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Ramsey Numbers
For a graph G,

α(G) = independence number = max{#independent set}
ω(G) = clique number = max{#clique}

ω(C5) = α(C5) = 2.

∀G with 6 vertices, ω(G) ≥ 3 or α(G) ≥ 3.
These facts can be conveniently described by the
Ramsey number:

R(3,3) = 6.
The smallest number of vertices required to guarantee
ω ≥ 3 or α ≥ 3 (precise definition in the next slide).
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Ramsey Numbers and a Generalization

Definition
The Ramsey number R(m1,m2) is defined as:

R(m1,m2)

= min{n | |V (G)| = n =⇒ ω(G) ≥ m1 or α(G) ≥ m2}
= min{n | |V (G)| = n =⇒ ω(G) ≥ m1 or ω(G) ≥ m2}

A graph with n vertices defines a partition of E(Kn) into 2
parts, “edges” and “non-edges”.

Generalized Ramsey numbers R(m1,m2, . . . ,mk) can be
defined if we consider partitions of E(Kn) into k parts, i.e.,
(not necessarily proper) edge-colorings.
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Definition (Complementary Ramsey numbers)
We write by [n] = {1,2, . . . , n}, and denote by
E(Kn) =

(
[n]
2

)
the set of 2-subsets of [n]. The set of

k -edge-coloring of Kn is denoted by C(n, k):

C(n, k) = {f | f : E(Kn) → [k ]}.

We abbreviate
ωi(f ) = ω([n], f−1(i)), αi(f ) = α([n], f−1(i)).

R(m1, . . . ,mk) = min{n | ∀f ∈ C(n, k), ∃i ∈ [k ], ωi(f ) ≥ mi}
R̄(m1, . . . ,mk) = min{n | ∀f ∈ C(n, k), ∃i ∈ [k ], αi(f ) ≥ mi}

The last one is called the complemtary Ramsey number.

R̄(m1,m2) = R(m2,m1) = R(m1,m2).

So we focus on the case k = 3. Also we assume mi ≥ 3.
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R̄(3,3,3) = 5 by factorization

K4 has a 3-edge-coloring f into 2K2 (a
1-factorization). Then αi(f ) = 2 for i = 1,2,3. This
implies R̄(3,3,3) > 4.
If f is a 3-edge-coloring of K5, then some color i has
at most 3 edges, so αi(f ) ≥ 3. This implies
R̄(3,3,3) ≤ 5.

m 3 4 5 6 7 8 9–13 14–
R̄(m,3,3) 5 5 5 6 6 6 6 6
R̄(m,4,3) 5 7 8 8 9 9 9 9
R̄(m,5,3) 5 8 9 11 12 12 13 14
R̄(m,6,3) 6 8 11 ? ? ? ? ?
R̄(m,4,4) 5 10 ? ? ? ? ? ?

These were determined by Chung and Liu (1978).
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History

First considered by Erdős, Hajnal and Rado (1965).
Erdős and Szemerédi (1972) gave an asymptotic
upper bound.
Chung and Liu (1978): fractional Ramsey numbers.
Harborth and Möller (1999): weakened Ramsey
numbers.
Xu, Shao, Su, and Li (2009): multigraph Ramsey
numbers.

Despite these work, some small complementary Ramsey
numbers seem undetermined, for example,

R̄(4,4,4) = 10, R̄(5,4,4) =?
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Our results

m 3 4 5–6 7 8–10 11–16 17 18–
R̄(m,4,4) 5 10 13 14 15 16 17 18

Greenwood and Gleason (1955): R(4,4) = 18.

m 3 4 5 6 7 8 9–15 16–
R̄(m,6,3) 6 8 11 13 14 16 17 18

Kéry (1964), Cariolaro (2007): R(6,3) = 18.
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Ramsey (s, t)-graph
A graph G is said to be a Ramsey (s, t)-graph if

ω(G) < s and α(G) < t .

We denote by Rn(s, t) the set of Ramsey (s, t)-graphs on
the vertex-set [n].

B.D. McKay has database of (known) Ramsey graphs.

|R18(4,4)| = 0,
|R17(4,4)| = 1,

...
|R12(4,4)| = 1449166,

...
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From Ramsey (4,4)-graphs to R̄(m,4,4)

Lemma

Let

an = min{α(G − H) | G,H ∈ Rn(4,4), G ⊇ H}.

Then

R̄(m,4,4) = 1 + max{n ∈ N | an < m}.

Note

an = min{α(G − H) | G : maximal in Rn(4,4),
H : minimal in Rn(4,4),
G ⊇ H}

Database gives graphs only up to isomorphism.

G ⊇ H ⇐⇒ G contains an isomorphic copy of H
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Our method
We found an algorithm to determine:

given m ∈ N, G : maximal in Rn(4,4),

whether ∃H ∈ Rn(4,4), G ⊇ H, α(G − H) = m

Run this algorithm for all G: maximal in Rn(4,4), to obtain

an = min{α(G − H) | G : maximal in Rn(4,4),
H ∈ Rn(4,4), G ⊇ H}.

n 9 10–12 13 14 15 16 17 18–
an 3 4 6 7 10 16 17 ∞

R̄(m,4,4) = 1 + max{n ∈ N | an < m}.
Similarly, from database of Rn(3,6), we obtain R̄(m,6,3).

Thank you very much for your attention!
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