Krein conditions for coherent configurations

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

joint work with Keiji Ito arXiv:1901.11484

March 23, 2019
Ural Workshop on Group Theory and Combinatorics,
Ural Federal University, Yekaterinburg

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications ..., we use $Z=Z'=\phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:

commutative association schemes

- ☐ fiber-commutative coherent configurations
- ⊆ coherent configurations

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications ..., we use $Z=Z'=\phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:

multiplicity-free permutation groups



⊆ (general) permutation groups

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications ..., we use $Z = Z' = \phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:

multiplicity-free permutation groups

- \subseteq transitive permutation groups
- \subseteq (general) permutation groups

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications ..., we use $Z = Z' = \phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:

commutative association schemes

- ⊆ non-commutative association schemes
- ⊆ coherent configurations

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499–508.

In our applications ..., we use $Z=Z'=\phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:

commutative association schemes

- ☐ fiber-commutative coherent configurations
- \subseteq coherent configurations

History

L. L. Scott (1973) attributes the discovery of the source of Krein condition

$$q_{ij}^k \geq 0$$

to C. Dunkl, who attributes the condition itself to the work of M. G. Krein (1950). P. Delsarte (1973) formulated and proved the inequality for association schemes.

The indices i, j, k range over a set of irreducible representations appearing in a particular module in question.

The parameters q_{ij}^k are called Krein parameters.

A special case is the tensor product coefficients for irreducible characters of finite groups.

Украинский математический журнал (1950)

$$\|\boldsymbol{\varPhi}\| = \min \sum_{\mu \in M} |c_{\mu}|, \tag{7.22}$$

где минимум берется по всем возможным представлениям (7.20).

В случае симметрического пространства различные зональные ядра Z_{μ} (p, q) порождают различные унитарные представления. В этом случае разложение (7,20) единственно.

Заметим еще, что тот факт, что ряды (7,20), удовлетворяющие условию (7.21), образуют кольцо, полное при определении нормы (7.22), легко непосредственно усмотреть из того, что Z_{μ} можно рассматривать как единицы некоторой алгебры, обладающие свойством

$$Z_{\mu}(p,q)Z_{\nu}(p,q)=\sum_{\lambda}c_{\mu\nu}^{\lambda}Z_{\lambda}\qquad(\mu,\nu\in M),$$

где справа стоит конечная сумма, а числа $c_{\mu \nu}^{\lambda}$ все неотрицательны и удовлетворяют условию

$$\sum_{\lambda} c_{\mu\nu}^{\lambda} = 1.$$

Combinatorial applications

Properties of Krein parameters:

- Krein conditions
- Absolute bounds

are used to rule out existence of certain putative strongly regular graphs.

See Brouwer's database of strongly regular graphs.

Coherent configuration = coherent algebra

A $\mathbb C$ -subspace $\mathcal A\subset M_n(\mathbb C)$ is called a coherent algebra if

- closed under matrix product,
- \bullet $I \in \mathcal{A}$,
- closed under entrywise product,
- $J \in \mathcal{A}$ (J is the all-ones matrix),
- closed under conjugate-transpose *.
- $\implies \exists \{A_i \mid i \in \Lambda\}$: basis of \mathcal{A} , (0,1)-matrices, with

$$\sum_{i\in\Lambda}A_i=J,\quad \{A_i\mid i\in\Lambda\}=\{A_i^{ op}\mid i\in\Lambda\}.$$

The trivial coherent algebra: $\langle I, J \rangle$, $M_n(\mathbb{C})$.

Nontrivial examples

Strongly regular graphs provide nontrivial examples of coherent algebras.

Let A be the adjacency matrix of an undirected graph G. Then the 3-dimensional vector space

$$\mathcal{A} = \langle I, A, J - I - A
angle$$

is a (commutative) coherent algebra if and only if ${\it G}$ is a strongly regular graph, i.e.,

$$AJ = kJ,$$
 $A^2 = kI + \lambda A + \mu(J - I - A)$

for some k, λ, μ .

Another nontrivial examples

A projective plane $(\mathcal{P}, \mathcal{L})$ is an incidence structure consists of points \mathcal{P} , lines \mathcal{L} with incidence relation between them, satisfying certain axioms. It can be described by a set of matrices whose rows and columns are indexed by $\mathcal{P} \cup \mathcal{L}$:

$$egin{array}{ccc} \mathcal{P} & \mathcal{L} \ \mathcal{P} \left(egin{array}{ccc} * & * \ \mathcal{L} \end{array}
ight) \end{array}$$

$$\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} J - I & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & J - I \end{pmatrix}$$

$$\begin{pmatrix} 0 & \boldsymbol{M} \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & J - \boldsymbol{M} \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ \boldsymbol{M}^\top & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ J - \boldsymbol{M}^\top & 0 \end{pmatrix}$$

Commutative association schemes

$$M_n(\mathbb{C})\supset \mathcal{A}=\langle A_i\mid i\in\Lambda
angle=igoplus_i\mathbb{C}E_i. \ E_iE_j=\delta_{ij}E_i. \ E_i\circ E_j=rac{1}{n}\sum_iq_{ij}^kE_k.$$

The scalars q_{ij}^k are called Krein parameters. Krein condition asserts $q_{ij}^k \geq 0$. To see this, it suffices to invoke

Lemma

Let $A, B \in M_n(\mathbb{C})$ be Hermitian matrices. If $A, B \succeq 0$, then $A \circ B \succ 0$.

Proof.

 $A \otimes B \succeq 0$ and it contains $A \circ B$ as a principal submatrix.

Krein condition

We could begin with a commutative algebra

$$\mathcal{A} = \langle A_i \mid i \in \Lambda
angle$$

defined by structure constants:

$$A_i A_j = \sum_k p_{ij}^k A_k.$$

With modest hypothesis, it has decomposition

$$\mathcal{A} = igoplus_i \mathbb{C} E_i, \quad E_i E_j = \delta_{ij} E_i.$$

Define \circ by $A_i\circ A_j=\delta_{ij}A_i$ (and extend by linearity). Define q_{ij}^k by $F_i\circ F_i=\sum q_i^k.F_i$.

$$E_i \circ E_j = \sum_k q_{ij}^k E_k.$$

If $q_{ij}^k \geq 0$ fails, then \mathcal{A} cannot be a coherent algebra (there cannot be a coherent algebra with structure constants p_{ij}^k).

Non-commutative case

Let A be a (not necessarily commutative) coherent algebra.

$$M_n(\mathbb{C})\supset \mathcal{A}=igoplus_i \mathcal{I}_i \quad ext{(minimal two-sided ideals)},$$

$$\mathcal{I}_i\cong M_{e_i}(\mathbb{C}) \quad ext{(*-isomorphic)}$$

$$\mathcal{I}_i=\mathcal{A}E_i\mathcal{A}=\mathcal{A}E_i \quad ext{(central idempotents)}$$

Let $\mathcal{P}(\cdot)$ denote the subset of Hermitian positive semidefinite matrices:

$$\mathcal{P}(\cdot) = \{ Z \in \cdot \mid Z \succeq 0 \}.$$

Krein condition (for coherent configurations) asserts

$$\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j), \ F \circ F' \succeq 0$$

or equivalently $(F \circ F')E_k \in \mathcal{P}(\mathcal{I}_k)$ for all k.

Non-commutative case

Let A be a (not necessarily commutative) coherent algebra.

$$M_n(\mathbb{C})\supset \mathcal{A}=\bigoplus_i \mathcal{I}_i \quad ext{(minimal two-sided ideals)},$$

$$\mathcal{I}_i\cong M_{e_i}(\mathbb{C})=\mathbb{C} \quad (* ext{-isomorphic})$$

$$\mathcal{I}_i=\mathcal{A}E_i\mathcal{A}=\mathcal{A}E_i=\mathbb{C}\underline{E_i} \quad (ext{central idempotents})$$

Let $\mathcal{P}(\cdot)$ denote the subset of Hermitian positive semidefinite matrices:

$$\mathcal{P}(\cdot) = \{ Z \in \cdot \mid Z \succeq 0 \}.$$

Krein condition (for coherent configurations) asserts

$$\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j), \ F \circ F' \succeq 0 \quad \underline{E_i} \circ \underline{E_j} \succeq 0$$

or equivalently $(F \circ F')E_k \in \mathcal{P}(\mathcal{I}_k)$ for all k.

Summary of results

commutative	fiber-commutative
(central) primitive	basis of
idempotents	matrix units
	matrix of
Krein parameters	Krein parameters
q_{ij}^k	Q_{ij}^k
	essentially unique
Krein condition	Krein condition
$q_{ij}^k \geq 0$	$Q_{ij}^k\succeq 0$
absolute bound	absolute bound
$igg \sum_{q_{ij}^k eq 0} m_k \leq m_i m_j$	$igg \sum_k m_k \operatorname{rank} Q_{ij}^k \leq m_i m_j$

$$\mathcal{A} = \bigoplus \mathcal{A}_{ij} = \bigoplus \mathcal{I}_k$$

Recall, for a projective plane,

$$egin{array}{ccc} \mathcal{P} & \mathcal{L} \ \mathcal{P} \left(egin{array}{ccc} * & * \ \mathcal{L} \end{array}
ight). \end{array}$$

In general,

$$\mathcal{A} = \left(egin{array}{c|c|c} \mathcal{A}_{11} & \mathcal{A}_{12} & * \ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \ \hline * & * & * \end{array}
ight) = igoplus_{i,j} \mathcal{A}_{ij} = igoplus_k \mathcal{I}_k, \quad \mathcal{I}_k \cong M_{e_k}(\mathbb{C}).$$

We say A is fiber-commutative if A_{ii} is commutative for all i.

Lemma (Hobart-Williford, 2014)

We have $\mathcal{I}_k = \bigoplus_{i,j} \mathcal{I}_k \cap \mathcal{A}_{ij}$. Moreover, if \mathcal{A} is fiber-commutative, then $\dim \mathcal{I}_k \cap \mathcal{A}_{ij} = 0$ or 1 for all i, j, k.

$\mathcal{A}=igoplus \mathcal{A}_{ij}=igoplus \mathcal{I}_k$

To avoid cumbersome notation, we fix $\mathcal{I} = \mathcal{I}_{k_0}$. Let E be the corresponding central idempotent:

$$\mathcal{I} = \mathcal{A}E\mathcal{A} = \mathcal{A}E.$$

Since $\mathcal{I} \cong M_e(\mathbb{C})$ (*-isomorphic) for some e, \mathcal{I} has a basis of matrix units $\{e_{ij}\}$:

$$e_{ij}e_{k\ell}=\delta_{jk}e_{il}.$$

Then

$$\mathcal{P}(\mathcal{I}) = \{ \sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C})) \}.$$

$$\mathcal{A} = \bigoplus \mathcal{A}_{ij} = \bigoplus \mathcal{I}_k$$

To avoid cumbersome notation, we fix $\mathcal{I} = \mathcal{I}_{k_0}$. Let E be the corresponding central idempotent:

$$\mathcal{I} = \mathcal{A}E\mathcal{A} = \mathcal{A}E.$$

Since $\mathcal{I} \cong M_e(\mathbb{C})$ (*-isomorphic) for some e, \mathcal{I} has a basis of matrix units $\{e_{ii}\}$:

$$e_{ij}e_{k\ell}=\delta_{jk}e_{il}$$
.

Then

$$\mathcal{P}(\mathcal{I}) = \{ \sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C})) \}.$$

Krein condition asserts (in particular)

$$\forall F, F' \in \mathcal{P}(\mathcal{I}), \ (F \circ F')E \in \mathcal{P}(\mathcal{I}).$$

$$\mathcal{A} = \bigoplus \mathcal{A}_{ij}, \, \mathcal{I} = \langle e_{ij} \mid 1 \leq i, j \leq e \rangle$$

Lemma (Hobart–Williford, 2014)

We have $\mathcal{I}_k = \bigoplus_{i,j} \mathcal{I}_k \cap \mathcal{A}_{ij}$. Moreover, if \mathcal{A} is fiber-commutative, then $\dim \mathcal{I}_k \cap \mathcal{A}_{ij} = 0$ or 1 for all i, j.

Since

$$e_{ij}e_{k\ell} = \delta_{jk}e_{i\ell}, \ \mathcal{A}_{ij}\mathcal{A}_{k\ell} \subset \delta_{jk}\mathcal{A}_{i\ell},$$

we may assume without loss of generality $e_{ij} \in \mathcal{A}_{ij}$. So,

$$igoplus_{i,j} \mathcal{A}_{ij} = egin{array}{c|cccc} * & * & * & * \ * & * & * \ * & * & * \ \end{array} \supset \mathcal{I} = egin{array}{c|cccc} e_{11} & e_{12} & 0 \ e_{21} & e_{22} & 0 \ \hline 0 & 0 & 0 \ \end{array}$$

$\mathcal{P}(\mathcal{I}) = \{\sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C}))\}$

For $F=\sum z_{ij}e_{ij},\,F'=\sum z'_{ij}e_{ij}\in\mathcal{P}(\mathcal{I}),$ Krein condition asserts

$$(F \circ F')E \succeq 0.$$

Since $e_{ij} \in \mathcal{A}_{ij}$ and $\mathcal{A}_{ij} \circ \mathcal{A}_{k\ell} = 0$ if $(i,j) \neq (k,\ell)$,

$$e_{ij}\circ e_{k\ell}=0\quad ext{if }(i,j)
eq (k,\ell).$$

Since
$$\mathcal{A}_{ij}E=E\mathcal{A}_{ij}\subseteq\mathcal{A}_{ij}\cap\mathcal{I}=\mathbb{C}e_{ij},$$

$$(e_{ij}\circ e_{ij})E=q_{ij}e_{ij} \quad ext{for some } q_{ij}\in \mathbb{C}.$$

Thus

$$egin{aligned} (F\circ F')E &= \left(\left(\sum z_{ij}e_{ij}
ight)\circ\left(\sum z'_{ij}e_{ij}
ight)
ight)E \ &= \sum z_{ij}z'_{ij}q_{ij}e_{ij} \ &= \sum (Z\circ Z'\circ Q)_{ij}e_{ij} \end{aligned}$$

where $Z = (z_{ij}), Z' = (z'_{ij}), Q = (q_{ij}).$

$\mathcal{P}(\mathcal{I}) = \{\sum_{i,j} z_{ij} e_{ij} \mid (z_{ij}) \in \mathcal{P}(M_e(\mathbb{C}))\}$

Recall $Q=(q_{ij})$ is defined by $(e_{ij}\circ e_{ij})E=q_{ij}e_{ij}.$

$$egin{aligned} (F\circ F')E\succeq 0 & (orall F,F'\in \mathcal{P}(\mathcal{I})) \ &\Longleftrightarrow\ Z\circ Z'\circ Q\succeq 0 & (orall Z,Z'\in \mathcal{P}(M_e(\mathbb{C}))) \ &\Longleftrightarrow\ Q\succeq 0. \end{aligned}$$

Note $J \circ J \circ Q = Q$. This explains Hobart's observation: In our applications ..., we use $Z = Z' = \phi_s(J)$, where J is the all 1s matrix. Other choices do not produce any new results for these particular examples.

Linear Algebra Appl. 226/228 (1995), p. 502.

Theorem

For a fiber-commutative coherent algebra $\mathcal{A}=\bigoplus_k \mathcal{I}_k$, where $\mathcal{I}_k=\mathcal{A}E_k\cong M_{e_k}(\mathbb{C})=\langle e_{ij}^k\mid 1\leq i,j\leq e_k\rangle$, Krein condition

$$(F \circ F')E_k \succeq 0 \quad (\forall F \in \mathcal{P}(\mathcal{I}_i), \ \forall F' \in \mathcal{P}(\mathcal{I}_j))$$

is equivalent to

$$Q_{ij}^k \succeq 0$$
,

where Q_{ij}^k is the "matrix of Krein parameters" defined by

$$e^i_{\ell m}\circ e^j_{\ell m}=rac{1}{ extsf{scalar}}{\sum_{k}}(Q^k_{ij})_{\ell m}e^k_{\ell m}.$$

Moreover, Q_{ij}^k is essentially unique.

$oldsymbol{Q}_{ij}^k$ is essentially unique

Indeed, a basis of matrix units $\{e_{ij}^k \mid 1 \leq i, j \leq e_k\}$ for $\mathcal{I}_k \cong M_{e_k}(\mathbb{C})$ is essentially unique, since

$$\dim \mathcal{A}_{ij} \cap \mathcal{I}_k = 0$$
 or 1.

Uniqueness is up to scalar multiplication by a complex number of absolute value 1.

This results in the uniqueness of Q_{ij}^k up to entrywise multiplication by a rank-one hermitian matrix:

$$\begin{pmatrix} a & \overline{b} \\ b & c \end{pmatrix} \sim \begin{pmatrix} a & \overline{b\zeta} \\ b\zeta & c \end{pmatrix} = \begin{pmatrix} a & \overline{b} \\ b & c \end{pmatrix} \circ \begin{pmatrix} 1 \\ \zeta \end{pmatrix} \begin{pmatrix} 1 & \overline{\zeta} \end{pmatrix}.$$

Thank you very much for your attention!