Exercises for Munemasa's lectures

1. Let p be a prime, and let a be an integer which is relatively prime to p. Regarding a as an element of \mathbb{F}_p , describe a^{-1} in \mathbb{F}_p .

2. Let K be a field, and let K[x] be the univariate polynomial ring with indeterminate x. For $f(x), g(x) \in K[x] \setminus \{0\}$, show that $\deg(fg) = \deg f + \deg g$ holds.

3. With the same assumptions as in Problem 2, suppose $b \in K$ and f(b) = 0. Show that there exists $g(x) \in K[x]$ such that f(x) = (x - b)g(x). **4.** With the same assumptions as in Problem 2, show that

$$|\{b \in K \mid f(b) = 0\}| \le \deg f.$$

5. Let p be an odd prime. For a divisor d of p-1, show that the number of elements of order d in \mathbb{F}_p is at most $\varphi(d)$, where φ denotes Euler's function. Deduce that \mathbb{F}_p contains an element of order p-1.

6. Let p be an odd prime. Show that the definitions of the quadratic residues and that of quadratic nonresidues in \mathbb{F}_p given below

$$Q = \{1, \alpha^2, \alpha^4, \dots, \alpha^{p-3}\},\$$
$$N = \{\alpha, \alpha^3, \dots, \alpha^{p-2}\}.$$

are independent of the choice of a primitive element α .

7. With the same assumptions as in Problem 6, show that $-1 \notin Q$ and -Q = N, provided $p \equiv -1 \pmod{4}$.

8. With the same assumptions as in Problem 7, let

$$\mathcal{B} = \{ Q + a \mid a \in \mathbb{F}_p \}.$$

Show that, for any distinct $x, y \in \mathbb{F}_p$,

$$|\{B \in \mathcal{B} \mid x, y \in B\}| = \frac{p-3}{4}.$$