Krein parameters of fiber-commutative coherent configurations

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University

joint work with Keiji Ito arXiv:1901.11484

February 23, 2019 Taipei International Workshop on Combinatorics and Graph Theory Institute of Mathematics, Academia Sinica

Akihiro Munemasa (Tohoku University)

宗政昭弘 (東北大学)

Krein condition for coherent configurations

S. A. Hobart, Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications ..., we use $Z = Z' = \phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative).

In doing so, we develop a theory analogous to commutative coherent configurations = association schemes

History

L. L. Scott (1973) attributes the discovery of the source of Krein condition

$$q_{ij}^k \geq 0$$

to C. Dunkl, who attributes the condition itself to the work of M. G. Krein (1950). P. Delsarte (1973) formulated and proved the inequality for association schemes.

The indices i, j, k range over a set of irreducible representations appearing in a particular module in question.

The parameters q_{ij}^k are called Krein parameters.

A special case is the tensor product coefficients for irreducible characters of finite groups.

Cameron, Goethals and Seidel (1978) related Krein parameters to Norton algebras.

Properties of Krein parameters:

- Krein conditions
- Absolute bounds

are used to rule out existence of certain putative strongly regular graphs.

See Brouwer's database of strongly regular graphs.

Coherent configuration = coherent algebra

- A $\mathbb{C} ext{-subspace }\mathcal{A}\subset M_n(\mathbb{C})$ is called a coherent algebra if
 - closed under matrix product,
 - $I \in \mathcal{A}$,
 - closed under entrywise product,
 - $J \in \mathcal{A}$,
 - closed under conjugate-transpose *.
 - $\implies \exists \{A_i \mid i \in \Lambda\}$: basis of $\mathcal{A}, \, (0,1)$ -matrices, with

$$\sum_{i\in\Lambda}A_i=J, \hspace{1em} \{A_i\mid i\in\Lambda\}=\{A_i^ op\mid i\in\Lambda\}.$$

The trivial coherent algebra: $\langle I, J \rangle$, $M_n(\mathbb{C})$.

Let A be the adjacency matrix of an undirected graph G. Then the 3-dimensional vector space

$$\mathcal{A} = \langle I, A, J - I - A
angle$$

is a (commutative) coherent algebra if and only if G is a strongly regular graph, i.e.,

$$egin{aligned} AJ &= kJ, \ A^2 &= kI + \lambda A + \mu (J - I - A) \end{aligned}$$

for some k, λ, μ .

Projective plane $(\mathcal{P}, \mathcal{L})$

It is an incidence structure consists of points \mathcal{P} , lines \mathcal{L} with incidence relation between them, satisfying certain axioms. It can be described by a set of matrices whose rows and columns are indexed by $\mathcal{P} \cup \mathcal{L}$:

$$egin{array}{ccc} \mathcal{P} & \mathcal{L} \ \mathcal{P} & \left(st & st \ st & st
ight) \ \mathcal{L} & \left(st & st
ight) \end{array}$$

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} J - I & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & J - I \end{pmatrix} \\ \begin{pmatrix} 0 & M \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & J - M \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ M^{\top} & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ J - M^{\top} & 0 \end{pmatrix}$$

Commutative coherent algebra = association scheme

$$egin{aligned} M_n(\mathbb{C}) \supset \mathcal{A} &= \langle A_i \mid i \in \Lambda
angle = igoplus_i \mathbb{C} E_i. \ E_i E_j &= \delta_{ij} E_i. \ E_i \circ E_j &= rac{1}{n} \sum_k q_{ij}^k E_k. \end{aligned}$$

The scalars q_{ij}^k are called Krein parameters. Krein condition asserts $q_{ij}^k \ge 0$. To see this, it suffices to invoke

Lemma

Let $A, B \in M_n(\mathbb{C})$ be Hermitian matrices. If $A, B \succeq 0$, then $A \circ B \succeq 0$.

Proof.

 $A \otimes B \succeq 0$ and it contains $A \circ B$ as a principal submatrix.

Akihiro Munemasa (Tohoku University)

宗政昭弘 (東北大学)

Krein condition

We could begin with a commutative algebra

$$\mathcal{A}=\langle A_i\mid i\in\Lambda
angle$$

defined by structure constants:

$$A_iA_j = \sum_k p_{ij}^kA_k.$$

With modest hypothesis, it has decomposition

$$\mathcal{A} = igoplus_i \mathbb{C} E_i, \quad E_i E_j = \delta_{ij} E_i.$$

Define \circ by $A_i \circ A_j = \delta_{ij}A_i$ (and extend by linearity). Define q_{ij}^k by $E_i \circ E_j = \sum_k q_{ij}^k E_k.$

If $q_{ij}^k \ge 0$ fails, then \mathcal{A} cannot be a coherent algebra (there cannot be a coherent algebra with structure constants p_{ij}^k).

Non-commutative case

Let \mathcal{A} be a (not necessarily commutative) coherent algebra.

$$egin{aligned} M_n(\mathbb{C}) \supset \mathcal{A} &= igoplus_i \mathcal{I}_i, \ \mathcal{I}_i &\cong M_{e_i}(\mathbb{C}) = \mathbb{C} \quad (ext{*-isomorphic}) \ \mathcal{I}_i &= \mathcal{A}E_i \mathcal{A} = \mathcal{A}E_i = \mathbb{C}E_i \end{aligned}$$

Let $\mathcal{P}(\cdot)$ denote the subset of Hermitian positive semidefinite matrices:

$$\mathcal{P}(\cdot) = \{ Z \in \cdot \mid Z \succeq 0 \}.$$

Krein condition (for coherent configurations) asserts

$$\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j), \ F \circ F' \succeq 0 \quad \underline{E_i \circ E_j} \succeq 0$$

or equivalently $(F \circ F')E_k \in \mathcal{P}(\mathcal{I}_k)$ for all k.

commutative	fiber-commutative
(central) primitive	basis of
idempotents	matrix units
	matrix of
Krein parameters	Krein parameters
q_{ij}^k	Q_{ij}^k
	essentially unique
Krein condition	Krein condition
$q_{ij}^k \geq 0$	$Q_{ij}^k \succeq 0$
absolute bound	absolute bound
$\sum_{q_{ij}^k eq 0} m_k \leq m_i m_j$	$\sum_k m_k \operatorname{rank} Q_{ij}^k \leq m_i m_j$

$\mathcal{A}= \bigoplus \mathcal{A}_{ij}= \bigoplus \mathcal{I}_k$

Recall, for a projective plane,

$$egin{array}{ccc} \mathcal{P} & \mathcal{L} \ \mathcal{P} & \left(egin{array}{c} * & * \ \mathcal{L} & * \end{array}
ight) \\ \mathcal{L} & \left(egin{array}{c} * & * \ * \end{array}
ight) . \end{array}$$

In general,

$$\mathcal{A} = egin{pmatrix} rac{\mathcal{A}_{11} \mid \mathcal{A}_{12} \mid *}{\mathbb{A}_{21} \mid \mathcal{A}_{22} \mid *} \ \hline * \mid * \mid * \end{pmatrix} = igoplus_{i,j} \mathcal{A}_{ij} = igoplus_k \mathcal{I}_k, \ \ \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

We say \mathcal{A} is fiber-commutative if \mathcal{A}_{ii} is commutative for all i.

Lemma (Hobart–Williford, 2014)

If \mathcal{A} is fiber-commutative, then $\dim \mathcal{A}_{ij} \cap \mathcal{I}_k = 0$ or 1 for all i, j, k.

Akihiro Munemasa (Tohoku University)

$\mathcal{A}= igoplus \mathcal{A}_{ij} = igoplus \mathcal{I}_k$

To avoid cumbersome notation, we fix $\mathcal{I} = \mathcal{I}_{k_0}$. Let *E* be the corresponding central idempotent:

$$\mathcal{I} = \mathcal{A} E \mathcal{A} = \mathcal{A} E.$$

Since $\mathcal{I} \cong M_e(\mathbb{C})$ (*-isomorphic) for some e, \mathcal{I} has a basis of matrix units $\{e_{ij}\}$:

$$e_{ij}e_{k\ell}=\delta_{jk}e_{il}.$$

Then

$$\mathcal{P}(\mathcal{I}) = \{\sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C}))\}.$$

Krein condition asserts (in particular)

$$orall F,F'\in \mathcal{P}(\mathcal{I}),\;(F\circ F')E\in \mathcal{P}(\mathcal{I}).$$

$$\mathcal{A}= igoplus \mathcal{A}_{ij}, \mathcal{I}=\langle e_{ij} \mid 1 \leq i,j \leq e
angle$$

Lemma (Hobart–Williford, 2014)

If \mathcal{A} is fiber-commutative, then dim $\mathcal{A}_{ij} \cap \mathcal{I} = 0$ or 1 for all i, j.

Since

$$e_{ij}e_{k\ell}=\delta_{jk}e_{i\ell},\ \mathcal{A}_{ij}\mathcal{A}_{k\ell}\subset\delta_{jk}\mathcal{A}_{i\ell},$$

we may assume without loss of generality $e_{ij} \in \mathcal{A}_{ij}$. So,

$$\bigoplus_{i,j} \mathcal{A}_{ij} = \boxed{ \begin{smallmatrix} * & * & * \\ * & * & * \\ * & * & * \\ \end{smallmatrix} \supset \mathcal{I} = \boxed{ \begin{smallmatrix} e_{11} & e_{12} & 0 \\ e_{21} & e_{22} & 0 \\ 0 & 0 & 0 \\ \end{smallmatrix} }$$

 $\mathcal{P}(\mathcal{I}) = \{\sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C}))\}$ For $F = \sum z_{ij} e_{ij}$, $F' = \sum z'_{ij} e_{ij} \in \mathcal{P}(\mathcal{I})$, Krein condition asserts $(F \circ F') E \succ 0.$ Since $e_{ij} \in \mathcal{A}_{ij}$ and $\mathcal{A}_{ij} \circ \mathcal{A}_{k\ell} = 0$ if $(i, j) \neq (k, \ell)$, $e_{ij} \circ e_{k\ell} = 0$ if $(i, j) \neq (k, \ell)$. Since $\mathcal{A}_{ii}E = E\mathcal{A}_{ii} \subset \mathcal{A}_{ii} \cap \mathcal{I} = \mathbb{C}e_{ii}$, $(e_{ij} \circ e_{ij})E = q_{ij}e_{ij}$ for some $q_{ij} \in \mathbb{C}$. Thus $(F \circ F')E = \left(\left(\sum z_{ij}e_{ij}
ight) \circ \left(\sum z'_{ij}e_{ij}
ight)
ight) E$ $=\sum z_{ij} z'_{ij} q_{ij} e_{ij}$ $= \sum (Z \circ Z' \circ Q)_{ij} e_{ij}$ where $Z = (z_{ij}), Z' = (z'_{ij}), Q = (q_{ij}).$

$\mathcal{P}(\mathcal{I}) = \{\sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C}))\}$

Recall $Q = (q_{ij})$ is defined by $(e_{ij} \circ e_{ij})E = q_{ij}e_{ij}$.

$$egin{aligned} &(F\circ F')E\succeq 0\quad (orall F,F'\in \mathcal{P}(\mathcal{I}))\ &\Longleftrightarrow\ Z\circ Z'\circ Q\succeq 0\quad (orall Z,Z'\in \mathcal{P}(M_e(\mathbb{C})))\ &\Longleftrightarrow\ Q\succeq 0. \end{aligned}$$

Note $J \circ J \circ Q = Q$. This explains Hobart's observation:

In our applications ..., we use $Z = Z' = \phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

Linear Algebra Appl. 226/228 (1995), p. 502.

Theorem

For a fiber-commutative coherent algebra $\mathcal{A} = \bigoplus_k \mathcal{I}_k$, where $\mathcal{I}_k = \mathcal{A}E_k \cong M_{e_k}(\mathbb{C}) = \langle e_{ij}^k \mid 1 \leq i, j \leq e_k \rangle$, Krein condition

 $(F \circ F')E_k \succeq 0 \quad (orall F \in \mathcal{P}(\mathcal{I}_i), \ orall F' \in \mathcal{P}(\mathcal{I}_j))$

is equivalent to

 $Q_{ij}^k \succeq 0,$

where Q_{ij}^k is the "matrix of Krein parameters" defined by

$$e^i_{\ell m} \circ e^j_{\ell m} = rac{1}{ ext{scalar}} \sum_k (Q^k_{ij})_{\ell m} e^k_{\ell m}.$$

Moreover, Q_{ij}^k is essentially unique.

Q_{ij}^k is essentially unique

Indeed, a basis of matrix units $\{e_{ij}^k \mid 1 \leq i, j \leq e_k\}$ for $\mathcal{I}_k \cong M_{e_k}(\mathbb{C})$ is essentially unique, since

$$\dim \mathcal{A}_{ij} \cap \mathcal{I}_k = 0$$
 or 1.

Uniqueness is up to scalar multiplication by a complex number of absolute value 1.

This results in the uniqueness of Q_{ij}^k up to entrywise multiplication by a rank-one hermitian matrix:

$$\begin{pmatrix} a & \overline{b} \\ b & c \end{pmatrix} \sim \begin{pmatrix} a & \overline{b}\overline{\zeta} \\ b\zeta & c \end{pmatrix} = \begin{pmatrix} a & \overline{b} \\ b & c \end{pmatrix} \circ \left(\begin{pmatrix} 1 \\ \zeta \end{pmatrix} \begin{pmatrix} 1 & \overline{\zeta} \end{pmatrix} \right).$$

Thank you very much for your attention!