bannai and Ito, p.130)
To what extent is the converse of Scott’s theorem true?

A counterexample:
IndS2nSn×Sn

(Johnson scheme J(2n, n)).

But this is imprimitive: Sn × Sn ≤ Sn o S2 ≤ S2n.
Is there a primitive counterexample?
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qkij = 0 but (χiχj , χk) 6= 0 ?

The primitive counterexample of the smallest degree is

G = PGL(2, 11) acting on PGL(2, 11)/D20

of degree 66.
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Eigenvalues of association schemes

Multiplicity-free permutation representation of a finite
group G acting on a set X = G/H has centralizer
algebra

A = 〈A0 = I ,A1, . . . ,Ad〉
V = CX = L(X ) decomposes as C[G ]-module:

V = V0 ⊕ V1 ⊕ · · · ⊕ Vd

V0=constant. Ai acts on Vj as a scalar:

1

|H |
∑

g∈HaiH

χj(g).
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Eigenvalues of association schemes

Multiplicity-free permutation representation of a finite
group G acting on a set X = G/H has centralizer
algebra

A = 〈A0 = I ,A1, . . . ,Ad〉
Eigenvalues of Ai are

{ 1

|H |
∑

g∈HaiH

χj(g) | 0 ≤ j ≤ d} ⊂ Q(exp
2π

√
−1

e(G )
).

where e(G ) is the exponent of G .
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Splitting fields of association schemes

Question (Bannai and Ito, p.123)
Are there any association schemes in which eigenvalues
of Ai ’s are not all in a cyclotomic number field?

By the Kronecker–Weber theorem, this is equivalent to
ask whether the Galois group of the splitting field of the
characteristic polynomial of Ai is abelian.

Theorem (M. (1991), Coste–Gannon (1994))

If qkij ∈ Q, then eigenvalues of Ai ’s are in a cyclotomic
number field.
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Unlike the converse to Scott’s theorem, the question:

Question (Bannai and Ito, p.123)
Are there any association schemes in which eigenvalues
of Ai ’s are not all in a cyclotomic number field?

makes sense for non-commutative association schemes as
well.
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Splitting fields of association schemes

Let
A = 〈A0 = I ,A1, . . . ,Ad〉

be an algebra spanned by disjoint (0, 1)-matrices.
1 A is the centralizer of a multiplicity-free

permutation representation, then the formula for
spherical functions implies that eigenvalues of Ai ’s
are cyclotomic.

2 Bannai–Ito asks: the same holds if A is
commutative (without group action)?

3 A is the centralizer of a non-multiplicity-free
permutation representation, then this is not true.
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Non-multiplicity-free permutation group

A. Ryba and S. Smith:

G = PGL(2, 11) acting on PGL(2, 11)/D8

of degree 165 .

qkij = 0 but (χiχj , χk) 6= 0?

The primitive example of the smallest degree is

G = PGL(2, 11) acting on PGL(2, 11)/D20

of degree 66.
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Non-multiplicity-free permutation group

A. Ryba and S. Smith:

G = PGL(2, 11) acting on PGL(2, 11)/D8

of degree 165 imprimitive.

qkij = 0 but (χiχj , χk) 6= 0?

The primitive example of the smallest degree is

G = PGL(2, 11) acting on PGL(2, 11)/D20

of degree 66.
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Non-cyclotomic numbers

√
3 = eπ

√
−1/6 + e−π

√
−1/6

4
√
3 /∈ cyclotomic field

If
A2

has an irrational eigenvalue, then A is likely to have a
non-cyclotomic eigenvalue.
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Non-cyclotomic numbers

√
3 = eπ

√
−1/6 + e−π

√
−1/6

4
√
3 /∈ cyclotomic field

If
A2 − cI (distance-2 graph)

has an irrational eigenvalue, then A is likely to have a
non-cyclotomic eigenvalue.
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Non-multiplicity-free permutation group

A. Ryba and S. Smith:

G = PGL(2, 11) acting on PGL(2, 11)/D24

has 1 +
√
5 as an eigenvalue, which is a bipartite half of

a bipartite 3-regular graph (flag-transitive incidence
structure) on 55 + 55 vertices.

=⇒ 4 +
√
5 is an eigenvalue of A2

=⇒
√

4 +
√
5 is an eigenvalue of A

=⇒ 1 +
√

4 +
√
5 is an eigenvalue of the line graph

(G acts transitively, imprimitively).
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Primitive counterexample

1 The smallest primitive group with non-cyclotomic
eigenvalue is PSL(2, 19)/D20.

2 The smallest (imprimitive) transitive group with
non-cyclotomic eigenvalue is of degree 32 (due to
classification of association schemes by Hanaki).

3 Hanaki and Uno (2006). Even for a prime number
of points, the question is unsettled.

Thank you for your attention!
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