Butson-Hadamard matrices in association schemes of class 6 on Galois rings of characteristic 4

Akihiro Munemasa
Tohoku University
(joint work with Takuya Ikuta)

July 17, 2017
Workshop on Group Theory and Algebraic Combinatorics
Novosibirsk State University
About this talk

Coherent Configuration ← Permutation Group
Association Scheme ← Transitive Permutation Group
Schur Ring ← Transitive Permutation Group with Regular Subgroup

This is a continuation of my talk

“Amorphous association schemes over Galois rings of characteristic 4”

at Vladimir, Russia in August 1991.

Common theme: Construction of an association scheme from Galois rings of characteristic 4, in terms of a Schur ring.

Related work: Evdokimov-Ponomarenko: Schur rings over a Galois ring
Complex Hadamard matrices

An $n \times n$ matrix $H = (h_{ij})$ is called a complex Hadamard matrix if

$$HH^* = nI \quad \text{and} \quad |h_{ij}| = 1 \quad (\forall i, j).$$

It is called a Butson-Hadamard matrix if all h_{ij} are roots of unity.
It is called a (real) Hadamard matrix if all h_{ij} are ± 1.

The 5th workshop on Real and Complex Hadamard Matrices and Applications, 10–14 July, 2017, Budapest, aimed at

1. The Hadamard conjecture: a (real) Hadamard matrix exists for every order which is a multiple of 4 (yes for order ≤ 664).
2. Complete set of mutually unbiased bases (MUB) exists for non-prime power dimension?
Given a positive integer n, does there exist complex Hadamard matrices H_1, \ldots, H_n of order n such that

$$\frac{1}{\sqrt{n}} H_i H_j^*$$

is a complex Hadamard matrix for all $i \neq j$?

Yes for $n =$ prime power. Unknown for all other n.

An equivalent problem is orthogonal decomposition of the Lie algebra $\mathfrak{sl}(n, \mathbb{C})$ by Cartan subalgebras, as formulated independently by Kostrikin-Kostrikin-Ufnarowski (1981).

Mutually unbiased bases
For real Hadamard matrices:

- Goethals-Seidel (1970), regular symmetric Hadamard matrices with constant diagonal are equivalent to certain strongly regular graphs (symmetric association schemes of class 2).
- Delsarte (1973), skew Hadamard matrices are equivalent to nonsymmetric association schemes of class 2.

For complex Hadamard matrices (or more generally “inverse-orthogonal”, or “Type II” matrices),

- Chan-Godsil (2010)
- Ikuta-Munemasa (2015)
Let G be a finite permutation group acting on a finite set X. From the set of orbits of $X \times X$, one defines adjacency matrices

$$A_0, A_1, \ldots, A_d$$

with

$$\sum_{i=0}^{d} A_i = J$$

(all-one matrix).

Then the linear span $\langle A_0, A_1, \ldots, A_d \rangle$ is closed under multiplication and transposition (→ coherent algebra, coherent configuration).

If G acts transitively, we may assume $A_0 = I$ (→ Bose-Mesner algebra of an association scheme).

If G contains a regular subgroup H, we may identify X with H, $A_i \leftrightarrow T_i \subseteq H$, and

$$H = \bigcup_{i=0}^{d} T_i, \quad T_0 = \{1_H\}, \quad \mathbb{C}[H] \supseteq \langle \sum_{g \in T_i} g \mid 0 \leq i \leq d \rangle.$$
Schur rings

\[H = \bigcup_{i=0}^{d} T_i, \quad T_0 = \{1_H\}, \]

\[\mathbb{C}[H] \supseteq A = \langle \sum_{g \in T_i} g \mid 0 \leq i \leq d \rangle \quad \text{(subalgebra)}. \]

\(A \) is called a **Schur ring** if, in addition

\[\{T_i^{-1} \mid 0 \leq i \leq d\} = \{T_i \mid 0 \leq i \leq d\}, \]

where

\[T^{-1} = \{t^{-1} \mid t \in T\} \quad \text{for } T \subseteq H. \]

Examples: \(AGL(1, q) > G > H = GF(q) \) (cyclotomic).
AGL(1, q) > G > H = GF(q) (cyclotomic)

More generally,

\[R : R^\times > G > H = R : \text{ a ring}. \]

In Ito-Munemasa-Yamada (1991), we wanted to construct an association scheme with eigenvalue a multiple of \(i = \sqrt{-1} \). Not possible with \(R = GF(q) \).

\[
\begin{align*}
GF(p) & \rightarrow GF(p^e) \\
\mathbb{Z}_{p^n} & \rightarrow GR(p^n, e)
\end{align*}
\]

A Galois ring \(R = GR(p^n, e) \) is a commutative local ring with characteristic \(p^n \), whose quotient by the maximal ideal \(pR \) is \(GF(p^e) \).
Let $R = GR(p^n, e)$ be a Galois ring. Then

$$|R| = p^{ne},$$

pR is the unique maximal ideal,

$$|R^\times| = |R \setminus pR| = p^{ne} - p^{(n-1)e} = (p^e - 1)p^{(n-1)e},$$

$R^\times = \mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{p^e - 1}, \quad |\mathcal{U}| = p^{(n-1)e}.$
Structure of $\text{GR}(4, e)$

Let $R = \text{GR}(4, e)$ be a Galois ring of characteristic 4. Then

$$|R| = 4^e,$$
$$2R$$ is the unique maximal ideal,
$$|R^\times| = |R \setminus 2R| = 4^e - 2^e = (2^e - 1)2^e,$$
$$R^\times = \mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{2^e-1},$$
$$\mathcal{U} = 1 + 2R \cong \mathbb{Z}_2^e.$$

To construct a Schur ring, we need to partition

$$R = R^\times \cup 2R$$

(into even smaller parts). In Ito-Munemasa-Yamada (1991), the orbits of a subgroup of the form $\mathcal{T} \times \mathcal{U}_0 < R^\times$ were used.
\(U_0 \) as a subgroup of \(U \) of index 2

\[
R = GR(4, e),
\]
\(2R \) is the unique maximal ideal,
\(R^\times = T \times U, \quad T \cong \mathbb{Z}_{2^e-1}, \)
\(U = 1 + 2R \cong \mathbb{Z}_2^e \quad \text{the principal unit group.} \)

There is a bijection

\[
GF(2^e) = R/2R \leftrightarrow T \cup \{0\} \rightarrow 2R \rightarrow U, \\
a + 2R \leftrightarrow a \rightarrow 2a \rightarrow 1 + 2a.
\]

So the “trace-0” additive subgroup of \(GF(2^e) \) is mapped to \(P_0 \) and \(U_0 \) with \(|2R : P_0| = |U : U_0| = 2 \).
Assume \(e \) is odd. Then \(1 \notin \text{“trace-0” subgroup} \), so \(2 \notin P_0 \) and \(-1 = 3 \notin U_0 \).
Partition of $R = GR(4, e)$

Assume e is odd. Then $2 \notin \mathcal{P}_0$, $-1 \notin \mathcal{U}_0$.

$$R^\times = \mathcal{T} \times \mathcal{U}, \quad \mathcal{T} \cong \mathbb{Z}_{2e-1},$$

$$2R = \mathcal{P}_0 \cup (2 + \mathcal{P}_0),$$

$$\mathcal{U} = \mathcal{U}_0 \cup (-\mathcal{U}_0).$$

Then \mathcal{U}_0 acts on R, and the orbit decomposition is

$$R = \left(\bigcup_{t \in \mathcal{T}} t\mathcal{U}_0 \cup (-t\mathcal{U}_0) \right) \cup \left(\bigcup_{a \in 2R} \{a\} \right)$$

$$= \mathcal{U}_0 \cup (-\mathcal{U}_0) \cup \left(\bigcup_{t \in \mathcal{T} \setminus \{1\}} t\mathcal{U}_0 \right) \cup \left(\bigcup_{t \in \mathcal{T} \setminus \{1\}} (-t\mathcal{U}_0) \right)$$

$$\cup \{0\} \cup (\mathcal{P}_0 \setminus \{0\}) \cup (2 + \mathcal{P}_0).$$
$R \setminus \{0\}$ is partitioned into 6 parts

\[
\begin{align*}
T_0 &= \{0\}, \\
T_1 &= \bigcup_{t \in T \setminus \{1\}} t\mathcal{U}_0, \\
T_2 &= \bigcup_{t \in T \setminus \{1\}} (-t\mathcal{U}_0), \\
T_3 &= \mathcal{U}_0, \\
T_4 &= -\mathcal{U}_0, \\
T_5 &= \mathcal{P}_0 \setminus \{0\}, \\
T_6 &= 2 + \mathcal{P}_0.
\end{align*}
\]

Theorem (Ikuta-M., 2017+)

1. \{\(T_0, T_1, \ldots, T_6\)\} defines a Schur ring on \(GR(4, e)\),

2. The matrices

\[
\begin{align*}
A_0 + \epsilon_1 i(A_1 - A_2) + \epsilon_2 i(A_3 - A_4) + A_5 + A_6, \\
A_0 + \epsilon_1 i(A_1 - A_2) + \epsilon_2 (A_3 + A_4) + A_5 - A_6
\end{align*}
\]

are the only hermitian complex Hadamard matrices in its Bose-Mesner algebra, where \(\epsilon_1, \epsilon_2 \in \{\pm 1\}\).
Example

\[
H = A_0 + i(A_1 + A_3) - i(A_2 + A_4) + (A_5 + A_6) \\
\in \langle A_0, A_1 + A_3, A_2 + A_4, A_5 + A_6 \rangle.
\]

Smaller Schur ring defined by

\[
T_0 = \{0\}, \\
T_1 \cup T_3 = \bigcup_{t \in \mathcal{T}} t\mathcal{U}_0, \\
T_2 \cup T_4 = \bigcup_{t \in \mathcal{T}} (-t\mathcal{U}_0), \\
T_5 \cup T_6 = 2R \setminus \{0\}.
\]

This defines a nonsymmetric amorphous association scheme of Latin square type $L_{2^e,1}(2^e)$ in the sense of Ito-Munemasa-Yamada (1991).
Theorem (Ikuta-M. (2017+))

Let

\[A_0 + w_1 A_1 + \overline{w_1} A_1^\top + w_3 A_3 \]

be a hermitian complex Hadamard matrix contained in the Bose-Mesner algebra \(\mathcal{A} = \langle A_0, A_1, A_2 = A_1^\top, A_3 \rangle \) of a 3-class nonsymmetric association scheme. Then \(\mathcal{A} \) is amorphous of Latin square type \(L_{a,1}(a) \), and \(w_1 = \pm i, w_3 = 1 \).

This can be regarded as a nonsymmetric analogue of

Theorem (Goethals-Seidel (1970))

Let

\[H = A_0 + A_1 - A_2 \]

be a (real) Hadamard matrix contained in the Bose-Mesner algebra \(\mathcal{A} = \langle A_0, A_1, A_2 \rangle \) of a 2-class symmetric association scheme. Then \(\mathcal{A} \) is (amorphous) of Latin or negative Latin square type.