Krein conditions for coherent configurations

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

joint work with Keiji Ito arXiv:1901.11484

March 23, 2019
Ural Workshop on Group Theory and Combinatorics, Ural Federal University, Yekaterinburg

About the title

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499-508.

$$
\begin{aligned}
& \text { In our applications we use } Z=Z^{\prime}=\phi_{s}(J) \text {, } \\
& \text { where } J \text { is the all } 1 \text { s matrix. Other choices do not } \\
& \text { produce any new results for these particular examples. }
\end{aligned}
$$

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:
commutative association schemes
\subseteq fiber-commutative coherent configurations
\subseteq coherent configurations

About the title

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499-508.

$$
\begin{aligned}
& \text { In our applications we use } Z=Z^{\prime}=\phi_{s}(J) \text {, } \\
& \text { where } J \text { is the all } 1 \text { s matrix. Other choices do not } \\
& \text { produce any new results for these particular examples. }
\end{aligned}
$$

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:
multiplicity-free permutation groups
$\subseteq \begin{aligned} & \text { intransitive permutation groups } \\ & \text { which is multiplicity-free on each orbit }\end{aligned}$
\subseteq (general) permutation groups

About the title

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499-508.

$$
\begin{aligned}
& \text { In our applications we use } Z=Z^{\prime}=\phi_{s}(J) \text {, } \\
& \text { where } J \text { is the all } 1 \text { s matrix. Other choices do not } \\
& \text { produce any new results for these particular examples. }
\end{aligned}
$$

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:
multiplicity-free permutation groups
\subseteq transitive permutation groups
\subseteq (general) permutation groups

About the title

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499-508.

$$
\begin{aligned}
& \text { In our applications we use } Z=Z^{\prime}=\phi_{s}(J) \text {, } \\
& \text { where } J \text { is the all } 1 \text { s matrix. Other choices do not } \\
& \text { produce any new results for these particular examples. }
\end{aligned}
$$

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:
commutative association schemes
\subseteq non-commutative association schemes
\subseteq coherent configurations

About the title

S. A. Hobart, "Krein conditions for coherent configurations," Linear Algebra Appl. 226/228 (1995), 499-508.

> In our applications we use $Z=Z^{\prime}=\phi_{s}(J)$, where J is the all 1 s matrix. Other choices do not produce any new results for these particular examples.

The goal of this talk is to clarify this claim by proving it in a more general setting (fiber-commutative). In doing so, we develop a theory for that setting:
commutative association schemes
\subseteq fiber-commutative coherent configurations
\subseteq coherent configurations

History

L. L. Scott (1973) attributes the discovery of the source of Krein condition

$$
q_{i j}^{k} \geq 0
$$

to C. Dunkl, who attributes the condition itself to the work of M. G. Krein (1950). P. Delsarte (1973) formulated and proved the inequality for association schemes.
The indices i, j, \boldsymbol{k} range over a set of irreducible representations appearing in a particular module in question.
The parameters $q_{i j}^{k}$ are called Krein parameters.
A special case is the tensor product coefficients for irreducible characters of finite groups.

Украинский математический журнал (1950)

$$
\begin{equation*}
\|\Phi\|=\min \sum_{\mu \in M}\left|c_{\mu}\right|, \tag{7.22}
\end{equation*}
$$

где минимум берется по всем возможным представлениям (7.20).
В случае симметрического пространства различные зональные ядра $Z_{\mu}(p, q)$ порождают различные унитарные представления. В этом случае разложение $(7,20)$ единственно.

Заметим еще, что тот факт, что ряды $(7,20)$, удовлетворяющие условию (7.21), образуют кольцо, полное при определении нормы (7.22), легко непосредственно усмотреть из того, что Z_{μ} можно рассматривать как единицы некоторой алгебры, обладающие свойством

$$
Z_{\mu}(p, q) Z_{v}(p, q)=\sum_{\lambda} c_{\mu \nu}^{\lambda} Z_{\lambda} \quad(\mu, \nu \in M)
$$

где справа стоит конечная сумма, а числа $c_{\mu v}^{\lambda}$ все неотрицательны и удовлетворяют условию

$$
\sum_{2} c_{\mu \nu}^{\lambda}=1
$$

Combinatorial applications

Properties of Krein parameters:

- Krein conditions
- Absolute bounds
are used to rule out existence of certain putative strongly regular graphs.

See Brouwer's database of strongly regular graphs.

Coherent configuration = coherent algebra

A \mathbb{C}-subspace $\mathcal{A} \subset M_{n}(\mathbb{C})$ is called a coherent algebra if

- closed under matrix product,
- $I \in \mathcal{A}$,
- closed under entrywise product,
- $J \in \mathcal{A} \quad(J$ is the all-ones matrix),
- closed under conjugate-transpose $*$.
$\Longrightarrow \exists\left\{A_{i} \mid i \in \Lambda\right\}$: basis of $\mathcal{A},(0,1)$-matrices, with

$$
\sum_{i \in \Lambda} A_{i}=J, \quad\left\{A_{i} \mid i \in \Lambda\right\}=\left\{A_{i}^{\top} \mid i \in \Lambda\right\} .
$$

The trivial coherent algebra: $\langle I, J\rangle, M_{n}(\mathbb{C})$.

Nontrivial examples

Strongly regular graphs provide nontrivial examples of coherent algebras.

Let \boldsymbol{A} be the adjacency matrix of an undirected graph \boldsymbol{G}. Then the 3 -dimensional vector space

$$
\mathcal{A}=\langle I, A, J-I-A\rangle
$$

is a (commutative) coherent algebra if and only if G is a strongly regular graph, i.e.,

$$
\begin{aligned}
A J & =k J \\
A^{2} & =k I+\lambda A+\mu(J-I-A)
\end{aligned}
$$

for some $\boldsymbol{k}, \boldsymbol{\lambda}, \boldsymbol{\mu}$.

Another nontrivial examples

A projective plane $(\mathcal{P}, \mathcal{L})$ is an incidence structure consists of points \mathcal{P}, lines \mathcal{L} with incidence relation between them, satisfying certain axioms. It can be described by a set of matrices whose rows and columns are indexed by $\mathcal{P} \cup \mathcal{L}$:

$$
\begin{gathered}
\mathcal{P} \\
\mathcal{P}\left(\begin{array}{c}
\mathcal{L} \\
\mathcal{L}
\end{array}\binom{*}{*}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \left(\begin{array}{cc}
I & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
J-I & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & I
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
0 & J-I
\end{array}\right) \\
& \left(\begin{array}{cc}
0 & M \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & J-M \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
M^{\top} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & 0 \\
J-M^{\top} & 0
\end{array}\right)
\end{aligned}
$$

Commutative association schemes

$$
\begin{gathered}
M_{n}(\mathbb{C}) \supset \mathcal{A}=\left\langle A_{i} \mid i \in \Lambda\right\rangle=\bigoplus_{i} \mathbb{C} \boldsymbol{E}_{i} \\
\boldsymbol{E}_{i} \boldsymbol{E}_{j}=\delta_{i j} \boldsymbol{E}_{i} \\
\boldsymbol{E}_{i} \circ \boldsymbol{E}_{j}=\frac{1}{n} \sum_{k} \boldsymbol{q}_{i j}^{k} \boldsymbol{E}_{k}
\end{gathered}
$$

The scalars $q_{i j}^{k}$ are called Krein parameters. Krein condition asserts $q_{i j}^{k} \geq 0$. To see this, it suffices to invoke

Lemma

Let $\boldsymbol{A}, \boldsymbol{B} \in M_{n}(\mathbb{C})$ be Hermitian matrices. If $\boldsymbol{A}, \boldsymbol{B} \succeq 0$, then $A \circ B \succeq 0$.

Proof.

$\boldsymbol{A} \otimes \boldsymbol{B} \succeq 0$ and it contains $\boldsymbol{A} \circ \boldsymbol{B}$ as a principal submatrix.

Krein condition

We could begin with a commutative algebra

$$
\mathcal{A}=\left\langle A_{i} \mid i \in \Lambda\right\rangle
$$

defined by structure constants:

$$
A_{i} A_{j}=\sum_{k} p_{i j}^{k} A_{k}
$$

With modest hypothesis, it has decomposition

$$
\mathcal{A}=\bigoplus_{i} \mathbb{C} \boldsymbol{E}_{i}, \quad \boldsymbol{E}_{i} \boldsymbol{E}_{j}=\delta_{i j} \boldsymbol{E}_{i}
$$

Define \circ by $A_{i} \circ A_{j}=\delta_{i j} \boldsymbol{A}_{i}$ (and extend by linearity). Define $q_{i j}^{k}$ by

$$
\boldsymbol{E}_{i} \circ \boldsymbol{E}_{j}=\sum_{k} \boldsymbol{q}_{i j}^{k} \boldsymbol{E}_{k}
$$

If $\boldsymbol{q}_{i j}^{k} \geq 0$ fails, then \mathcal{A} cannot be a coherent algebra (there cannot be a coherent algebra with structure constants $p_{i j}^{k}$).

Non-commutative case

Let \mathcal{A} be a (not necessarily commutative) coherent algebra.

$$
\begin{aligned}
M_{n}(\mathbb{C}) \supset \mathcal{A} & =\bigoplus_{i} \mathcal{I}_{i} \quad \text { (minimal two-sided ideals) }, \\
\mathcal{I}_{i} & \cong M_{e_{i}}(\mathbb{C}) \quad(* \text {-isomorphic }) \\
\mathcal{I}_{i} & =\mathcal{A} E_{i} \mathcal{A}=\mathcal{A} E_{i} \quad(\text { central idempotents })
\end{aligned}
$$

Let $\mathcal{P}(\cdot)$ denote the subset of Hermitian positive semidefinite matrices:

$$
\mathcal{P}(\cdot)=\{Z \in \cdot \mid Z \succeq 0\} .
$$

Krein condition (for coherent configurations) asserts

$$
\forall \boldsymbol{F} \in \mathcal{P}\left(\mathcal{I}_{i}\right), \forall \boldsymbol{F}^{\prime} \in \mathcal{P}\left(\mathcal{I}_{j}\right), \boldsymbol{F} \circ \boldsymbol{F}^{\prime} \succeq \mathbf{0}
$$

or equivalently $\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E}_{\boldsymbol{k}} \in \mathcal{P}\left(\mathcal{I}_{k}\right)$ for all \boldsymbol{k}.

Non-

case

Let \mathcal{A} be a (not necessarily commutative) coherent algebra.

$$
\begin{aligned}
M_{n}(\mathbb{C}) \supset \mathcal{A} & =\bigoplus_{i} \mathcal{I}_{i} \quad \text { (minimal two-sided ideals) }, \\
\mathcal{I}_{i} & \cong M_{e_{i}}(\mathbb{C})=\mathbb{C} \quad(* \text {-isomorphic) } \\
\mathcal{I}_{i} & =\mathcal{A} \boldsymbol{E}_{i} \mathcal{A}=\mathcal{A} \boldsymbol{E}_{i}=\mathbb{C} \boldsymbol{E}_{i} \quad \text { (central idempotents) }
\end{aligned}
$$

Let $\mathcal{P}(\cdot)$ denote the subset of Hermitian positive semidefinite matrices:

$$
\mathcal{P}(\cdot)=\{Z \in \cdot \mid Z \succeq 0\}
$$

Krein condition (for coherent configurations) asserts

$$
\forall \boldsymbol{F} \in \mathcal{P}\left(\mathcal{I}_{i}\right), \forall \boldsymbol{F}^{\prime} \in \mathcal{P}\left(\mathcal{I}_{j}\right), \boldsymbol{F} \circ \boldsymbol{F}^{\prime} \succeq \mathbf{0} \quad \boldsymbol{E}_{i} \circ \boldsymbol{E}_{j} \succeq 0
$$

or equivalently $\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E}_{\boldsymbol{k}} \in \mathcal{P}\left(\mathcal{I}_{k}\right)$ for all \boldsymbol{k}.

Summary of results

commutative	fiber-commutative
(central) primitive	basis of
idempotents	matrix units
Krein parameters	matrix of
$\boldsymbol{q}_{i j}^{k}$	Krein parameters
	$Q_{i j}^{k}$
essentially unique	
Krein condition	Krein condition
$\boldsymbol{q}_{i j}^{k} \geq \mathbf{0}$	$\boldsymbol{Q}_{i j}^{k} \succeq 0$
absolute bound	absolute bound
$\sum_{\boldsymbol{q}_{i j}^{k} \neq 0} \boldsymbol{m}_{\boldsymbol{k}} \leq \boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{m}_{\boldsymbol{j}}$	$\sum_{\boldsymbol{k}} \boldsymbol{m}_{\boldsymbol{k}}$ rank $\boldsymbol{Q}_{i j}^{k} \leq \boldsymbol{m}_{\boldsymbol{i}} \boldsymbol{m}_{\boldsymbol{j}}$

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}=\bigoplus \mathcal{I}_{k}$

Recall, for a projective plane,

$$
\begin{array}{cc}
\mathcal{P} & \mathcal{L} \\
\mathcal{P} \\
\mathcal{L}
\end{array}\left(\begin{array}{ll}
* & * \\
* & *
\end{array}\right) .
$$

In general,
$\mathcal{A}=\left(\begin{array}{c|c|c}\mathcal{A}_{11} & \mathcal{A}_{12} & * \\ \hline \mathcal{A}_{21} & \mathcal{A}_{22} & * \\ \hline * & * & *\end{array}\right)=\bigoplus_{i, j} \mathcal{A}_{i j}=\bigoplus_{k} \mathcal{I}_{k}, \quad \mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C})$.
We say \mathcal{A} is fiber-commutative if $\mathcal{A}_{i i}$ is commutative for all i.

Lemma (Hobart-Williford, 2014)

We have $\mathcal{I}_{k}=\bigoplus_{i, j} \mathcal{I}_{k} \cap \mathcal{A}_{i j}$. Moreover, if \mathcal{A} is fiber-commutative, then $\operatorname{dim} \mathcal{I}_{k} \cap \mathcal{A}_{i j}=0$ or 1 for all $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$.

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}=\bigoplus \mathcal{I}_{k}$

To avoid cumbersome notation, we fix $\mathcal{I}=\mathcal{I}_{k_{0}}$. Let \boldsymbol{E} be the corresponding central idempotent:

$$
\mathcal{I}=\mathcal{A} E \mathcal{A}=\mathcal{A} E
$$

Since $\mathcal{I} \cong M_{e}(\mathbb{C})(*$-isomorphic) for some e, \mathcal{I} has a basis of matrix units $\left\{e_{i j}\right\}$:

$$
e_{i j} e_{k \ell}=\delta_{j k} e_{i l}
$$

Then

$$
\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\} .
$$

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}=\bigoplus \mathcal{I}_{k}$

To avoid cumbersome notation, we fix $\mathcal{I}=\mathcal{I}_{k_{0}}$. Let \boldsymbol{E} be the corresponding central idempotent:

$$
\mathcal{I}=\mathcal{A} E \mathcal{A}=\mathcal{A} E
$$

Since $\mathcal{I} \cong M_{e}(\mathbb{C})(*$-isomorphic) for some e, \mathcal{I} has a basis of matrix units $\left\{e_{i j}\right\}$:

$$
e_{i j} e_{k \ell}=\delta_{j k} e_{i l}
$$

Then

$$
\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\}
$$

Krein condition asserts (in particular)

$$
\forall F, F^{\prime} \in \mathcal{P}(\mathcal{I}),\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E} \in \mathcal{P}(\mathcal{I})
$$

$\mathcal{A}=\bigoplus \mathcal{A}_{i j}, \mathcal{I}=\left\langle e_{i j} \mid 1 \leq i, j \leq e\right\rangle$

Lemma (Hobart-Williford, 2014)

We have $\mathcal{I}_{k}=\bigoplus_{i, j} \mathcal{I}_{k} \cap \mathcal{A}_{i j}$. Moreover, if \mathcal{A} is fiber-commutative, then $\operatorname{dim} \mathcal{I}_{k} \cap \mathcal{A}_{i j}=\mathbf{0}$ or $\mathbf{1}$ for all $\boldsymbol{i}, \boldsymbol{j}$.

Since

$$
\begin{gathered}
e_{i j} e_{k \ell}=\delta_{j k} e_{i \ell} \\
\mathcal{A}_{i j} \mathcal{A}_{k \ell} \subset \delta_{j k} \mathcal{A}_{i \ell},
\end{gathered}
$$

we may assume without loss of generality $e_{i j} \in \mathcal{A}_{i j}$. So,

$$
\bigoplus_{i, j} \mathcal{A}_{i j}=\begin{array}{|c|c|c|}
\hline * & * & * \\
\hline * & * & * \\
\hline * & * & * \\
\hline
\end{array} \supset \mathcal{I}=\begin{array}{|c|c|c|}
\hline e_{11} & e_{12} & \mathbf{0} \\
\hline e_{21} & e_{22} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline
\end{array}
$$

$\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\}$

For $\boldsymbol{F}=\sum z_{i j} e_{i j}, \boldsymbol{F}^{\prime}=\sum z_{i j}^{\prime} e_{i j} \in \mathcal{P}(\mathcal{I})$, Krein condition asserts

$$
\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E} \succeq 0 .
$$

Since $e_{i j} \in \mathcal{A}_{i j}$ and $\mathcal{A}_{i j} \circ \mathcal{A}_{k \ell}=0$ if $(i, j) \neq(k, \ell)$,

$$
e_{i j} \circ e_{k \ell}=0 \quad \text { if }(i, j) \neq(k, \ell) .
$$

Since $\mathcal{A}_{i j} \boldsymbol{E}=\boldsymbol{E} \mathcal{A}_{i j} \subseteq \mathcal{A}_{i j} \cap \mathcal{I}=\mathbb{C} e_{i j}$,

$$
\left(e_{i j} \circ e_{i j}\right) \boldsymbol{E}=\boldsymbol{q}_{i j} e_{i j} \quad \text { for some } q_{i j} \in \mathbb{C} .
$$

Thus

$$
\begin{aligned}
\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E} & =\left(\left(\sum z_{i j} e_{i j}\right) \circ\left(\sum z_{i j}^{\prime} e_{i j}\right)\right) \boldsymbol{E} \\
& =\sum z_{i j} z_{i j}^{\prime} q_{i j} e_{i j} \\
& =\sum\left(Z \circ Z^{\prime} \circ Q\right)_{i j} e_{i j}
\end{aligned}
$$

where $Z=\left(z_{i j}\right), Z^{\prime}=\left(z_{i j}^{\prime}\right), Q=\left(q_{i j}\right)$.

$\mathcal{P}(\mathcal{I})=\left\{\sum_{i, j} z_{i j} e_{i j} \mid\left(z_{i j}\right) \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right\}$

Recall $Q=\left(q_{i j}\right)$ is defined by $\left(e_{i j} \circ e_{i j}\right) \boldsymbol{E}=q_{i j} e_{i j}$.

$$
\begin{aligned}
& \left(F \circ F^{\prime}\right) E \succeq 0 \quad\left(\forall F, F^{\prime} \in \mathcal{P}(\mathcal{I})\right) \\
& \Longleftrightarrow Z \circ Z^{\prime} \circ Q \succeq 0 \quad\left(\forall Z, Z^{\prime} \in \mathcal{P}\left(M_{e}(\mathbb{C})\right)\right) \\
& \Longleftrightarrow Q \succeq 0 .
\end{aligned}
$$

Note $\boldsymbol{J} \circ \boldsymbol{J} \circ \boldsymbol{Q}=\boldsymbol{Q}$. This explains Hobart's observation:
In our applications \ldots, we use $Z=Z^{\prime}=\phi_{s}(J)$, where J is the all 1 s matrix. Other choices do not produce any new results for these particular examples.

Linear Algebra Appl. 226/228 (1995), p. 502.

Theorem

For a fiber-commutative coherent algebra $\mathcal{A}=\bigoplus_{k} \mathcal{I}_{k}$, where $\mathcal{I}_{k}=\mathcal{A} E_{k} \cong M_{e_{k}}(\mathbb{C})=\left\langle e_{i j}^{k} \mid 1 \leq i, j \leq e_{k}\right\rangle$, Krein condition

$$
\left(\boldsymbol{F} \circ \boldsymbol{F}^{\prime}\right) \boldsymbol{E}_{k} \succeq \mathbf{0} \quad\left(\forall \boldsymbol{F} \in \mathcal{P}\left(\mathcal{I}_{i}\right), \forall \boldsymbol{F}^{\prime} \in \mathcal{P}\left(\mathcal{I}_{j}\right)\right)
$$

is equivalent to

$$
Q_{i j}^{k} \succeq 0,
$$

where $Q_{i j}^{k}$ is the "matrix of Krein parameters" defined by

$$
e_{\ell m}^{i} \circ e_{\ell m}^{j}=\frac{1}{s c a l a r} \sum_{k}\left(Q_{i j}^{k}\right)_{\ell m} e_{\ell m}^{k}
$$

Moreover, $Q_{i j}^{k}$ is essentially unique.

is essentially unique

Indeed, a basis of matrix units $\left\{e_{i j}^{k} \mid 1 \leq i, j \leq e_{k}\right\}$ for $\mathcal{I}_{k} \cong M_{e_{k}}(\mathbb{C})$ is essentially unique, since

$$
\operatorname{dim} \mathcal{A}_{i j} \cap \mathcal{I}_{k}=0 \text { or } 1
$$

Uniqueness is up to scalar multiplication by a complex number of absolute value 1 .
This results in the uniqueness of $Q_{i j}^{k}$ up to entrywise multiplication by a rank-one hermitian matrix:

$$
\left(\begin{array}{ll}
a & \bar{b} \\
b & c
\end{array}\right) \sim\left(\begin{array}{cc}
a & \overline{b \zeta} \\
b \zeta & c
\end{array}\right)=\left(\begin{array}{ll}
a & \bar{b} \\
b & c
\end{array}\right) \circ\left(\binom{1}{\zeta}\left(\begin{array}{ll}
1 & \bar{\zeta}
\end{array}\right)\right)
$$

Thank you very much for your attention!

