Krein parameters of fiber－commutative coherent configurations

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
joint work with Keiji Ito arXiv：1901．11484

February 23， 2019
Taipei International Workshop on Combinatorics and Graph Theory Institute of Mathematics，Academia Sinica

Krein condition for coherent configurations

S．A．Hobart，Linear Algebra Appl．226／228（1995），499－508． In our applications \ldots ．，we use $Z=Z^{\prime}=\phi_{s}(J)$ ， where J is the all 1 s matrix．Other choices do not produce any new results for these particular examples．

The goal of this talk is to clarify this claim by proving it in a more general setting（fiber－commutative）．

In doing so，we develop a theory analogous to commutative coherent configurations＝association schemes

History

L．L．Scott（1973）attributes the discovery of the source of Krein condition

$$
q_{i j}^{k} \geq 0
$$

to C．Dunkl，who attributes the condition itself to the work of M．G．Krein（1950）．P．Delsarte（1973）formulated and proved the inequality for association schemes．

The indices i, j, k range over a set of irreducible representations appearing in a particular module in question．
The parameters $q_{i j}^{k}$ are called Krein parameters．
A special case is the tensor product coefficients for irreducible characters of finite groups．
Cameron，Goethals and Seidel（1978）related Krein parameters to Norton algebras．

Combinatorial applications

Properties of Krein parameters：
－Krein conditions
－Absolute bounds
are used to rule out existence of certain putative strongly regular graphs．

See Brouwer＇s database of strongly regular graphs．

Coherent configuration＝coherent algebra

A \mathbb{C}－subspace $\mathcal{A} \subset M_{n}(\mathbb{C})$ is called a coherent algebra if
－closed under matrix product，
－$I \in \mathcal{A}$ ，
－closed under entrywise product，
－$J \in \mathcal{A}$ ，
－closed under conjugate－transpose $*$ ．
$\Longrightarrow \exists\left\{A_{i} \mid i \in \Lambda\right\}$ ：basis of $\mathcal{A},(0,1)$－matrices，with

$$
\sum_{i \in \Lambda} A_{i}=J, \quad\left\{A_{i} \mid i \in \Lambda\right\}=\left\{A_{i}^{\top} \mid i \in \Lambda\right\} .
$$

The trivial coherent algebra：$\langle I, J\rangle, M_{n}(\mathbb{C})$ ．

Strongly regular graph

Let \boldsymbol{A} be the adjacency matrix of an undirected graph \boldsymbol{G} ．Then the 3 －dimensional vector space

$$
\mathcal{A}=\langle I, A, J-I-A\rangle
$$

is a（commutative）coherent algebra if and only if G is a strongly regular graph，i．e．，

$$
\begin{aligned}
A J & =k J \\
A^{2} & =k I+\lambda A+\mu(J-I-A)
\end{aligned}
$$

for some $\boldsymbol{k}, \boldsymbol{\lambda}, \boldsymbol{\mu}$ ．

Projective plane $(\mathcal{P}, \mathcal{L})$

It is an incidence structure consists of points \mathcal{P} ，lines \mathcal{L} with incidence relation between them，satisfying certain axioms．It can be described by a set of matrices whose rows and columns are indexed by $\mathcal{P} \cup \mathcal{L}$ ：

$$
\begin{aligned}
& \mathcal{P} \quad \mathcal{L} \\
& \mathcal{\mathcal { P }}\left(\begin{array}{ll}
* & * \\
* & *
\end{array}\right) \\
& \left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
J-I & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & I
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & J-I
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & J-M \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
M^{\top} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
J-M^{\top} & 0
\end{array}\right)
\end{aligned}
$$

Commutative coherent algebra＝association scheme

$$
\begin{gathered}
M_{n}(\mathbb{C}) \supset \mathcal{A}=\left\langle A_{i} \mid i \in \Lambda\right\rangle=\bigoplus_{i} \mathbb{C} E_{i} . \\
E_{i} E_{j}=\delta_{i j} E_{i} . \\
E_{i} \circ E_{j}=\frac{1}{n} \sum_{k} q_{i j}^{k} \boldsymbol{E}_{k} .
\end{gathered}
$$

The scalars $q_{i j}^{k}$ are called Krein parameters．Krein condition asserts $q_{i j}^{k} \geq 0$ ．To see this，it suffices to invoke

Lemma

Let $\boldsymbol{A}, \boldsymbol{B} \in M_{n}(\mathbb{C})$ be Hermitian matrices．If $A, B \succeq 0$ ，then $A \circ B \succeq 0$ ．
Proof．
$\boldsymbol{A} \otimes \boldsymbol{B} \succeq 0$ and it contains $\boldsymbol{A} \circ \boldsymbol{B}$ as a principal submatrix．

Krein condition

We could begin with a commutative algebra

$$
\mathcal{A}=\left\langle A_{i} \mid i \in \Lambda\right\rangle
$$

defined by structure constants：

$$
A_{i} A_{j}=\sum_{k} p_{i j}^{k} A_{k}
$$

With modest hypothesis，it has decomposition

$$
\mathcal{A}=\bigoplus_{i} \mathbb{C} \boldsymbol{E}_{i}, \quad \boldsymbol{E}_{i} \boldsymbol{E}_{j}=\delta_{i j} \boldsymbol{E}_{i}
$$

Define \circ by $A_{i} \circ A_{j}=\delta_{i j} \boldsymbol{A}_{i}$（and extend by linearity）．Define $q_{i j}^{k}$ by

$$
\boldsymbol{E}_{i} \circ \boldsymbol{E}_{j}=\sum_{k} \boldsymbol{q}_{i j}^{k} \boldsymbol{E}_{k}
$$

If $\boldsymbol{q}_{i j}^{k} \geq 0$ fails，then \mathcal{A} cannot be a coherent algebra（there cannot be a coherent algebra with structure constants $p_{i j}^{k}$ ）．

Non－

case

Let \mathcal{A} be a（not necessarily commutative）coherent algebra．

$$
\begin{aligned}
M_{n}(\mathbb{C}) \supset \mathcal{A} & =\bigoplus_{i} \mathcal{I}_{i}, \\
\mathcal{I}_{i} & \cong M_{e_{i}}(\mathbb{C})=\mathbb{C} \quad(* \text {-isomorphic }) \\
\mathcal{I}_{i} & =\mathcal{A} E_{i} \mathcal{A}=\mathcal{A} E_{i}=\mathbb{C} E_{i}
\end{aligned}
$$

Let $\mathcal{P}(\cdot)$ denote the subset of Hermitian positive semidefinite matrices：

$$
\mathcal{P}(\cdot)=\{Z \in \cdot \mid Z \succeq 0\}
$$

Krein condition（for coherent configurations）asserts

$$
\forall \boldsymbol{F} \in \mathcal{P}\left(\mathcal{I}_{i}\right), \forall \boldsymbol{F}^{\prime} \in \mathcal{P}\left(\mathcal{I}_{j}\right), \boldsymbol{F} \circ \boldsymbol{F}^{\prime} \succeq \mathbf{0} \quad \boldsymbol{E}_{i} \circ \boldsymbol{E}_{j} \succeq 0
$$

or equivalently $\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E}_{\boldsymbol{k}} \in \mathcal{P}\left(\mathcal{I}_{k}\right)$ for all \boldsymbol{k} ．

Summary of results

commutative	fiber－commutative
（central）primitive	basis of
idempotents	matrix units
Krein parameters	matrix of
$\boldsymbol{q}_{i j}^{k}$	Krein parameters
	$Q_{i j}^{k}$
essentially unique	
Krein condition	Krein condition
$\boldsymbol{q}_{i j}^{k} \geq \mathbf{0}$	$\boldsymbol{Q}_{i j}^{k} \succeq \mathbf{0}$
absolute bound	absolute bound
$\sum_{\boldsymbol{q}_{i j}^{k} \neq 0} \boldsymbol{m}_{\boldsymbol{k}} \leq \boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{m}_{\boldsymbol{j}}$	$\sum_{\boldsymbol{k}} \boldsymbol{m}_{\boldsymbol{k}}$ rank $\boldsymbol{Q}_{i j}^{k} \leq \boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{m}_{\boldsymbol{j}}$

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}=\bigoplus \mathcal{I}_{k}$

Recall，for a projective plane，

$$
\left.\begin{array}{c}
\mathcal{P} \\
\mathcal{P} \\
\mathcal{L}\left(\begin{array}{c}
* \\
*
\end{array}\right. \\
* \\
*
\end{array}\right) .
$$

In general，

$$
\mathcal{A}=\left(\begin{array}{c|c|c}
\mathcal{A}_{11} & \mathcal{A}_{12} & * \\
\hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \\
\hline * & * & *
\end{array}\right)=\bigoplus_{i, j} \mathcal{A}_{i j}=\bigoplus_{k} \mathcal{I}_{k}, \quad \mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C}) .
$$

We say \mathcal{A} is fiber－commutative if $\mathcal{A}_{i i}$ is commutative for all \boldsymbol{i} ．

Lemma（Hobart－Williford，2014）

If \mathcal{A} is fiber－commutative，then $\operatorname{dim} \mathcal{A}_{i j} \cap \mathcal{I}_{k}=0$ or 1 for all i, j, k ．

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}=\bigoplus \mathcal{I}_{k}$

To avoid cumbersome notation，we fix $\mathcal{I}=\mathcal{I}_{k_{0}}$ ．Let \boldsymbol{E} be the corresponding central idempotent：

$$
\mathcal{I}=\mathcal{A} E \mathcal{A}=\mathcal{A} E
$$

Since $\mathcal{I} \cong M_{e}(\mathbb{C})(*$－isomorphic）for some e, \mathcal{I} has a basis of matrix units $\left\{e_{i j}\right\}$ ：

$$
e_{i j} e_{k \ell}=\delta_{j k} e_{i l}
$$

Then

$$
\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\}
$$

Krein condition asserts（in particular）

$$
\forall F, F^{\prime} \in \mathcal{P}(\mathcal{I}),\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) E \in \mathcal{P}(\mathcal{I})
$$

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}, \mathcal{I}=\left\langle e_{i j} \mid 1 \leq i, j \leq e\right\rangle$

Lemma（Hobart－Williford，2014）

If \mathcal{A} is fiber－commutative，then $\operatorname{dim} \mathcal{A}_{i j} \cap \mathcal{I}=0$ or 1 for all $\boldsymbol{i}, \boldsymbol{j}$ ．

Since

$$
\begin{gathered}
e_{i j} e_{k \ell}=\delta_{j k} e_{i \ell}, \\
\mathcal{A}_{i j} \mathcal{A}_{k \ell} \subset \delta_{j k} \mathcal{A}_{i \ell},
\end{gathered}
$$

we may assume without loss of generality $e_{i j} \in \mathcal{A}_{i j}$ ．So，

$$
\bigoplus_{i, j} \mathcal{A}_{i j}=\begin{array}{|c|c|c|}
\hline * & * & * \\
\hline * & * & * \\
\hline * & * & * \\
\hline
\end{array} \supset \mathcal{I}=\begin{array}{|c|c|c|}
\hline e_{11} & e_{12} & \mathbf{0} \\
\hline e_{21} & e_{22} & 0 \\
\hline 0 & 0 & 0 \\
\hline
\end{array}
$$

$\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\}$

For $\boldsymbol{F}=\sum z_{i j} e_{i j}, \boldsymbol{F}^{\prime}=\sum z_{i j}^{\prime} e_{i j} \in \mathcal{P}(\mathcal{I})$ ，Krein condition asserts

$$
\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E} \succeq 0 .
$$

Since $e_{i j} \in \mathcal{A}_{i j}$ and $\mathcal{A}_{i j} \circ \mathcal{A}_{k \ell}=0$ if $(i, j) \neq(k, \ell)$ ，

$$
e_{i j} \circ e_{k \ell}=0 \quad \text { if }(i, j) \neq(k, \ell) .
$$

Since $\mathcal{A}_{i j} \boldsymbol{E}=\boldsymbol{E} \mathcal{A}_{i j} \subseteq \mathcal{A}_{i j} \cap \mathcal{I}=\mathbb{C} e_{i j}$ ，

$$
\left(e_{i j} \circ e_{i j}\right) \boldsymbol{E}=\boldsymbol{q}_{i j} e_{i j} \quad \text { for some } q_{i j} \in \mathbb{C} .
$$

Thus

$$
\begin{aligned}
\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E} & =\left(\left(\sum z_{i j} e_{i j}\right) \circ\left(\sum z_{i j}^{\prime} e_{i j}\right)\right) \boldsymbol{E} \\
& =\sum z_{i j} z_{i j}^{\prime} q_{i j} e_{i j} \\
& =\sum\left(Z \circ Z^{\prime} \circ Q\right)_{i j} e_{i j}
\end{aligned}
$$

where $Z=\left(z_{i j}\right), Z^{\prime}=\left(z_{i j}^{\prime}\right), Q=\left(q_{i j}\right)$ ．

$\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\}$

Recall $Q=\left(q_{i j}\right)$ is defined by $\left(e_{i j} \circ e_{i j}\right) \boldsymbol{E}=q_{i j} e_{i j}$ ．

$$
\begin{aligned}
& \left(F \circ F^{\prime}\right) E \succeq 0 \quad\left(\forall \boldsymbol{F}, \boldsymbol{F}^{\prime} \in \mathcal{P}(\mathcal{I})\right) \\
& \Longleftrightarrow Z^{\prime} \circ Z^{\prime} \circ Q \succeq 0 \quad\left(\forall Z, Z^{\prime} \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right) \\
& \Longleftrightarrow Q \succeq 0 .
\end{aligned}
$$

Note $\boldsymbol{J} \circ \boldsymbol{J} \circ \boldsymbol{Q}=\boldsymbol{Q}$ ．This explains Hobart＇s observation：
In our applications \ldots ，we use $Z=Z^{\prime}=\phi_{s}(J)$ ， where J is the all 1 s matrix．Other choices do not produce any new results for these particular examples．

Linear Algebra Appl．226／228（1995），p． 502.

Theorem

For a fiber－commutative coherent algebra $\mathcal{A}=\bigoplus_{k} \mathcal{I}_{k}$ ，where $\mathcal{I}_{k}=\mathcal{A} E_{k} \cong M_{e_{k}}(\mathbb{C})=\left\langle e_{i j}^{k} \mid 1 \leq i, j \leq e_{k}\right\rangle$ ，Krein condition

$$
\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E}_{k} \succeq \mathbf{0} \quad\left(\forall \boldsymbol{F} \in \mathcal{P}\left(\mathcal{I}_{i}\right), \forall \boldsymbol{F}^{\prime} \in \mathcal{P}\left(\mathcal{I}_{j}\right)\right)
$$

is equivalent to

$$
Q_{i j}^{k} \succeq 0,
$$

where $Q_{i j}^{k}$ is the＂matrix of Krein parameters＂defined by

$$
e_{\ell m}^{i} \circ e_{\ell m}^{j}=\frac{1}{s c a l a r} \sum_{k}\left(Q_{i j}^{k}\right)_{\ell m} e_{\ell m}^{k}
$$

Moreover，$Q_{i j}^{k}$ is essentially unique．

is essentially unique

Indeed，a basis of matrix units $\left\{e_{i j}^{k} \mid 1 \leq i, j \leq e_{k}\right\}$ for $\mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C})$ is essentially unique，since

$$
\operatorname{dim} \mathcal{A}_{i j} \cap \mathcal{I}_{k}=0 \text { or } 1
$$

Uniqueness is up to scalar multiplication by a complex number of absolute value 1 ．
This results in the uniqueness of $Q_{i j}^{k}$ up to entrywise multiplication by a rank－one hermitian matrix：

$$
\left(\begin{array}{ll}
a & \bar{b} \\
b & c
\end{array}\right) \sim\left(\begin{array}{cc}
a & \overline{b \zeta} \\
b \zeta & c
\end{array}\right)=\left(\begin{array}{ll}
a & \bar{b} \\
b & c
\end{array}\right) \circ\left(\binom{1}{\zeta}\left(\begin{array}{ll}
1 & \bar{\zeta}
\end{array}\right)\right)
$$

Thank you very much for your attention！

