Complementary Ramsey Numbers and Ramsey Graphs

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

joint work with Masashi Shinohara

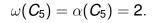
November 3, 2018 The 7th ICMNS Institut Teknologi Bandung

Ramsey Numbers

For a graph G,

 $\alpha(G) = independence number = max{\#independent set}$

 $\omega(G) = clique number = max{\#clique}$



 $\forall G \text{ with 6 vertices}, \omega(G) \geq 3 \text{ or } \alpha(G) \geq 3.$ These facts can be conveniently described by the Ramsey number:

$$R(3,3) = 6.$$

The smallest number of vertices required to guarantee $\omega \ge 3$ or $\alpha \ge 3$ (precise definition in the next slide).

Ramsey Numbers and a Generalization

Definition

The Ramsey number $R(m_1, m_2)$ is defined as:

 $R(m_1, m_2)$ = min{n | |V(G)| = n $\implies \omega(G) \ge m_1 \text{ or } \alpha(G) \ge m_2$ } = min{n | |V(G)| = n $\implies \omega(G) \ge m_1 \text{ or } \omega(\overline{G}) \ge m_2$ }

Ramsey Numbers and a Generalization

Definition

The Ramsey number $R(m_1, m_2)$ is defined as:

 $R(m_1, m_2)$ = min{n | |V(G)| = n $\implies \omega(G) \ge m_1 \text{ or } \alpha(G) \ge m_2$ } = min{n | |V(G)| = n $\implies \omega(G) \ge m_1 \text{ or } \omega(\overline{G}) \ge m_2$ }

A graph with *n* vertices defines a partition of $E(K_n)$ into 2 parts, "edges" and "non-edges".

Ramsey Numbers and a Generalization

Definition

The Ramsey number $R(m_1, m_2)$ is defined as:

 $R(m_1, m_2)$ = min{n | |V(G)| = n $\implies \omega(G) \ge m_1 \text{ or } \alpha(G) \ge m_2$ } = min{n | |V(G)| = n $\implies \omega(G) \ge m_1 \text{ or } \omega(\overline{G}) \ge m_2$ }

A graph with *n* vertices defines a partition of $E(K_n)$ into 2 parts, "edges" and "non-edges".

Generalized Ramsey numbers $R(m_1, m_2, ..., m_k)$ can be defined if we consider partitions of $E(K_n)$ into k parts, i.e., (not necessarily proper) edge-colorings.

Definition (Complementary Ramsey numbers)

We write by $[n] = \{1, 2, ..., n\}$, and denote by $E(K_n) = {[n] \choose 2}$ the set of 2-subsets of [n]. The set of *k*-edge-coloring of K_n is denoted by C(n, k):

$$C(n,k) = \{f \mid f : E(K_n) \to [k]\}.$$

We abbreviate

$$\omega_i(f) = \omega([n], f^{-1}(i)), \quad \alpha_i(f) = \alpha([n], f^{-1}(i)).$$

 $R(m_1,\ldots,m_k) = \min\{n \mid \forall f \in C(n,k), \exists i \in [k], \omega_i(f) \ge m_i\}$ $\overline{R}(m_1,\ldots,m_k) = \min\{n \mid \forall f \in C(n,k), \exists i \in [k], \alpha_i(f) \ge m_i\}$

The last one is called the complemtary Ramsey number.

Definition (Complementary Ramsey numbers)

We write by $[n] = \{1, 2, ..., n\}$, and denote by $E(K_n) = {[n] \choose 2}$ the set of 2-subsets of [n]. The set of *k*-edge-coloring of K_n is denoted by C(n, k):

$$C(n,k) = \{f \mid f : E(K_n) \to [k]\}.$$

We abbreviate

$$\omega_i(f) = \omega([n], f^{-1}(i)), \quad \alpha_i(f) = \alpha([n], f^{-1}(i)).$$

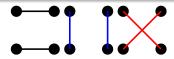
 $R(m_1,\ldots,m_k) = \min\{n \mid \forall f \in C(n,k), \exists i \in [k], \omega_i(f) \ge m_i\}$ $\overline{R}(m_1,\ldots,m_k) = \min\{n \mid \forall f \in C(n,k), \exists i \in [k], \alpha_i(f) \ge m_i\}$

The last one is called the complemtary Ramsey number.

$$\bar{R}(m_1, m_2) = R(m_2, m_1) = R(m_1, m_2).$$

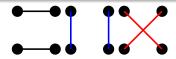
So we focus on the case k = 3. Also we assume $m_i \ge 3$.

$\overline{R}(3,3,3) = 5$ by factorization



- *K*₄ has a 3-edge-coloring *f* into 2*K*₂ (a 1-factorization). Then α_i(f) = 2 for *i* = 1, 2, 3. This implies *R*(3, 3, 3) > 4.
- If *f* is a 3-edge-coloring of K₅, then some color *i* has at most 3 edges, so α_i(f) ≥ 3. This implies *R*(3,3,3) ≤ 5.

$\overline{R}(3,3,3) = 5$ by factorization



*K*₄ has a 3-edge-coloring *f* into 2*K*₂ (a 1-factorization). Then α_i(f) = 2 for *i* = 1, 2, 3. This implies *R*(3, 3, 3) > 4.

 If *f* is a 3-edge-coloring of K₅, then some color *i* has at most 3 edges, so α_i(f) ≥ 3. This implies *R*(3,3,3) ≤ 5.

())) .	_							
m	3	4	5	6	7	8	9–13	14–
$\bar{R}(m, 3, 3)$	5	5	5	6	6	6	6	6
$\bar{R}(m, 4, 3)$	5	7	8	8	9	9	9	9
$\bar{R}(m, 5, 3)$	5	8	9	11	12	12	13	14
$\bar{R}(m, 6, 3)$	6	8	11	?	?	?	?	?
$\overline{R}(m,4,4)$		10		?	?	?	?	?
nese were de	terr	ninea	d by (Chur	ng an	d Liu	(1978)	•

History

- First considered by Erdős, Hajnal and Rado (1965).
- Erdős and Szemerédi (1972) gave an asymptotic upper bound.
- Chung and Liu (1978): fractional Ramsey numbers.
- Harborth and Möller (1999): weakened Ramsey numbers.
- Xu, Shao, Su, and Li (2009): multigraph Ramsey numbers.

History

- First considered by Erdős, Hajnal and Rado (1965).
- Erdős and Szemerédi (1972) gave an asymptotic upper bound.
- Chung and Liu (1978): fractional Ramsey numbers.
- Harborth and Möller (1999): weakened Ramsey numbers.
- Xu, Shao, Su, and Li (2009): multigraph Ramsey numbers.

Despite these work, some small complementary Ramsey numbers seem undetermined, for example,

$$\bar{R}(4,4,4) = 10, \quad \bar{R}(5,4,4) = ?$$

т								
$\bar{R}(m, 4, 4)$	5	10	13	14	15	16	17	18

Greenwood and Gleason (1955): R(4, 4) = 18.

m	3	4	5	6	7	8	9–15	16–
$\bar{R}(m,6,3)$	6	8	11	13	14	16	17	18

Kéry (1964), Cariolaro (2007): *R*(6,3) = 18.

Ramsey (s, t)-graph

A graph G is said to be a Ramsey (s, t)-graph if

 $\omega(G) < s$ and $\alpha(G) < t$.

We denote by $\mathcal{R}_n(s, t)$ the set of Ramsey (s, t)-graphs on the vertex-set [n].

Ramsey (s, t)-graph

A graph G is said to be a Ramsey (s, t)-graph if

 $\omega(G) < s$ and $\alpha(G) < t$.

We denote by $\mathcal{R}_n(s, t)$ the set of Ramsey (s, t)-graphs on the vertex-set [n].

B.D. McKay has database of (known) Ramsey graphs.

$$\begin{split} |\mathcal{R}_{18}(4,4)| &= 0, \\ |\mathcal{R}_{17}(4,4)| &= 1, \\ &\vdots \\ |\mathcal{R}_{12}(4,4)| &= 1449166, \\ &\vdots \end{split}$$

From Ramsey (4, 4)-graphs to $\overline{R}(m, 4, 4)$

Lemma

Let

$$a_n = \min\{\alpha(G - H) \mid G, H \in \mathcal{R}_n(4, 4), \ G \supseteq H\}.$$

Then

$$\bar{R}(m,4,4) = 1 + \max\{n \in \mathbb{N} \mid a_n < m\}.$$

From Ramsey (4, 4)-graphs to $\overline{R}(m, 4, 4)$

Lemma

Let

$$a_n = \min\{\alpha(G - H) \mid G, H \in \mathcal{R}_n(4, 4), \ G \supseteq H\}.$$

Then

$$\overline{R}(m,4,4) = 1 + \max\{n \in \mathbb{N} \mid a_n < m\}.$$

Note

$$a_n = \min\{\alpha(G - H) \mid G: \text{ maximal in } \mathcal{R}_n(4, 4), \\ H: \text{ minimal in } \mathcal{R}_n(4, 4), \\ G \supseteq H\}$$

Database gives graphs only up to isomorphism.

We found an algorithm to determine:

given $m \in \mathbb{N}$, G: maximal in $\mathcal{R}_n(4,4)$,

whether $\exists H \in \mathcal{R}_n(4,4), \ G \supseteq H, \ \alpha(G-H) = m$

We found an algorithm to determine:

given $m \in \mathbb{N}$, G: maximal in $\mathcal{R}_n(4, 4)$,

whether $\exists H \in \mathcal{R}_n(4,4), \ G \supseteq H, \ \alpha(G-H) = m$

Run this algorithm for all G: maximal in $\mathcal{R}_n(4, 4)$, to obtain

$$a_n = \min\{\alpha(G - H) \mid G: \text{ maximal in } \mathcal{R}_n(4, 4), \\ H \in \mathcal{R}_n(4, 4), \ G \supseteq H\}.$$

We found an algorithm to determine:

given $m \in \mathbb{N}$, G: maximal in $\mathcal{R}_n(4, 4)$,

whether $\exists H \in \mathcal{R}_n(4,4), \ G \supseteq H, \ \alpha(G-H) = m$

Run this algorithm for all G: maximal in $\mathcal{R}_n(4, 4)$, to obtain

$$a_n = \min\{\alpha(G - H) \mid G: \text{ maximal in } \mathcal{R}_n(4, 4), \\ H \in \mathcal{R}_n(4, 4), \ G \supseteq H\}.$$

n	9	10–12	13	14	15	16	17	18–
an	3	4	6	7	10	16	17	∞

We found an algorithm to determine:

given $m \in \mathbb{N}$, G: maximal in $\mathcal{R}_n(4, 4)$,

whether $\exists H \in \mathcal{R}_n(4,4), \ G \supseteq H, \ \alpha(G-H) = m$

Run this algorithm for all G: maximal in $\mathcal{R}_n(4, 4)$, to obtain

$$a_n = \min\{lpha(G - H) \mid G : \text{ maximal in } \mathcal{R}_n(4, 4), H \in \mathcal{R}_n(4, 4), G \supseteq H\}.$$

n	9	10–12	13	14	15	16	17	18–
an	3	4	6	7	10	16	17	∞

 $\bar{R}(m,4,4) = 1 + \max\{n \in \mathbb{N} \mid a_n < m\}.$

We found an algorithm to determine:

given $m \in \mathbb{N}$, G: maximal in $\mathcal{R}_n(4, 4)$,

whether $\exists H \in \mathcal{R}_n(4,4), \ G \supseteq H, \ \alpha(G-H) = m$

Run this algorithm for all G: maximal in $\mathcal{R}_n(4, 4)$, to obtain

$$a_n = \min\{lpha(G - H) \mid G : \text{ maximal in } \mathcal{R}_n(4, 4), H \in \mathcal{R}_n(4, 4), G \supseteq H\}.$$

n	9	10–12	13	14	15	16	17	18–
an	3	4	6	7	10	16	17	∞

 $\overline{R}(m,4,4) = 1 + \max\{n \in \mathbb{N} \mid a_n < m\}.$

Similarly, from database of $\mathcal{R}_n(3,6)$, we obtain $\overline{R}(m,6,3)$.

We found an algorithm to determine:

given $m \in \mathbb{N}$, G: maximal in $\mathcal{R}_n(4, 4)$,

whether $\exists H \in \mathcal{R}_n(4,4), \ G \supseteq H, \ \alpha(G-H) = m$

Run this algorithm for all G: maximal in $\mathcal{R}_n(4, 4)$, to obtain

$$a_n = \min\{\alpha(G - H) \mid G: \text{ maximal in } \mathcal{R}_n(4, 4), \\ H \in \mathcal{R}_n(4, 4), \ G \supseteq H\}.$$

n	9	10–12	13	14	15	16	17	18–
an	3	4	6	7	10	16	17	∞

 $\overline{R}(m,4,4) = 1 + \max\{n \in \mathbb{N} \mid a_n < m\}.$

Similarly, from database of $\mathcal{R}_n(3,6)$, we obtain $\overline{R}(m,6,3)$.

Thank you very much for your attention!