Turyn's construction of conference matrices

Akihiro Munemasa ${ }^{1}$

${ }^{1}$ Graduate School of Information Sciences
Tohoku University
(joint work with Robert Craigen and Ferenc Szöllősi)

March 22, 2018
ITB, Indonesia

An exercise

Notation

For a positive integer k, write

$$
\{1,2, \ldots, k\}=[k] .
$$

Exercise

Let A be a finite set, and let $\varphi: A \rightarrow \mathbb{Z}$ be a function. Let A_{i} $(i=1,2, \ldots, k)$ be subsets of A. Then

$$
\sum_{a \in \bigcup_{j \in[k]} A_{j}} \varphi(a)=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a) .
$$

$\sum_{a \in \bigcup_{j \in[]} A_{j}} \varphi(a)=$
 $\sum_{\substack{J \subset[]] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a)$

For the special case $k=2$,

$$
\sum_{a \in \bigcup_{j \in[2]} A_{j}} \varphi(a)=\sum_{\substack{J \subset[2] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a) .
$$

$$
\begin{aligned}
& \sum_{a \in \bigcup_{j \in[]} A_{j}} \varphi(a)= \\
& \sum_{\substack{J \subset[]] \\
J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a)
\end{aligned}
$$

For the special case $k=2$,

$$
\sum_{k \in \cup_{j \in[2]} A_{j}} \varphi(a)=\sum_{\substack{J \in[2] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a) .
$$

This means

$$
\begin{gathered}
\sum_{a \in A_{1} \cup A_{2}} \varphi(a)=\sum_{J \in\{\{1\},\{2\},\{1,2\}\}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a) . \\
=\sum_{a \in A_{1}} \varphi(a)+\sum_{a \in A_{2}} \varphi(a)-\sum_{a \in A_{1} \cap A_{2}} \varphi(a) .
\end{gathered}
$$

$$
\begin{aligned}
& \sum_{a \in \bigcup_{j \in[k]} A_{j}}(a)= \\
& \sum_{\substack{J \subset[k] \\
J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \quad(a)
\end{aligned}
$$

For the special case $k=2$,

$$
\sum_{a \in \bigcup_{j \in[k]} A_{j}} 1=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} 1 .
$$

$$
\begin{aligned}
& \sum_{a \in \bigcup_{j \in[k]} A_{j}}(a)= \\
& \sum_{\substack{J \subset[k] \\
J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \quad(a)
\end{aligned}
$$

For the special case $k=2$,

$$
\sum_{a \in \bigcup_{j \in[k]} A_{j}} 1=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} 1
$$

This means

$$
\left|\bigcup_{j \in[k]} A_{j}\right|=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1}\left|\bigcap_{j \in J} A_{j}\right| .
$$

$$
\begin{aligned}
& \sum_{a \in \bigcup_{j \in[k]} A_{j}}(a)= \\
& \sum_{\substack{J \subset[k] \\
J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \quad(a)
\end{aligned}
$$

For the special case $k=2$,

$$
\sum_{a \in \bigcup_{j \in[k]} A_{j}} 1=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} 1
$$

This means

$$
\left|\bigcup_{j \in[k]} A_{j}\right|=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1}\left|\bigcap_{j \in J} A_{j}\right| .
$$

The inclusion-exclusion principle.

An exercise

Exercise

Let A be a finite set, and let $\varphi: A \rightarrow \mathbb{Z}$ be a function. Let A_{i} $(i=1,2, \ldots, k)$ be subsets of A. Then

$$
\sum_{a \in \bigcup_{j \in[k]} A_{j}} \varphi(a)=\sum_{\substack{J \subset[k] \\ J \neq \emptyset}}(-1)^{|J|-1} \sum_{a \in \bigcap_{j \in J} A_{j}} \varphi(a)
$$

As in the inclusion-exclusion principle, give a proof by induction.

Conference graphs

9 vertices, $\frac{9-1}{2}=4$ neighbors
\# common neighbors $= \begin{cases}\frac{4}{2}=2 & \text { if non-adjacent }, \\ \frac{4}{2}-1=1 & \text { if adjacent } .\end{cases}$

Conference graphs

9 vertices, $\frac{9-1}{2}=4$ neighbors
$\#$ common neighbors $= \begin{cases}\frac{4}{2}=2 & \text { if non-adjacent }, \\ \frac{4}{2}-1=1 & \text { if adjacent } .\end{cases}$

Conference graphs

9 vertices, $\frac{9-1}{2}=4$ neighbors
\# common neighbors $= \begin{cases}\frac{4}{2}=2 & \text { if non-adjacent }, \\ \frac{4}{2}-1=1 & \text { if adjacent } .\end{cases}$

Conference graphs

n vertices, $\frac{n-1}{2}$ neighbors

$$
\text { \# common neighbors }= \begin{cases}\frac{\frac{n-1}{2}}{2}=\frac{n-1}{4} & \text { if non-adjacent } \\ \frac{\frac{n-1}{2}}{2}-1=\frac{n-5}{4} & \text { if adjacent }\end{cases}
$$

Conference graphs

Definition

A graph on n vertices is called a conference graph if

- every vertex has $(n-1) / 2$ neighbors,
- every pair of non-adjacent vertices has $(n-1) / 4$ common neighbors,
- every pair of adjacent vertices has $(n-5) / 4$ common neighbors.

Conference graphs

Definition

A graph on n vertices is called a conference graph if

- every vertex has $(n-1) / 2$ neighbors,
- every pair of non-adjacent vertices has $(n-1) / 4$ common neighbors,
- every pair of adjacent vertices has $(n-5) / 4$ common neighbors.

In terms of adjacency matrix $A=\left(a_{i j}\right)$, where

$$
\begin{gathered}
a_{i j}= \begin{cases}1 & \text { if } i \sim j, \\
0 & \text { otherwise }\end{cases} \\
A^{2}=\frac{n-1}{2} I+\frac{n-5}{4} A+\frac{n-1}{4}(J-I-A),
\end{gathered}
$$

where J is the all-one matrix.

Conference matrices

Let A be a $(0,1)$-matrix satisfying

$$
A^{2}=\frac{n-1}{2} I+\frac{n-5}{4} A+\frac{n-1}{4}(J-I-A)
$$

Set

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & 2 A-J+I
\end{array}\right]
$$

Then W is a $(n+1) \times(n+1)$ matrix all of whose entries are $0, \pm 1$, and

$$
W=W^{\top}, \quad W^{2}=W W^{\top}=n I
$$

Conference matrices

Let A be a $(0,1)$-matrix satisfying

$$
A^{2}=\frac{n-1}{2} I+\frac{n-5}{4} A+\frac{n-1}{4}(J-I-A)
$$

Set

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & 2 A-J+I
\end{array}\right]
$$

Then W is a $(n+1) \times(n+1)$ matrix all of whose entries are $0, \pm 1$, and

$$
W=W^{\top}, \quad W^{2}=W W^{\top}=n I
$$

Exercise

Verify $W^{2}=n I$.

Conference matrices

Definition

A symmetric $(0, \pm 1)$-matrix W of order $n+1$ all of whose diagonal entries are 0 is called a conference matrix if $W^{2}=n I$.

If W is a conference matrix, then there exists a diagonal matrix D all of whose diagonal entries are ± 1 such that

$$
D W D=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]
$$

for some $(0, \pm 1)$-matrix C.

Conference matrices

Definition

A symmetric $(0, \pm 1)$-matrix W of order $n+1$ all of whose diagonal entries are 0 is called a conference matrix if $W^{2}=n I$.

If W is a conference matrix, then there exists a diagonal matrix D all of whose diagonal entries are ± 1 such that

$$
D W D=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]
$$

for some $(0, \pm 1)$-matrix C.

Exercise

Show that C is of the form $2 A-J+I$ for the adjacency matrix A of some conference graph.

Existence of conference matrices

Note that $(n-1) / 4$ was the number of common neighbors of two non-adjacent vertices in a conference graph on n vertices.

Problem

Does there exists a conference matrix of order $n+1$ whenever n is a positive integer with $n \equiv 1(\bmod 4)$?

The smallest n for which the answer is unknown is $n=65$. The answer is "yes" if n is a prime power.

Existence of conference matrices

Note that $(n-1) / 4$ was the number of common neighbors of two non-adjacent vertices in a conference graph on n vertices.

Problem

Does there exists a conference matrix of order $n+1$ whenever n is a positive integer with $n \equiv 1(\bmod 4)$?

The smallest n for which the answer is unknown is $n=65$. The answer is "yes" if n is a prime power.

This is also the smallest number of vertices for which the existence is undecided for a parameters (k, λ, μ) for a strongly regular graph.

$$
A^{2}=k I+\lambda A+\mu(J-I-A)
$$

Goldberg (1966)

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$
Let $C(n+1)$ denote the set of conference matrices of order $n+1$,

Goldberg (1966)

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$
Let $C(n+1)$ denote the set of conference matrices of order $n+1$,

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right] \in C(n+1)
$$

This means that C is a symmetric $(0, \pm 1)$ matrix of order n satisfying

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Goldberg (1966)

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$
Let $C(n+1)$ denote the set of conference matrices of order $n+1$,

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right] \in C(n+1)
$$

This means that C is a symmetric $(0, \pm 1)$ matrix of order n satisfying

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Define

$$
D=C \otimes C \otimes C-I \otimes J \otimes C-C \otimes I \otimes J-J \otimes C \otimes I
$$

Exercise

$$
D^{2}=n^{3} I-J \text { and hence } \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right] \text { : conference matrix. }
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{ll}
0 & 1 \\
1^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\},
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{array}{cl}
D=\begin{array}{ll}
C \otimes C \otimes C & \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
-I \otimes J \otimes C \\
-C \otimes I \otimes J \\
-J \otimes C \otimes I & \text { satisfies } \\
D \circ I=0, \\
D J=0, \\
& D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{array}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{array}{cl}
D=\begin{array}{ll}
C \otimes C \otimes C & \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
-I \otimes J \otimes C \\
-C \otimes I \otimes J & \text { satisfies } \\
-J \otimes I \otimes C \otimes I & D J=0, \\
& D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{array}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{array}{cl}
C=C \otimes C & \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
D=C \otimes J \otimes C \\
-C \otimes I \otimes J & \text { satisfies } \\
-J \circ I=0, \\
-J \otimes C \otimes I & D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & 1 \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{array}{cl}
C=\begin{array}{ll}
C \otimes C \otimes C & \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
-I \otimes J \otimes C \\
-C \otimes I \otimes J & \text { satisfies } \\
-J \otimes I \otimes 0, \\
-J & D J=0, \\
& D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{array}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{aligned}
& C \otimes C \otimes C \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
& D=\begin{array}{ll}
C & D \otimes J \otimes C \\
-C \otimes I \otimes J \\
-J \otimes C \otimes I & \text { satisfies } \\
D \circ I=0, \\
D J=0, \\
D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{aligned}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{array}{cl}
C=\begin{array}{ll}
C \otimes C \otimes C & \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
-I \otimes J \otimes C \\
-C \otimes I \otimes J \\
-J \otimes C \otimes I & \text { satisfies } \\
D \circ I=0, \\
D J=0, \\
& D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & 1 \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{array}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{aligned}
& C \otimes C \otimes C \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
& D=\begin{array}{ll}
C & (\otimes J \otimes C \\
-C \otimes I \otimes J \\
-J \otimes C \otimes I & \text { satisfies } \\
D \circ I=0, \\
D J=0, \\
D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{aligned}
$$

$C(n+1) \neq \emptyset \Longrightarrow C\left(n^{3}+1\right) \neq \emptyset$

$$
W=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & C
\end{array}\right]:(n+1) \times(n+1) \text { matrix with entries in }\{0, \pm 1\}
$$

$$
C=C^{\top}, \quad C \circ I=0, \quad C J=0, \quad C^{2}=n I-J .
$$

Then

$$
\begin{array}{cl}
C=\begin{array}{ll}
C \otimes C \otimes C & \text { disjoint } \Longrightarrow(0, \pm 1) \text { matrix } \\
-I \otimes J \otimes C \\
-C \otimes I \otimes J \\
-J \otimes C \otimes I & \text { satisfies } \\
D \circ I=0, \\
D J=0, \\
& D^{2}=n^{3} I-J . \\
& \Longrightarrow \tilde{W}=\left[\begin{array}{cc}
0 & 1 \\
\mathbf{1}^{\top} & D
\end{array}\right]: \text { conference matrix. }
\end{array} .
\end{array}
$$

Assume C : $n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where

$$
\begin{gathered}
B_{0}=C \otimes C \otimes C \\
B_{1}=-I \otimes J \otimes C \\
B_{2}=-C \otimes I \otimes J \\
B_{3}=-J \otimes C \otimes I \\
D^{2}=\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2}=n^{3} I-J .
\end{gathered}
$$

Assume $C: n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where

$$
\begin{aligned}
& B_{0}=C \otimes C \otimes C \\
& B_{1}=-I \otimes J \otimes C \\
& B_{2}=-C \otimes I \otimes J \\
& B_{3}=-J \otimes C \otimes I
\end{aligned}
$$

$$
D^{2}=\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2}
$$

$$
=B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
$$

Assume $C: n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where $J^{2}=n J$

$$
\begin{aligned}
& B_{0}^{2}=(C \otimes C \otimes C)^{2} \\
& B_{1}^{2}=(-I \otimes J \otimes C)^{2} \\
& B_{2}^{2}=(-C \otimes I \otimes J)^{2} \\
& B_{3}^{2}=(-J \otimes C \otimes I)^{2}
\end{aligned}
$$

$$
\begin{aligned}
D^{2} & =\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2} \\
& =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
\end{aligned}
$$

Assume $C: n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where

$$
\begin{aligned}
& B_{0}^{2}=(n I-J) \otimes(n I-J) \otimes(n I-J) \\
& B_{1}^{2}=I \otimes n J \otimes(n I-J) \\
& B_{2}^{2}=(n I-J) \otimes I \otimes n J \\
& B_{3}^{2}=n J \otimes(n I-J) \otimes I
\end{aligned}
$$

$$
\begin{aligned}
D^{2} & =\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2} \\
& =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
\end{aligned}
$$

Assume $C: n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where

$$
\begin{aligned}
& B_{0}^{2}=(n I-J) \otimes(n I-J) \otimes(n I-J) \\
& B_{1}^{2}=n I \otimes J \otimes(n I-J) \\
& B_{2}^{2}=(n I-J) \otimes n I \otimes J \\
& B_{3}^{2}=J \otimes(n I-J) \otimes n I
\end{aligned}
$$

$$
\begin{aligned}
D^{2} & =\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2} \\
& =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
\end{aligned}
$$

Assume $C: n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where

$$
\begin{aligned}
& B_{0}^{2}=(n I-J) \otimes(n I-J) \otimes(n I-J) \\
& B_{1}^{2}=n I \otimes J \otimes(n I-J) \\
& B_{2}^{2}=(n I-J) \otimes n I \otimes J \\
& B_{3}^{2}=J \otimes(n I-J) \otimes n I
\end{aligned}
$$

$$
\begin{aligned}
D^{2} & =\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2} \\
& =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
\end{aligned}
$$

Assume $C: n \times n$ matrix with entries in $\{0, \pm 1\}$.

$$
C=C^{\top}, \quad C J=0, \quad C \circ I=0, \quad C^{2}=n I-J
$$

$D=B_{0}+B_{1}+B_{2}+B_{3}$, where

$$
\begin{aligned}
& B_{0}^{2}=(n I-J) \otimes(n I-J) \otimes(n I-J) \\
& B_{1}^{2}=-n I \otimes(-J) \otimes(n I-J) \\
& B_{2}^{2}=-(n I-J) \otimes n I \otimes(-J) \\
& B_{3}^{2}=-(-J) \otimes(n I-J) \otimes n I
\end{aligned}
$$

$$
\begin{aligned}
D^{2} & =\left(B_{0}+B_{1}+B_{2}+B_{3}\right)^{2} \\
& =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& B_{0}^{2}=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \\
& B_{1}^{2}=-x_{1} y_{2}\left(x_{3}+y_{3}\right) \\
& B_{2}^{2}=-\left(x_{1}+y_{1}\right) x_{2} y_{3} \\
& B_{3}^{2}=-y_{1}\left(x_{2}+y_{2}\right) x_{3}
\end{aligned}
$$

$$
\text { sum }=x_{1} x_{2} x_{3}+y_{1} y_{2} y_{3}
$$

$$
\begin{aligned}
B_{0}^{2} & =\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \\
B_{1}^{2} & =-x_{1} y_{2}\left(x_{3}+y_{3}\right) \\
B_{2}^{2} & =-\left(x_{1}+y_{1}\right) x_{2} y_{3} \\
B_{3}^{2} & =-y_{1}\left(x_{2}+y_{2}\right) x_{3}
\end{aligned}
$$

$$
\text { sum }=x_{1} x_{2} x_{3}+y_{1} y_{2} y_{3}
$$

$$
\begin{aligned}
D^{2} & =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2} \\
& =n I \otimes n I \otimes n I+(-J) \otimes(-J) \otimes(-J) \\
& =n^{3} I-J
\end{aligned}
$$

$$
\begin{aligned}
& B_{0}^{2}=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \\
& B_{1}^{2}=-x_{1} y_{2}\left(x_{3}+y_{3}\right) \\
& B_{2}^{2}=-\left(x_{1}+y_{1}\right) x_{2} y_{3} \\
& B_{3}^{2}=-y_{1}\left(x_{2}+y_{2}\right) x_{3}
\end{aligned}
$$

sum $=x_{1} x_{2} x_{3}+y_{1} y_{2} y_{3}$

$$
\begin{aligned}
D^{2} & =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2} \\
& =n I \otimes n I \otimes n I+(-J) \otimes(-J) \otimes(-J) \\
& =n^{3} I-J
\end{aligned}
$$

Exercise

$$
D^{2}=n^{3} I-J \text { and hence } \tilde{W}=\left[\begin{array}{cc}
0 & \mathbf{1} \\
\mathbf{1}^{\top} & D
\end{array}\right] \text { : conference matrix. }
$$

$$
\begin{aligned}
& B_{0}^{2}=\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\left(x_{3}+y_{3}\right) \\
& B_{1}^{2}=-x_{1} y_{2}\left(x_{3}+y_{3}\right) \\
& B_{2}^{2}=-\left(x_{1}+y_{1}\right) x_{2} y_{3} \\
& B_{3}^{2}=-y_{1}\left(x_{2}+y_{2}\right) x_{3}
\end{aligned}
$$

$\operatorname{sum}=x_{1} x_{2} x_{3}+y_{1} y_{2} y_{3}$

$$
\begin{aligned}
D^{2} & =B_{0}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2} \\
& =n I \otimes n I \otimes n I+(-J) \otimes(-J) \otimes(-J) \\
& =n^{3} I-J
\end{aligned}
$$

Seberry (1969) found analogous construction for $C\left(n^{5}+1\right), C\left(n^{7}+1\right)$.
Different method by Belevitch (1950) for $C\left(n^{2}+1\right)$.

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.

$$
D=C \otimes \cdots \otimes C
$$

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.
$k=3:$

$$
\begin{array}{cc}
C \otimes C \otimes C & \\
D=\begin{array}{l}
C \\
-I \otimes J \otimes C \\
-C \otimes I \otimes J \\
-J \otimes C \otimes I
\end{array} \text { satisfies } & \begin{array}{c}
D J=D \circ I=0, \\
D^{2}=n^{3} I-J .
\end{array} \\
\Longrightarrow \tilde{W}=\left[\begin{array}{rr}
0 & 1 \\
1^{\top} & D
\end{array}\right]: \text { symmetric conference matrix. }
\end{array}
$$

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.

$$
\begin{aligned}
D= & C \otimes \cdots \otimes C \\
& -\sum \text { replace some } C \otimes C \text { with } I \otimes J
\end{aligned}
$$

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.

$$
\begin{aligned}
D= & C \otimes \cdots \otimes C \\
& -\sum^{(k-1) / 2} \text { replace } t C \otimes C^{\prime} \text { s with } I \otimes J \text { 's }
\end{aligned}
$$

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.

$$
\begin{aligned}
D= & C \otimes \cdots \otimes C \\
& -\sum_{t=1}^{(k-1) / 2} \text { replace } t C \otimes C^{\prime} \text { 's with } I \otimes J \text { 's }
\end{aligned}
$$

Summands are disjoint, orthogonal

Turyn (1971)

Theorem

$$
C(n+1) \neq \emptyset \Longrightarrow C\left(n^{k}+1\right) \neq \emptyset
$$

for any odd positive integer k.

$$
\begin{aligned}
D= & C \otimes \cdots \otimes C \\
& -\sum_{t=1}^{(k-1) / 2} \text { replace } t C \otimes C^{\prime} \mathrm{s} \text { with } I \otimes J^{\prime} \mathrm{s}
\end{aligned}
$$

Summands are disjoint, orthogonal $D^{2}=n^{k} I-J$?

$$
C J=0, C \circ I=0, C^{2}=n I-J, J^{2}=n J
$$

$$
\begin{aligned}
D= & C \otimes \cdots \otimes C \\
& -\sum \text { replace } t C \otimes C^{\prime} s \text { with } I \otimes J^{\prime} s
\end{aligned}
$$

$$
\begin{aligned}
D^{2}= & C^{2} \otimes \cdots \otimes C^{2} \\
& +\sum\left(\text { replace } t C \otimes C^{\prime} \text { s with } I \otimes J^{\prime} s^{2}\right.
\end{aligned}
$$

$C J=0, C \circ I=0, C^{2}=n I-J, J^{2}=n J$

$$
\begin{aligned}
D= & C \otimes \cdots \otimes C \\
& -\sum \text { replace } t C \otimes C^{\prime} \text { s with } I \otimes J \text { 's }
\end{aligned}
$$

$$
\begin{aligned}
D^{2}= & C^{2} \otimes \cdots \otimes C^{2} \\
& +\sum\left(\text { replace } t C \otimes C^{\prime} \text { s with } I \otimes J^{\prime} \mathrm{s}\right)^{2}
\end{aligned}
$$

$$
D^{2}=(n I-J) \otimes \cdots \otimes(n I-J)
$$

$$
+\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } I \otimes n J \text { 's }
$$

$C J=0, C \circ I=0, C^{2}=n I-J, J^{2}=n J$

$$
\begin{aligned}
D^{2}= & C^{2} \otimes \cdots \otimes C^{2} \\
& +\sum\left(\text { replace } t \in C^{\prime} \text { s with } I \otimes J^{\prime} \mathrm{s}\right)^{2}
\end{aligned}
$$

$$
D^{2}=(n I-J) \otimes \cdots \otimes(n I-J)
$$

$$
+\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } I \otimes n J ' s
$$

$$
D^{2}=(n I-J) \otimes \cdots \otimes(n I-J)
$$

$$
+\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } n I \otimes J^{\prime} \text { s }
$$

$C J=0, C \circ I=0, C^{2}=n I-J, J^{2}=n J$

$$
\begin{aligned}
D^{2}= & (n I-J) \otimes \cdots \otimes(n I-J) \\
& +\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } I \otimes n J \text { 's } \\
D^{2}= & (n I-J) \otimes \cdots \otimes(n I-J) \\
& +\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } n I \otimes J \text { 's } \\
D^{2}= & (n I-J) \otimes \cdots \otimes(n I-J) \\
+ & \sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } n I \otimes(-J) \text { 's }
\end{aligned}
$$

$C J=0, C \circ I=0, C^{2}=n I-J, J^{2}=n J$

$$
\begin{aligned}
D^{2}= & (n I-J) \otimes \cdots \otimes(n I-J) \\
& +\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } I \otimes n J^{\prime} \text { s }
\end{aligned}
$$

$$
D^{2}=(n I-J) \otimes \cdots \otimes(n I-J)
$$

$$
+\sum_{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } n I \otimes J^{\prime} \text { s }
$$

$$
\begin{aligned}
D^{2} & =(n I-J) \otimes \cdots \otimes(n I-J) \\
& +\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t(n I-J) \otimes(n I-J) \text { 's with } n I \otimes(-J) \text { 's }
\end{aligned}
$$

$$
x_{i}=n I, y_{i}=-J
$$

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \otimes \cdots \otimes\left(x_{k}+y_{k}\right) \\
& +\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right) \otimes\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} \otimes y_{i+1} \text { 's } \\
& =x_{1} \otimes \cdots \otimes x_{k}+y_{1} \otimes \cdots \otimes y_{k}
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \cdots\left(x_{k}+y_{k}\right)-\left(x_{1} \cdots x_{k}+y_{1} \cdots y_{k}\right) \\
& =-\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right)\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} y_{i+1} \text { 's }
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \otimes \cdots \otimes\left(x_{k}+y_{k}\right) \\
& +\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right) \otimes\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} \otimes y_{i+1} \text { 's } \\
& =x_{1} \otimes \cdots \otimes x_{k}+y_{1} \otimes \cdots \otimes y_{k}
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \cdots\left(x_{k}+y_{k}\right)-\left(x_{1} \cdots x_{k}+y_{1} \cdots y_{k}\right) \\
& =-\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right)\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} y_{i+1} \text { 's }
\end{aligned}
$$

This is a consequence of the inclusion-exclusion, or more generally, the Möbius inversion.

Inclusion-Exclusion

$\varphi: A \rightarrow M, M$: abelian group, $A_{1}, \ldots, A_{k} \subset A$.

$$
\sum_{a \in \bigcup_{i=1}^{k} A_{i}} \varphi(a)=\sum_{t=1}^{k}(-1)^{t-1} \sum_{|T|=t} \sum_{a \in \bigcap_{i \in T} A_{i}} \varphi(a)
$$

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \cdots\left(x_{k}+y_{k}\right)-\left(x_{1} \cdots x_{k}+y_{1} \cdots y_{k}\right) \\
& =-\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right)\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} y_{i+1} \text { 's }
\end{aligned}
$$

Inclusion-Exclusion

$$
\sum_{a \in \bigcup_{i=1}^{k} A_{i}} \varphi(a)=\sum_{t=1}^{k}(-1)^{t-1} \sum_{|T|=t} \sum_{a \in \bigcap_{i \in T} A_{i}} \varphi(a)
$$

$$
\text { Let } A=\{0,1\}^{k}=\left(\bigcup_{i} A_{i}\right) \cup\{(0, \ldots, 0),(1, \ldots, 1)\} \text {, where }
$$

$$
A_{i}=\left\{\left(a_{1}, \ldots, a_{k}\right) \in A \mid\left(a_{i}, a_{i+1}\right)=(0,1)\right\}
$$

$$
\varphi\left(a_{1}, \ldots, a_{k}\right)=\left(\{ \begin{array} { l l }
{ x _ { 1 } } & { (a _ { 1 } = 0) } \\
{ y _ { 1 } } & { (a _ { 1 } = 1) }
\end{array}) \cdots \left(\left\{\begin{array}{ll}
x_{k} & \left(a_{k}=0\right) \\
y_{k} & \left(a_{k}=1\right)
\end{array}\right)\right.\right.
$$

Then

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \cdots\left(x_{k}+y_{k}\right)-\left(x_{1} \cdots x_{k}+y_{1} \cdots y_{k}\right) \\
& =-\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right)\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} y_{i+1} \text { 's }
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(x_{1}+y_{1}\right) \otimes \cdots \otimes\left(x_{k}+y_{k}\right) \\
& +\sum_{t=1}^{(k-1) / 2}(-1)^{t} \text { replace } t\left(x_{i}+y_{i}\right) \otimes\left(x_{i+1}+y_{i+1}\right)^{\prime} \text { 's with } x_{i} \otimes y_{i+1} \text { 's } \\
& =x_{1} \otimes \cdots \otimes x_{k}+y_{1} \otimes \cdots \otimes y_{k}
\end{aligned}
$$

This implies (by setting $x_{i}=n I, y_{i}=-J$)

$$
D^{2}=n^{k} I-J
$$

hence

$$
C\left(n^{k}+1\right) \neq \emptyset
$$

A weighing matrix of order n and weight w, is a $(0, \pm 1)$ matrix W satisfying $W W^{\top}=w I$.
Let $W(n, w)$ denote the set of weighing matrices of order n and weight w. Then

$$
C(n+1)=W(n+1, n) .
$$

Theorem

Let k be odd.

$$
W\left(n_{i}+1, w\right) \neq \emptyset(i=1, \ldots, k) \Longrightarrow W\left(n_{1} n_{2} \cdots n_{k}+1, w^{k}\right) \neq \emptyset .
$$

Originally formulated by Craigen (1992).
What if k is even? (Belevitch 1950, $k=2$).

