A matrix approach to Yang multiplication, II

Akihiro Munemasa
Tohoku University (joint work with Pritta Etriana Putri)

July 25, 2017
International Conference and
PhD-Master Summer School
"Groups and Graphs, Metrics and Manifolds"
Ural Federal University

About this talk

Part I:

- Hadamard's inequality
- Hadamard matrices and generalizations
- Constructions of Hadamard matrices
- Quaternions and Lagrange's identity
- Yang's generalization of Lagrange's identity
- Yang's theorem

Part II:

- Complementary sequences
- A Laurent polynomial associated to a sequence
- A two-variable Laurent polynomial associated to a matrix
- A new proof of Yang's theorem using matrices

Hadamard matrices

A matrix $H \in\{-1,1\}^{n \times n}$ is called a Hadamard matrix if $\boldsymbol{H} \boldsymbol{H}^{\top}=\boldsymbol{n} \boldsymbol{I}$.
Examples (Sylvester matrices):

$$
[1], \quad\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \otimes\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \ldots
$$

If a Hadamard matrix of order n exists, then $n=1,2$ or $4 \mid n$. Conversely,

Conjecture

$4 \mid n \Longrightarrow \exists$ Hadamard matrix of order n.

Goethals-Seidel (1970)

Let $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ be circulant matrices of order \boldsymbol{n}, and

$$
H=\left[\begin{array}{cccc}
A & B R & C R & D R \\
-B R & A & -D^{\top} R & C^{\top} R \\
-C R & D^{\top} R & A & -B^{\top} R \\
-D R & -C^{\top} R & B^{\top} R & A
\end{array}\right], \quad R=\left[\begin{array}{ccc}
& & \\
& & \\
& \cdot & \\
1 & &
\end{array}\right]
$$

$$
A A^{\top}+B B^{\top}+C C^{\top}+D D^{\top}=4 n I,
$$

then

$$
H H^{\top}=4 n I,
$$

because

$$
R^{-1}=R^{\top}, X R=R X^{\top}, X Y=Y X
$$

for $\boldsymbol{X}, \boldsymbol{Y} \in\{A, B, C, D\}$.

$A A^{\top}+B B^{\top}+C C^{\top}+D D^{\top}=4 n I$

$\{\boldsymbol{n} \times \boldsymbol{n}$ Circulant matrices with entries in $\mathbb{Z}\}$
$=$ Group algebra of the cyclic group C_{n} over \mathbb{Z}
$=\mathbb{Z}[x] /\left(x^{n}-1\right) \leftarrow \mathbb{Z}\left[x, x^{-1}\right]$
If \boldsymbol{A} is the circulant matrix with first row

$$
a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in\{ \pm 1\}^{n}, \quad A \hookleftarrow \sum_{i=0}^{n-1} a_{i} x^{i}=f_{a}(x)
$$

Then $A^{\top} \hookleftarrow f_{a}\left(x^{-1}\right)$, so

$$
\begin{aligned}
\boldsymbol{A A ^ { \top }} & \Longleftrightarrow f_{a}(x) f_{a}\left(x^{-1}\right) \bmod \left(x^{n}-1\right) \\
& \Longleftrightarrow f_{a}(x) f_{a}\left(x^{-1}\right) .
\end{aligned}
$$

$A A^{\top}+B B^{\top}+C C^{\top}+D D^{\top}=4 n I$

Given $a, b, c, d \in\{ \pm 1\}^{n}$, form circulant matrices A, B, C, D with first row a, b, c, d, respectively. Then

$$
A A^{\top}+B B^{\top}+C C^{\top}+D D^{\top}=4 n I
$$

is equivalent to

$$
\begin{aligned}
& f_{a}(x) f_{a}\left(x^{-1}\right)+f_{b}(x) f_{b}\left(x^{-1}\right)+f_{c}(x) f_{c}\left(x^{-1}\right)+f_{d}(x) f_{d}\left(x^{-1}\right) \\
& \equiv 4 n \quad\left(\bmod \left(x^{n}-1\right)\right)
\end{aligned}
$$

which will follow if
$f_{a}(x) f_{a}^{*}(x)+f_{b}(x) f_{b}^{*}(x)+f_{c}(x) f_{c}^{*}(x)+f_{d}(x) f_{d}^{*}(x)=4 n$, where $f^{*}(x)=f\left(x^{-1}\right)$ for $f(x) \in \mathbb{Z}\left[x, x^{-1}\right]$.

Complementary sequences

A quadruple (a, b, c, d) of sequences of integers is said to be complementary if

$$
f_{a}(x) f_{a}^{*}(x)+f_{b}(x) f_{b}^{*}(x)+f_{c}(x) f_{c}^{*}(x)+f_{d}(x) f_{d}^{*}(x) \in \mathbb{Z} .
$$

We do not assume, $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ have the same length, nor entries are in $\{ \pm 1\}$. But if $a, b, c, d \in\{ \pm 1\}^{n}$, then the constant term of the left-hand side is $\boldsymbol{4 n}$.

Example (base seq. and non-periodic complementary seq.):

$$
\begin{aligned}
B S(m, n) & \subset\{ \pm 1\}^{m} \times\{ \pm 1\}^{m} \times\{ \pm 1\}^{n} \times\{ \pm 1\}^{n} \\
N C S(n) & \subset\left(\{ \pm 1\}^{n}\right)^{4}
\end{aligned}
$$

Recall $\operatorname{NCS}(n) \neq \emptyset \Longrightarrow \exists$ Hadamard matrix of order $4 n$

From BS to NCS

C.H. Yang (Proc. A.M.S., 1989), Theorem 4, states

$$
\begin{aligned}
& B S(m+1, m) \neq \emptyset, B S(n+1, n) \neq \emptyset \\
& \Longrightarrow N C S((2 m+1)(2 n+1)) \neq \emptyset \\
& (\Longrightarrow \exists \text { Hadamard matrix })
\end{aligned}
$$

Conjecture $\boldsymbol{B S}(\boldsymbol{n}+1, n) \neq \emptyset$ for all n.
In this talk: a matrix approach to prove this theorem.
Is the proof difficult?
The proof is constructive but it has no explanation. We expanded the original proof (9 lines) to a 9 page paper (arXiv:1705.05062v2), which I now explain in detail.

Yang Multiplication Theorem

$$
\begin{aligned}
(a, b, c, d) \in & B S(m+1, m) \\
\subset & \{ \pm 1\}^{m+1} \times\{ \pm 1\}^{m+1} \times\{ \pm 1\}^{m} \times\{ \pm 1\}^{m} \\
(f, g, h, e) \in & B S(n+1, n) \\
\subset & \{ \pm 1\}^{n+1} \times\{ \pm 1\}^{n+1} \times\{ \pm 1\}^{n} \times\{ \pm 1\}^{n} \\
& \left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \in\left(\{0, \pm 1\}^{2 m+1}\right)^{4} \\
& \left(f^{\prime}, g^{\prime}, h^{\prime}, e^{\prime}\right) \in\left(\{0, \pm 1\}^{2 n+1}\right)^{4}
\end{aligned}
$$

Our matrix approach:

$$
\begin{aligned}
(Q, R, S, T) & \in\left(\{ \pm 1\}^{(2 n+1) \times(2 m+1)}\right)^{4} \\
(q, r, s, t) & \in N C S((2 m+1)(2 n+1)) \\
Q & =f^{\prime * \top} a^{\prime}+g^{\prime \top} c^{\prime}-e^{\prime \top} b^{\prime *}+h^{\prime \top} d^{\prime} .
\end{aligned}
$$

Lagrange identity

Let \mathcal{R} be a commutative ring with involutive automorphism $*$. Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{f}, \boldsymbol{g}, \boldsymbol{h}, \boldsymbol{e} \in \boldsymbol{\mathcal { R }}$. Set

$$
\begin{aligned}
q & =a f^{*}+c g-b^{*} e+d h \\
r & =b f^{*}+d g^{*}+a^{*} e-c h^{*} \\
s & =a g^{*}-c f-b h-d^{*} e \\
t & =b g-d f+a h^{*}+c^{*} e
\end{aligned}
$$

Then

$$
\begin{aligned}
& q q^{*}+r r^{*}+s s^{*}+t t^{*} \\
& =\left(a a^{*}+b b^{*}+c c^{*}+d d^{*}\right)\left(e e^{*}+f f^{*}+g g^{*}+h h^{*}\right)
\end{aligned}
$$

We use this with

$$
\mathcal{R}=\mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right], *: x \mapsto x^{-1}, y \mapsto y^{-1}
$$

The polynomials $f_{a}(x)$ and $\psi_{a}(x)$

For $a=\left(a_{0}, \ldots, a_{n-1}\right) \in \mathbb{Z}^{n}$.
recall

$$
f_{a}(x)=\sum_{i=0}^{n-1} a_{i} x^{i}
$$

It is more convenient to use

$$
\psi_{a}(x)=x^{1-n} f_{a}\left(x^{2}\right)
$$

Example: $a=\left(a_{0}, a_{1}, a_{2}, a_{3}\right), b=\left(b_{0}, b_{1}, b_{2}\right)$

$$
\begin{aligned}
f_{a}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
\psi_{a}(x) & =a_{0} x^{-3}+a_{1} x^{-1}+a_{2} x^{1}+a_{3} x^{3} \\
f_{b}(x) & =b_{0}+b_{1} x+b_{2} x^{2} \\
\psi_{b}(x) & =b_{0} x^{-2}+b_{1} x^{0}+b_{2} x^{2}
\end{aligned}
$$

Yang Multiplication Theorem (C.H. Yang, 1989)

$$
(a, b, c, d) \in B S(m+1, m), \quad(f, g, h, e) \in B S(n+1, n)
$$

Then $\exists(q, r, s, t) \in \operatorname{NCS}((2 m+1)(2 n+1))$.
Yang's approach: produce a sequence q with

$$
\begin{aligned}
f_{q}(x)= & f_{a}\left(x^{2}\right) f_{f^{*}}\left(x^{2(2 m+1)}\right)+x f_{c}\left(x^{2}\right) f_{g}\left(x^{2(2 m+1)}\right) \\
& -x^{2 m+1} f_{b^{*}}\left(x^{2}\right) f_{e}\left(x^{2(2 m+1)}\right) \\
& +x^{2 m+2} f_{d}\left(x^{2}\right) f_{h}\left(x^{2(2 m+1)}\right) .
\end{aligned}
$$

Our matrix approach: produce a matrix \boldsymbol{Q} with (see the next slide for definition of ψ_{Q})

$$
\begin{aligned}
\psi_{Q}(x, y)= & \psi_{a}(x) \psi_{f}^{*}(y)+\psi_{c}(x) \psi_{g}(y) \\
& -\psi_{b}^{*}(x) \psi_{e}(y)+\psi_{d}(x) \psi_{h}(y) .
\end{aligned}
$$

$\psi_{Q}(x, y)$ for an $n \times m$ matrix Q

Let $\boldsymbol{q}_{\mathbf{0}}, \ldots, \boldsymbol{q}_{\boldsymbol{n}-\mathbf{1}}$ denote the row vector of \boldsymbol{Q} :

$$
Q=\left[\begin{array}{c}
q_{0} \\
q_{1} \\
\vdots \\
q_{n-1}
\end{array}\right]
$$

Define

$$
\psi_{Q}(x, y)=\sum_{i=0}^{n-1} y^{2 i+1-n} \psi_{q_{i}}(x) \in \mathbb{Z}\left[x^{ \pm 1}, y^{ \pm 1}\right]
$$

Example: Let $\boldsymbol{Q}=\left(\boldsymbol{q}_{i j}\right)$ be a $\mathbf{3} \times 4$ matrix. Then $\psi_{Q}(\boldsymbol{x}, \boldsymbol{y})$ is

$$
\sum \text { of }\left[\begin{array}{cccc}
q_{00} x^{-3} y^{-2} & q_{01} x^{-1} y^{-2} & q_{02} x^{1} y^{-2} & q_{03} x^{3} y^{-2} \\
\boldsymbol{q}_{10} x^{-3} y^{0} & \boldsymbol{q}_{11} x^{-1} y^{0} & \boldsymbol{q}_{12} x^{1} y^{0} & \boldsymbol{q}_{13} x^{3} y^{0} \\
\boldsymbol{q}_{20} x^{-3} y^{2} & \boldsymbol{q}_{21} x^{-1} y^{2} & \boldsymbol{q}_{22} x^{1} y^{2} & \boldsymbol{q}_{23} x^{3} y^{2}
\end{array}\right] .
$$

$\psi_{a}(x)$ and $\psi_{Q}(x, y)$

Lemma

For sequences $\boldsymbol{a}, \boldsymbol{b}$ regarded as row vectors,

$$
\psi_{b^{\top} a}(x, y)=\psi_{a}(x) \psi_{b}(y)
$$

For a matrix Q, denote by $\operatorname{seq}(Q)$ the sequence obtained by concatenating the rows of \boldsymbol{Q}.

Lemma

If \boldsymbol{Q} has \boldsymbol{m} columns, then

$$
\psi_{\operatorname{seq}(Q)}(x)=\psi_{Q}\left(x, x^{m}\right)
$$

Our approach

Recall that our matrix approach was:

$$
\begin{aligned}
\psi_{Q}(x, y)= & \psi_{a}(x) \psi_{f}^{*}(y)+\psi_{c}(x) \psi_{g}(y) \\
& -\psi_{b}^{*}(x) \psi_{e}(y)+\psi_{d}(x) \psi_{h}(y)
\end{aligned}
$$

This is achieved by defining

$$
\begin{aligned}
Q= & f^{* \top} a+g^{\top} c \\
& -e^{\top} b^{*}+h^{\top} d
\end{aligned}
$$

where \boldsymbol{b}^{*} denotes the reverse of \boldsymbol{b}. Note $\boldsymbol{\psi}_{\boldsymbol{b}}^{*}(\boldsymbol{x})=\boldsymbol{\psi}_{\boldsymbol{b}^{*}}(\boldsymbol{x})$.

$$
\begin{aligned}
\psi_{\mathrm{seq}(Q)}(x)= & \psi_{a}(x) \psi_{f}^{*}\left(x^{m}\right)+\psi_{c}(x) \psi_{g}\left(x^{m}\right) \\
& -\psi_{b}^{*}(x) \psi_{e}\left(x^{m}\right)+\psi_{d}(x) \psi_{h}\left(x^{m}\right)
\end{aligned}
$$

Complementary sequences

Lemma

$$
f_{a}\left(x^{2}\right) f_{a}^{*}\left(x^{2}\right)=\psi_{a}(x) \psi_{a}^{*}(x)
$$

Thus
a, b, c, d : complementary
$\Longleftrightarrow f_{a} f_{a}^{*}+f_{b} f_{b}^{*}+f_{c} f_{c}^{*}+f_{d} f_{d}^{*} \in \mathbb{Z}$
$\Longleftrightarrow \psi_{a} \psi_{a}^{*}+\psi_{b} \psi_{b}^{*}+\psi_{c} \psi_{c}^{*}+\psi_{d} \psi_{d}^{*} \in \mathbb{Z}$

Recall the Lagrange identity

Let $a, b, c, d, f, g, h, e \in \mathbb{Z}\left[\boldsymbol{x}^{ \pm 1}, \boldsymbol{y}^{ \pm 1}\right]$. Set

$$
\begin{aligned}
q & =a f^{*}+c g-b^{*} e+d h \\
r & =b f^{*}+d g^{*}+a^{*} e-c h^{*} \\
s & =a g^{*}-c f-b h-d^{*} e \\
t & =b g-d f+a h^{*}+c^{*} e
\end{aligned}
$$

Then

$$
\begin{aligned}
& q q^{*}+r r^{*}+s s^{*}+t t^{*} \\
& =\left(a a^{*}+b b^{*}+c c^{*}+d d^{*}\right)\left(e e^{*}+f f^{*}+g g^{*}+h h^{*}\right)
\end{aligned}
$$

The Lagrange identity (consequence)

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \mathbb{Z}^{m}, f, \boldsymbol{g}, \boldsymbol{h}, \boldsymbol{e} \in \mathbb{Z}^{\boldsymbol{n}}$,

$$
\begin{aligned}
Q & =f^{* t} a+g^{t} c-e^{t} b^{*}+h^{t} d \\
R & =f^{* t} b+g^{* t} d-e^{t} a^{*}-h^{* t} c \\
S & =g^{* t} a-f^{t} c-h^{t} b+e^{t} d^{*} \\
T & =g^{t} b-f^{t} d-h^{* t} a+e^{t} c^{*}
\end{aligned}
$$

Then $\boldsymbol{Q}, \boldsymbol{R}, \boldsymbol{S}, \boldsymbol{T} \in \mathbb{Z}^{\boldsymbol{n} \times m}$.

$$
\begin{aligned}
& \left(\psi_{Q} \psi_{Q}^{*}+\psi_{R} \psi_{R}^{*}+\psi_{S} \psi_{S}^{*}+\psi_{T} \psi_{T}^{*}\right)(x, y) \\
& =\left(\psi_{a} \psi_{a}^{*}+\psi_{b} \psi_{b}^{*}+\psi_{c} \psi_{c}^{*}+\psi_{d} \psi_{d}^{*}\right)(x) \\
& \quad \times\left(\psi_{e} \psi_{e}^{*}+\psi_{f} \psi_{f}^{*}+\psi_{g} \psi_{g}^{*}+\psi_{h} \psi_{h}^{*}\right)(y)
\end{aligned}
$$

The Lagrange identity (consequence)

Let $a, b, c, d \in \mathbb{Z}^{m}, f, g, h, e \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
Q & =f^{* t} a+g^{t} c-e^{t} b^{*}+h^{t} d, \\
R & =f^{* t} b+g^{* t} d-e^{t} a^{*}-h^{* t} c, \\
S & =g^{* t} a-f^{t} c-h^{t} b+e^{t} d^{*} \\
T & =g^{t} b-f^{t} d-h^{* t} a+e^{t} c^{*}
\end{aligned}
$$

Then for $q=\operatorname{seq}(Q), r=\operatorname{seq}(R), s=\operatorname{seq}(S), t=\operatorname{seq}(T)$,

$$
\begin{aligned}
& \left(\psi_{q} \psi_{q}^{*}+\psi_{r} \psi_{r}^{*}+\psi_{s} \psi_{s}^{*}+\psi_{t} \psi_{t}^{*}\right)(x) \\
& =\left(\psi_{a} \psi_{a}^{*}+\psi_{b} \psi_{b}^{*}+\psi_{c} \psi_{c}^{*}+\psi_{d} \psi_{d}^{*}\right)(x) \\
& \quad \times\left(\psi_{e} \psi_{e}^{*}+\psi_{f} \psi_{f}^{*}+\psi_{g} \psi_{g}^{*}+\psi_{h} \psi_{h}^{*}\right)\left(x^{m}\right) .
\end{aligned}
$$

Interleaving

For $a=\left(a_{0}, \ldots, a_{m-1}\right)$, define

$$
\begin{aligned}
& a / 0=\left(a_{0}, 0, a_{1}, 0, \ldots, 0, a_{m-1}\right) \quad(\text { length } 2 m-1) \\
& 0 / a=\left(0, a_{0}, 0, \ldots, 0, a_{m-1}, 0\right) \quad(\text { length } 2 m+1)
\end{aligned}
$$

Lemma

$$
\psi_{a / 0}(x)=\psi_{0 / a}(x)=\psi_{a}\left(x^{2}\right)
$$

Yang's Theorem

Theorem
 Let $(a, b, c, d) \in B S(m+1, m),(f, g, h, e) \in B S(n+1, n)$. Then there exists $(q, r, s, t) \in \operatorname{NCS}((2 n+1)(2 m+1))$.

Construction of the matrices Q, R, S, T

Let $(a, b, c, d) \in B S(m+1, m),(f, g, h, e) \in B S(n+1, n)$. Then
$a, b \in\{ \pm 1\}^{m+1}, c, d \in\{ \pm 1\}^{m}, f, g \in\{ \pm 1\}^{n+1}, h, e \in\{ \pm 1\}^{n}$.
Set

$$
\begin{gathered}
a^{\prime}=a / 0, b^{\prime}=b / 0, c^{\prime}=0 / c, d^{\prime}=0 / d \in\{0, \pm 1\}^{2 m+1} \\
f^{\prime}=f / 0, g^{\prime}=g / 0, h^{\prime}=0 / h, e^{\prime}=0 / e \in\{0, \pm 1\}^{2 n+1}
\end{gathered}
$$

Define $(2 n+1) \times(2 m+1)$ matrices with entries in $\{ \pm 1\}$:

$$
\begin{aligned}
Q & =f^{\prime * t} a^{\prime}+g^{\prime t} c^{\prime}-e^{\prime t} b^{*}+h^{\prime t} d^{\prime} \\
R & =f^{\prime * t} b^{\prime}+g^{\prime * t} d^{\prime}-e^{\prime t} a^{\prime *}-h^{\prime * t} c^{\prime} \\
S & =g^{\prime * t} a^{\prime}-f^{\prime t} c^{\prime}-h^{\prime t} b^{\prime}+e^{\prime t} d^{\prime *} \\
T & =g^{\prime t} b^{\prime}-f^{\prime t} d^{\prime}-h^{\prime * t} a^{\prime}+e^{\prime t} c^{\prime *}
\end{aligned}
$$

$(a, b, c, d),(f, g, h, e) \rightarrow(Q, R, S, T) \rightarrow$

Set $q=\operatorname{seq}(Q), r=\operatorname{seq}(R), s=\operatorname{seq}(S), t=\operatorname{seq}(T)$. Then

$$
\begin{aligned}
& \left(\psi_{q} \psi_{q}^{*}+\psi_{r} \psi_{r}^{*}+\psi_{s} \psi_{s}^{*}+\psi_{t} \psi_{t}^{*}\right)(x) \\
& =\left(\psi_{a^{\prime}} \psi_{a^{\prime}}^{*}+\psi_{b^{\prime}} \psi_{b^{\prime}}^{*}+\psi_{c^{\prime}} \psi_{c^{\prime}}^{*}+\psi_{d^{\prime}} \psi_{d^{\prime}}^{*}\right)(x) \\
& \quad \times\left(\psi_{e^{\prime}} \psi_{e^{\prime}}^{*}+\psi_{f^{\prime}} \psi_{f^{\prime}}^{*}+\psi_{g^{\prime}} \psi_{g^{\prime}}^{*}+\psi_{h^{\prime}} \psi_{h^{\prime}}^{*}\right)\left(x^{2 m+1}\right) \\
& =\left(\psi_{a} \psi_{a}^{*}+\psi_{b} \psi_{b}^{*}+\psi_{c} \psi_{c}^{*}+\psi_{d} \psi_{d}^{*}\right)\left(x^{2}\right) \\
& \quad \times\left(\psi_{e} \psi_{e}^{*}+\psi_{f} \psi_{f}^{*}+\psi_{g} \psi_{g}^{*}+\psi_{h} \psi_{h}^{*}\right)\left(x^{2(2 m+1)}\right) \\
& \in \mathbb{Z}
\end{aligned}
$$

Thus $(q, r, s, t) \in N C S((2 m+1)(2 n+1))$. This proves Yang's theorem (see arXiv:1705.05062 for details).

