A graph with smallest eigenvalue -3 related to the shorter Leech lattice

Akihiro Munemasa
(joint work with Tetsuji Taniguchi)

June 16, 2018
Hakata Workshop Summer Meeting

A warning about the term "lattice"

A lattice could mean:

- a partially ordered set with unique least upper bounds and greatest lower bounds, or
- $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$, or
- a subgroup $L \subset \mathbb{R}^{n}$ generated by a basis In this talk, a lattice will mean the third variant.

$$
L \cong \mathbb{Z}^{\boldsymbol{n}} \quad \text { as abstract groups }
$$

L may not be isometric to \mathbb{Z}^{n}.

Vector representation of a graph

By a representation of a graph, we mean

$\{$ vertices $\} \rightarrow \boldsymbol{L}$

 (fixed distance from 0)such that, for two distinct vertices $\boldsymbol{u}, \boldsymbol{v}$,

$$
\begin{aligned}
& u \sim v \Longleftrightarrow(u, v)=1 \\
& u \nsim v \Longleftrightarrow(u, v)=0 .
\end{aligned}
$$

Vector representation of a graph (Example)

$\boldsymbol{L}=\mathbb{Z}^{n}$. Vertices are

$$
(0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)
$$

Edges are

This is just a line graph of a graph on \boldsymbol{n} vertices. How do we distinguish line graphs from non-line graphs? (orthonormal basis, vectors of norm 2...)

Vector representation of a graph (a formal definition)

Let $(\boldsymbol{G}, \boldsymbol{E})$ be a graph, \boldsymbol{m} a positive integer. A mapping

$$
\varphi: V(G) \rightarrow \mathbb{R}^{n}
$$

is a representation of norm m if $\varphi(V(G))$ spans $\mathbb{R}^{\boldsymbol{n}}$ and

$$
(\varphi(u), \varphi(v))= \begin{cases}\boldsymbol{m} & \text { if } \boldsymbol{u}=\boldsymbol{v} \\ \mathbf{1} & \text { if } \boldsymbol{u} \sim \boldsymbol{v} \\ 0 & \text { otherwise }\end{cases}
$$

Clearly, $\boldsymbol{L}\left(\boldsymbol{K}_{n}\right)$ has a representation of norm 2 in \mathbb{R}^{n}.
$\exists \varphi$ of norm $\boldsymbol{m} \Longleftrightarrow A(G)+m I$ is positive semidefinite $\Longleftrightarrow \lambda_{\min }(G) \geq-m$.

Vector representation and the lattice

Let $(\boldsymbol{G}, \boldsymbol{E})$ be a graph, \boldsymbol{m} a positive integer. Assume $\lambda_{\min }(G) \geq-m$. Let

$$
\varphi: V(G) \rightarrow \mathbb{R}^{n}
$$

be a representation of norm \boldsymbol{m}. Then

$$
L=\{\mathbb{Z} \text {-linear combinations of } \varphi(V(G))\}
$$

is a lattice.
The lattice L is unique up to isometry (independent of φ).

Dual lattice

The dual of a lattice L is

$$
L^{*}=\left\{y \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z}(\forall x \in L)\right\} \supset \boldsymbol{L}
$$

If \boldsymbol{G} is the line graph of a graph $\boldsymbol{H}, \varphi: \boldsymbol{V}(\boldsymbol{G}) \rightarrow \boldsymbol{L} \rightarrow \mathbb{R}^{\boldsymbol{n}}$ is a representation of norm 2
$\Longrightarrow\left\{\begin{array}{l}\exists \psi: V(G) \rightarrow \mathbb{R}^{|\boldsymbol{V}(\boldsymbol{H})|}: \text { representation of norm } 2, \\ \left(\psi(\boldsymbol{V}(\boldsymbol{G})), \boldsymbol{e}_{\boldsymbol{i}}\right) \in\{0,1\} \quad(\mathbf{1} \leq \boldsymbol{i} \leq|\boldsymbol{V}(\boldsymbol{H})|)\end{array}\right.$
$\Longrightarrow\left\{\begin{array}{l}\exists \text { embedding } \boldsymbol{L} \rightarrow \mathbb{R}^{|\boldsymbol{V}(\boldsymbol{H})|}, \\ \boldsymbol{L}^{*} \text { contains vectors of norm at most } 1 .\end{array}\right.$
The minimum norm of the dual \boldsymbol{L}^{*} of the lattice \boldsymbol{L} generated by a representation of a graph gives an important information about how close G is to a line graph.

Minimum of the dual lattice

Assume $\boldsymbol{\lambda}_{\min }(G) \geq-\boldsymbol{m}$.

$$
\mu_{m}^{*}(G)=\min \left\{(y, y) \mid y \in L^{*}, y \neq 0\right\}
$$

where L is the lattice generated by a norm \boldsymbol{m} representation of \boldsymbol{G}.

Proposition

If G is a line graph, then $\mu_{2}^{*}(G) \leq 1$.
If $|V(G)| \leq 5$ and $\lambda_{\min }(G) \geq-2$, then $\mu_{2}^{*}(G) \leq 1$. However,

$$
\mu_{2}^{*}\left(E_{6}\right)=\frac{4}{3}>1
$$

$\mu_{2}^{*}(G)$ and $\mu_{3}^{*}(G)$

$\|V(G)\|$	$\mu_{3}^{*}(G)$
≤ 8	≤ 1
9	$8 / 7,16 / 15$
$?$	$?$
16	2
23	3

There exists a graph G with 16 vertices such that $\mu_{3}^{*}(G)=2$. Its norm 3 representation generates the overlattice of the Barnes-Wall lattice.

$\|V(G)\|$	$\mu_{3}^{*}(G)$
≤ 8	≤ 1
9	$8 / 7,16 / 15$
$?$	$?$
$16(\min ?)$	2
$23(\min ?)$	3

- $\exists G$ with 16 vertices such that $\mu_{3}^{*}(G)=2$, its norm 3 representation generates the overlattice of the Barnes-Wall lattice.
- $\exists G$ with 23 vertices such that $\mu_{3}^{*}(G)=3$, its norm 3 representation generates the shorter Leech lattice.

The shorter Leech lattice

Characterized by

- unimodular
- rank 23
- minimum norm 3

Its kissing number (the number of norm 3 vectors) is 4600 .

The (complement of the) McLaughlin graph

Unique strongly regular graph with parameters

$$
v=275, k=162, \lambda=105, \mu=81 .
$$

It has smallest eigenvalue -3 with multiplicity 252

$$
\operatorname{rank}(A+3 I)=23
$$

\Longrightarrow a lattice of rank 23 generated by norm 3 vectors.
This lattice is not the shorter Leech lattice, rather, it is a sublattice of index 3 in the shorter Leech lattice, with kissing number 550 .

```
01111111111101110111011
10111111111101110110010
11011111111100110111000
11101111111101011010010
11110111111101010001110
11111011111101101111110
11111101111100000111100
11111110111101110011100
11111111011101101101001
11111111101101100011111
11111111110101110100010
11111111111011111111100
000000000001011111111100
11011101111110111111011
11100101111111011111010
11111001001111101111010
00010100100111110111010
11100110101111111011001
11110111010111111101110
10101111110111111110101
000011111010110000011000
11011100011001111010000
10000000110001000101000
```

