Exercises for Munemasa's lectures

1. Let p be a prime, and let a be an integer which is relatively prime to p. Regarding a as an element of \mathbb{F}_{p}, describe a^{-1} in \mathbb{F}_{p}.
2. Let K be a field, and let $K[x]$ be the univariate polynomial ring with indeterminate x. For $f(x), g(x) \in K[x] \backslash\{0\}$, show that $\operatorname{deg}(f g)=\operatorname{deg} f+$ $\operatorname{deg} g$ holds.
3. With the same assumptions as in Problem 2, suppose $b \in K$ and $f(b)=0$. Show that there exists $g(x) \in K[x]$ such that $f(x)=(x-b) g(x)$.
4. With the same assumptions as in Problem 2, show that

$$
|\{b \in K \mid f(b)=0\}| \leq \operatorname{deg} f .
$$

5. Let p be an odd prime. For a divisor d of $p-1$, show that the number of elements of order d in \mathbb{F}_{p} is at most $\varphi(d)$, where φ denotes Euler's function. Deduce that \mathbb{F}_{p} contains an element of order $p-1$.
6. Let p be an odd prime. Show that the definitions of the quadratic residues and that of quadratic nonresidues in \mathbb{F}_{p} given below

$$
\begin{aligned}
Q & =\left\{1, \alpha^{2}, \alpha^{4}, \ldots, \alpha^{p-3}\right\}, \\
N & =\left\{\alpha, \alpha^{3}, \ldots, \alpha^{p-2}\right\} .
\end{aligned}
$$

are independent of the choice of a primitive element α.
7. With the same assumptions as in Problem 6, show that $-1 \notin Q$ and $-Q=N$, provided $p \equiv-1(\bmod 4)$.
8. With the same assumptions as in Problem 7, let

$$
\mathcal{B}=\left\{Q+a \mid a \in \mathbb{F}_{p}\right\} .
$$

Show that, for any distinct $x, y \in \mathbb{F}_{p}$,

$$
|\{B \in \mathcal{B} \mid x, y \in B\}|=\frac{p-3}{4}
$$

