Complementary Ramsey numbers, graph factorizations and Ramsey graphs

Akihiro Munemasa

Tohoku University

joint work with Masashi Shinohara
May 30, 2017, Tohoku University 1st Tohoku-Bandung Bilateral Workshop: Extremal Graph Theory, Algebraic Graph Theory and Mathematical Approach to Network Science

Ramsey Numbers

For a graph G,
$\alpha(G)=$ independence number $=\max \{\#$ independent set $\}$ $\omega(G)=$ clique number $=\max \{\#$ clique $\}=\alpha(\bar{G})$.

$$
\omega\left(C_{5}\right)=\alpha\left(C_{5}\right)=2 .
$$

$\forall G$ with 6 vertices, $\omega(G) \geq 3$ or $\alpha(G) \geq 3$.
These facts can be conveniently described by the Ramsey number:

$$
R(3,3)=6
$$

The smallest number of vertices required to guarantee $\alpha \geq 3$ or $\omega \geq 3$ (precise definition in the next slide).

Ramsey Numbers and a Generalization

The Ramsey number $R\left(m_{1}, m_{2}\right)$ is defined as:

```
\(R\left(m_{1}, m_{2}\right)\)
    \(=\min \left\{n| | V(G) \mid=n \Longrightarrow \omega(G) \geq m_{1}\right.\) or \(\left.\alpha(G) \geq m_{2}\right\}\)
    \(=\min \left\{n| | V(G) \mid=n \Longrightarrow \omega(G) \geq m_{1}\right.\) or \(\left.\omega(\bar{G}) \geq m_{2}\right\}\)
    \(=\min \left\{n| | V(G) \mid=n \Longrightarrow \alpha(\bar{G}) \geq m_{1}\right.\) or \(\left.\alpha(G) \geq m_{2}\right\}\)
```

A graph with n vertices defines a partition of $\boldsymbol{E}\left(\boldsymbol{K}_{n}\right)$ into 2 parts, "edges" and "non-edges".

Generalized Ramsey numbers $R\left(m_{1}, m_{2}, \ldots, m_{k}\right)$ can be defined if we consider partitions of $\boldsymbol{E}\left(\boldsymbol{K}_{n}\right)$ into k parts, i.e., edge-colorings.

Let $[n]=\{1,2, \ldots, n\}$, and $E\left(K_{n}\right)=\binom{[n]}{2}$. The set of k-edge-coloring of \boldsymbol{K}_{n} is denoted by $C(n, k)$:

$$
C(n, k)=\left\{f \mid f: E\left(K_{n}\right) \rightarrow[k]\right\} .
$$

We abbreviate

$$
\begin{aligned}
& \omega_{i}(f)=\omega\left([n], f^{-1}(i)\right), \quad \alpha_{i}(f)=\alpha\left([n], f^{-1}(i)\right) . \\
& R\left(m_{1}, \ldots, m_{k}\right) \\
& =\min \left\{n \mid \forall f \in C(n, k), \exists i \in[k], \omega_{i}(f) \geq m_{i}\right\} \\
& \bar{R}\left(m_{1}, \ldots, m_{k}\right) \\
& =\min \left\{n \mid \forall f \in C(n, k), \exists i \in[k], \alpha_{i}(f) \geq m_{i}\right\}
\end{aligned}
$$

The last one is called the complemtary Ramsey number.

$$
\bar{R}\left(m_{1}, m_{2}\right)=R\left(m_{2}, m_{1}\right)=R\left(m_{1}, m_{2}\right) .
$$

So we focus on the case $k \geq 3$. Also we assume $m_{i} \geq 3$.

History

- We submitted to our work to a conference proceedings, and received positive reviews, in 2013.
- We uploaded our paper arXiv:1406.2050.
- David Conlon notified to us, that the concept was introduced already by Erdős-Hajnal-Rado (1965), some results were proved by Erdős-Szemerédi (1972).
- Chung-Liu (1978), " d-chromatic Ramsey numbers",
$\bar{R}\left(m_{1}, \ldots, m_{k}\right)=R_{k-1}^{k}\left(K_{m_{1}}, \ldots, K_{m_{k}}\right)$. $\bar{R}(4,4,4)=10$.
- Harborth-Moller (1999), "weakened Ramsey numbers", $\bar{R}(m, \ldots, m)=R_{k-1}^{k}\left(K_{m}\right)$.
- Xu-Shao-Su-Li (2009), "multigraph Ramsey numbers",

$$
\bar{R}\left(m_{1}, \ldots, m_{k}\right)=f^{(k-1)}\left(m_{1}, \ldots, m_{k}\right) . \bar{R}(5,5,5) \geq 20
$$

Geometric Application

Given a metric space ($\boldsymbol{X}, \boldsymbol{d}$) and a positive integer k, classify subsets \boldsymbol{Y} of \boldsymbol{X} with the largest size subject to

$$
|\{d(x, y) \mid x, y \in Y, x \neq y\}| \leq k .
$$

For example, $\boldsymbol{X}=\mathbb{R}^{n}, \boldsymbol{k}=1 \Longrightarrow$ regular simplex.
The method is by induction on k.
The distance function \boldsymbol{d} defines a k-edge-coloring of the complete graph on \boldsymbol{Y}.

If

$$
\bar{R}(\underbrace{m, m, \ldots, m}_{k}) \leq|Y|
$$

then \boldsymbol{Y} must contain an m-subset having only $(k-1)$ distances (so we can expect to use already obtained results for $k-1$).

Einhorn and Schoenberg (1966)

Conjecture

The vertices of the regular icosahedron is the only 12 -point 3 -distance set in \mathbb{R}^{3}.

- Claimed to be proven by Shinohara, arXiv:1309.2047.
- It would simplify the proof if we had $\bar{R}(5,5,5)=12$, but this was not the case.
- Xu-Shao-Su-Li (2009), $\bar{R}(5,5,5) \geq 20$.
- What is $\bar{R}(5,5,5)$? It should be easier than determining $\bar{R}(5,5)=\boldsymbol{R}(5,5)$, which is known to satisfy

$$
43 \leq R(5,5) \leq 48
$$

In fact,
$R(m, m)=\bar{R}(m, m) \geq \bar{R}(m, m, m) \geq \bar{R}(m, m, m, m) \cdots$.

$\bar{R}(3,3,3)=5$ by factorization

- \boldsymbol{K}_{4} has a 3 -edge-coloring f into $2 \boldsymbol{K}_{2}$ (a 1-factorization). Then $\alpha_{i}(f)=2$ for $i=1,2,3$. This implies

$$
\bar{R}(3,3,3)>4 .
$$

The argument can be generalized to give:

Theorem

If $\boldsymbol{K}_{m n}$ is factorable into k copies of $n \boldsymbol{K}_{\boldsymbol{m}}$, then $\bar{R}(\underbrace{n+1, \ldots, n+1}_{k})=m n+1$.

Setting $m=n=2$ and $k=3$, we obtain $\bar{R}(3,3,3)=5$.

Factorizations

Theorem

If $\boldsymbol{K}_{m n}$ is factorable into k copies of $n \boldsymbol{K}_{\boldsymbol{m}}$, then
$\bar{R}(\underbrace{n+1, \ldots, n+1}_{k})=m n+1$.

- Setting $m=3, n=2 t+1, k=3 t+1$, the existence of a Kirkman triple system in $\boldsymbol{K}_{3 n}$ implies

$$
\bar{R}(\underbrace{2 t+2, \ldots, 2 t+2}_{3 t+1})=6 t+4 .
$$

- Harborth-Möller (1999): Setting $m=n, k=n+1$, if $n-1$ MOLS of order n exist, then

$$
\bar{R}(\underbrace{n+1, \ldots, n+1}_{n+1})=n^{2}+1 .
$$

The converse of the last statement also holds.

Ramsey (s, t)-graph

A graph G is said to be a Ramsey (s, t)-graph if

$$
\omega(G)<s \text { and } \alpha(G)<t .
$$

We write $\boldsymbol{G} \subset \boldsymbol{H}$ if \boldsymbol{H} is an edge-subgraph of \boldsymbol{G}, and write $(V(G), E(G) \backslash E(H))=\boldsymbol{G}-\boldsymbol{H}$.

Theorem

For $m_{1}, m_{2}, m_{3}, n \geq 2$, the following are equivalent.
(i) $\bar{R}\left(m_{1}, m_{2}, m_{3}\right) \leq n$,
(ii) for any two Ramsey ($\boldsymbol{m}_{1}, \boldsymbol{m}_{2}$)-graphs \boldsymbol{G} and \boldsymbol{H} on the vertex set $[\boldsymbol{n}]$ such that $\boldsymbol{G} \supset \boldsymbol{H}$, one has $\boldsymbol{\alpha}(\boldsymbol{G}-\boldsymbol{H}) \geq \boldsymbol{m}_{3}$.

Small complementary Ramsey numbers

Chung-Liu (1978):

\boldsymbol{k}	3	4	5	6	7	8
$\overline{\boldsymbol{R}}(\boldsymbol{k}, 3,3)$	5	5	5	6	\cdots	\cdots
$\overline{\boldsymbol{R}}(\boldsymbol{k}, 4,3)$	5	7	8	8	9	\cdots
$\overline{\boldsymbol{R}}(\boldsymbol{k}, \mathbf{5}, \boldsymbol{3})$	5	8	9	11	12	12

and

$$
\bar{R}(k, 5,3)= \begin{cases}13 & \text { if } 9 \leq k \leq 13 \\ 14 & \text { if } k \geq 14\end{cases}
$$

Small complementary Ramsey numbers

We abbreviate

$$
\bar{R}(m ; k)=\bar{R}(\underbrace{m, \ldots, m}_{k}) .
$$

\boldsymbol{k}	3	4	5	6	7	8	9	10	$11 \cdots 15$	16
$\overline{\boldsymbol{R}}(\mathbf{3} ; \boldsymbol{k})$	5	3	\cdots							
$\overline{\boldsymbol{R}}(\mathbf{4} \boldsymbol{;})$	10	10	7	5	4	\cdots				
$\overline{\boldsymbol{R}}(\mathbf{5} ; \boldsymbol{k})$	$?$	$?$	17	10	9	6	6	6	$5 \cdots$	
$\overline{\boldsymbol{R}}(\mathbf{6} ; \boldsymbol{k})$	$?$	$?$	$?$	26	16	11	11	8	$7 \cdots 7$	6

Thank you very much for your attention!

