A matrix approach to Yang multiplication, I

Akihiro Munemasa
Tohoku University

July 24, 2017
International Conference and
PhD-Master Summer School
"Groups and Graphs, Metrics and Manifolds"
Ural Federal University

About this talk

Part I:

- Hadamard's inequality
- Hadamard matrices and generalizations
- Constructions of Hadamard matrices
- Quaternions and Lagrange's identity
- Yang's generalization of Lagrange's identity
- Yang's theorem

Part II:

- Complementary sequences
- A Laurent polynomial associated to a sequence
- A two-variable Laurent polynomial associated to a matrix
- A new proof of Yang's theorem using matrices

Hadamard's inequality for an $\boldsymbol{n} \times \boldsymbol{n}$ matrix \boldsymbol{X}

$$
\operatorname{det}(X)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

This is a polynomial function in \boldsymbol{n}^{2} variables $\boldsymbol{x}_{\boldsymbol{i j}}$.
The function det : $[-1,1]^{n^{2}} \rightarrow \mathbb{R}$ takes maxima and minima, but they are not fully understood.
This is not a problem in multivariable calculus, rather, a combinatorial problem. det is linear in each variable,
\Longrightarrow maxima and minima occur at end points
\Longrightarrow enough to consider

$$
\operatorname{det}:\{-1,1\}^{n^{2}} \rightarrow \mathbb{Z}
$$

$X \in\{-1,1\}^{n \times n}$

Let $\boldsymbol{G}=\boldsymbol{X} \boldsymbol{X}^{\top}$. Then $G_{i i}=n$. Let

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0
$$

be the eigenvalues of \boldsymbol{G}. Then by the arithmetic-geometric mean,

$$
\begin{aligned}
\operatorname{det}(X)^{2}=\operatorname{det} G=\prod_{i=1}^{n} \lambda_{i} & \leq\left(\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\right)^{n} \\
& =\left(\frac{1}{n} \operatorname{tr} G\right)^{n}=\left(\frac{1}{n} n^{2}\right)^{n}=n^{n} .
\end{aligned}
$$

$|\operatorname{det} X| \leq n^{n / 2} \quad$ with equality iff $G=n I$,
or equivalently, rows of \boldsymbol{X} are pairwise orthogonal.

Hadamard matrices

A matrix $\boldsymbol{H} \in\{-1,1\}^{n \times n}$ is called a Hadamard matrix if $\boldsymbol{H} \boldsymbol{H}^{\top}=\boldsymbol{n I}$.
Examples (Sylvester matrices):

$$
[1], \quad\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \otimes\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \ldots
$$

For $n=3$:

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
\pm 1 & \pm 1 & \pm 1
\end{array}\right]
$$

impossible. In fact, $4 \mid n$ is necessary:

$$
\left[\begin{array}{cccc}
1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 & 1 \cdots 1 \\
1 \cdots 1 & 1 \cdots 1 & -1 \cdots-1 & -1 \cdots-1 \\
1 \cdots 1 & -1 \cdots-1 & 1 \cdots 1 & -1 \cdots-1
\end{array}\right]
$$

The Hadamard conjecture

If a Hadamard matrix of order n exists, then $n=1,2$ or $4 \mid n$. Conversely,

Conjecture

$4 \mid \boldsymbol{n} \Longrightarrow \exists$ Hadamard matrix of order \boldsymbol{n}.
Before proceeding further into this combinatorial problem, let me digress into topology.

Complex Hadamard matrices

Instead of

$$
\operatorname{det}:\{-1,1\}^{n^{2}} \rightarrow \mathbb{Z}
$$

consider

$$
\operatorname{det}:\left(S^{1}\right)^{n^{2}} \rightarrow \mathbb{C}
$$

where $S^{1}=\{z \in \mathbb{C} \mid z \bar{z}=1\}$. With $G=X X^{*}, X \in\left(S^{1}\right)^{n \times n}$,

$$
\begin{aligned}
|\operatorname{det}(X)|^{2}=\operatorname{det} G=\prod_{i=1}^{n} \lambda_{i} & \leq\left(\frac{1}{n} \sum_{i=1}^{n} \lambda_{i}\right)^{n} \\
& =\left(\frac{1}{n} \operatorname{tr} G\right)^{n}=\left(\frac{1}{n} n^{2}\right)^{n}=n^{n}
\end{aligned}
$$

Equality holds iff rows of \boldsymbol{X} are pairwise orthogonal.

Complex Hadamard matrices

A matrix $\boldsymbol{H} \in\left(\boldsymbol{S}^{\mathbf{1}}\right)^{\boldsymbol{n} \times \boldsymbol{n}}$ is called a complex Hadamard matrix if $\boldsymbol{H} \boldsymbol{H}^{*}=\boldsymbol{n} \boldsymbol{I}$.
Examples: (ordinary) Hadamard matrices, the character tables of abelian groups.
What is
$\left\{\boldsymbol{H} \in\left(\boldsymbol{S}^{\mathbf{1}}\right)^{n \times n} \mid \boldsymbol{H} \boldsymbol{H}^{*}=\boldsymbol{n} \boldsymbol{I}\right\} /\binom{$ left and right multiplication }{ by monomial matrices },
for $n \geq 6$?
The 5th workshop on Real and Complex Hadamard Matrices and Applications, 10-14 July, 2017, Budapest.

Inverse orthogonal matrices and spin models

A matrix $\boldsymbol{H} \in\left(\mathbb{C}^{\times}\right)^{n \times n}$ is called an inverse-orthogonal matrix if $\boldsymbol{H}\left(\boldsymbol{H}^{(-1)}\right)^{\top}=\boldsymbol{n I}$, where

$$
\boldsymbol{H}^{(-1)}=\text { elementwise inverse of } \boldsymbol{H} .
$$

Complex Hadamard \Longrightarrow inverse-orthogonal. Jones (1989) defined a "spin model" which is a special class of inverse-orthogonal matrices.
Jaeger (1992) "Strongly regular graphs and spin models. . .": Higman-Sims (sporadic finite simple group \rightarrow strongly regular graph \rightarrow spin model).
Jaeger (1996), Jaeger-Matsumoto-Nomura (1998): spin models \rightarrow association schemes

Back to real Hadamard matrices

Conjecture

$4 \mid n \Longrightarrow \exists$ Hadamard matrix of order n.

- If $\boldsymbol{H}_{\mathbf{1}}$ and $\boldsymbol{H}_{\mathbf{2}}$ are Hadamard matrices, then so is $\boldsymbol{H}_{\mathbf{1}} \otimes \boldsymbol{H}_{\mathbf{2}}$.
- In particular, for every $\boldsymbol{n} \in \mathbb{N}$, there exists a Hadamard matrix of order 2^{n}.
- Paley (1933): if $p \equiv 3(\bmod 4)$ is a prime, then there exists a skew Hadamard matrix \boldsymbol{H} of order $p+1$ such that $H+H^{\top}=2 I$.

Yet we do not know
$\liminf _{N \rightarrow \infty} \frac{\mid\{n \mid 1 \leq n \leq N, \exists \text { Hadamard matrix of order } n\} \mid}{N}>0$.

Symmetric regular Hadamard matrices

A Hadamard matrix is said to be regular if it has constant row and column sums.

Theorem (Goethals-Seidel (1970))

Symmetric regular Hadamard matrices with constant diagonal are equivalent to strongly regular graphs with Latin square or negative Latin square parameters:

$$
\begin{aligned}
(v, k, \lambda, \mu)= & \left(4 m^{2}, m(2 m \pm 1)\right. \\
& (m \pm 1)(m \pm 2) \mp 2 m-2, m(m \pm 1))
\end{aligned}
$$

Circulant Hadamard matrices

Cyclic symmetry:

$$
\left[\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right]
$$

is a circulant Hadamard matrix.

Conjecture

There is no circulant Hadamard matrix of order $n>4$.

2×2 block matrices, dihedral group

$$
\begin{gathered}
{\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right] \rightarrow\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] ? \quad\left(A(-B)^{\top}+B A^{\top}=0 ?\right)} \\
{\left[\begin{array}{cc}
A & B R \\
-B R & A
\end{array}\right]} \\
\begin{array}{cl}
A(-B R)^{\top}+(B R) A^{\top} \\
=-A R B^{\top}+B R A^{\top} & \text { if } R=R^{\top}, \\
=-A B R+B A R & \text { if } B R=R B^{\top}, A R=R A^{\top} \\
=0 & \text { if } A B=B A .
\end{array}
\end{gathered}
$$

Goethals-Seidel (1970)

Let
$\boldsymbol{H}=\left[\begin{array}{cccc}A & B R & C R & D R \\ -B R & A & -D^{\top} R & C^{\top} R \\ -C R & D^{\top} R & A & -B^{\top} R \\ -D R & -C^{\top} R & B^{\top} R & A\end{array}\right], \quad \boldsymbol{R}=\left[\begin{array}{cc} & \\ & \\ & \cdot \\ & \cdot \\ 1 & \\ \hline\end{array}\right]$
If A, B, C, D are circulant and

$$
A A^{\top}+B B^{\top}+C C^{\top}+D D^{\top}=4 n I
$$

then rows of \boldsymbol{H} are pairwise orthogonal.
A Hadamard matrix of order $4 n$ has $(4 n)^{2}$ entries, while four circulant matrices A, B, C, D can be specified only by a total of $4 n$ entries.

Quaterninons

Goethals-Seidel array:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
A & B R & C R & D R \\
-B R & A & -D^{\top} R & C^{\top} R \\
-C R & D^{\top} R & A & -B^{\top} R \\
-D R & -C^{\top} R & B^{\top} R & A
\end{array}\right] } \\
Y= & {\left[\begin{array}{cccc}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right]=a 1+b i+c j+d k } \\
i^{2}= & j^{2}=k^{2}=-1, \\
i j= & -j i=k, j k=-k j=i, k i=-i k=j
\end{aligned}
$$

$\operatorname{det} Y=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2}=|a 1+b i+c j+d k|^{4}$.

Quaterninons

$$
\begin{aligned}
& \mathbb{H}=\{a 1+b i+c j+d k \mid a, b, c, d \in \mathbb{R}\} \\
& i^{2}=j^{2}=k^{2}=-1, \\
& i j=-j i=k, j k=-k j=i, k i=-i k=j
\end{aligned}
$$

For $\boldsymbol{Y}=\boldsymbol{a} 1+\boldsymbol{b i}+\boldsymbol{c} \boldsymbol{j}+\boldsymbol{d} \boldsymbol{k} \in \mathbb{H}$, define the norm by

$$
|Y|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} .
$$

Then

$$
\begin{aligned}
|Y Z| & =|Y||Z| \quad(Y, Z \in \mathbb{H}) \\
Y & =a 1+b i+c j+d k \\
Z & =e 1+f i+g j+h k \\
Y Z & =q 1+r i+s j+t k, \\
q^{2}+r^{2}+s^{2}+t^{2} & =\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(e^{2}+f^{2}+g^{2}+h^{2}\right)
\end{aligned}
$$

Lagrange's identity

Hamilton (1843); Lagrange (1770)

$$
\begin{aligned}
Y & =a 1+b i+c j+d k \\
Z & =e 1+f i+g j+h k \\
Y Z & =q 1+r i+s j+t k
\end{aligned}
$$

$$
q^{2}+r^{2}+s^{2}+t^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(e^{2}+f^{2}+g^{2}+h^{2}\right)
$$

$$
\begin{aligned}
& q=a e-b f-c g-d h \\
& r=a f+b e+c h-d g \\
& s=a g-b h+c e+d f \\
& t=a h+b g-c f+d e
\end{aligned}
$$

Every natural number is a sum of four integer squares.

Generalization of Lagrange identity by Yang (1983)

$$
\begin{aligned}
q^{2}+r^{2}+s^{2}+t^{2} & =\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(e^{2}+f^{2}+g^{2}+h^{2}\right) \\
& =a e-b f-c g-d h \\
r & =a f+b e+c h-d g \\
s & =a g-b h+c e+d f \\
t & =a h+b g-c f+d e
\end{aligned}
$$

In a commutative ring with automorphism $*$ satisfying $*^{2}=\mathrm{id}$, replace \boldsymbol{x}^{2} by $\boldsymbol{x} \boldsymbol{x}^{*}$ for $\boldsymbol{x} \in\{a, b, \ldots, t\}$, to get

$$
\begin{aligned}
& q q^{*}+r r^{*}+s s^{*}+t t^{*} \\
& =\left(a a^{*}+b b^{*}+c c^{*}+d d^{*}\right)\left(e e^{*}+f f^{*}+g g^{*}+h h^{*}\right)
\end{aligned}
$$

Generalization of Lagrange identity by Yang (1983)

$$
\begin{aligned}
& q q^{*}+r r^{*}+s s^{*}+t t^{*} \\
& =\left(a a^{*}+b b^{*}+c c^{*}+d d^{*}\right)\left(e e^{*}+f f^{*}+g g^{*}+h h^{*}\right)
\end{aligned}
$$

if

$$
\begin{aligned}
q & =a e-b f-c g-d h \rightarrow a^{*} e-b f^{*}-c g^{*}-d h^{*} \\
r & =a f+b e+c h-d g \rightarrow a f^{*}+b^{*} e+c h-d g \\
s & =a g-b h+c e+d f \rightarrow a g^{*}-b h+c^{*} e+d f \\
t & =a h+b g-c f+d e \rightarrow a h^{*}+b g-c f+d^{*} e
\end{aligned}
$$

Yang used this for the Laurent polynomial ring $\mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}\right]$ with $*: x \mapsto \boldsymbol{x}^{-1}$.

Yang (1989)

Composition of $\{ \pm 1\}$-sequences: a method to produce long sequences from short ones.
a, b, c, d, e, f, g, h are "nice" $\{ \pm 1\}$-sequences
$\Longrightarrow \boldsymbol{q}, \boldsymbol{r}, \boldsymbol{s}, \boldsymbol{t}$ can be used to build circulant matrices
A, B, C, D with $A A^{\top}+B B^{\top}+C C^{\top}+D D^{\top}=4 n I$
\Longrightarrow (Goethals-Seidel array) Hadamard matrix
The proof is constructive but it has no explanation. We expanded the original proof (9 lines) to a 9 page paper (arXiv:1705.05062v2), which will be explained in detail in my second talk.

