Outline

- 1. Grassmann graphs
- 2. Twisted Grassmann graphs
- 3. Godsil-McKay switching
- 4. Wang-Qiu-Hu switching
- 5. Strongly regular graph from polar spaces

In the Grassmann graph J_q(2d + 1, d + 1):
V: (2d + 1)-dim. vector space over GF(q)

• $W_1 \sim W_2 \iff \dim W_1 \cap W_2 = d.$ Fix $H \in {V \brack 2d}$. Then ${V \brack d+1} = C \cup D$, where

$$\begin{split} C &= \begin{bmatrix} V \\ d+1 \end{bmatrix} \setminus \begin{bmatrix} H \\ d+1 \end{bmatrix}, \\ D &= \begin{bmatrix} H \\ d+1 \end{bmatrix}. \end{split}$$

• Vertices: $\begin{bmatrix} V \\ d+1 \end{bmatrix}$

Grassmann graph $J_q(n, k)$.

- V: *n*-dim. vector space over GF(q)
- Projective geometry $\bigcup_{j=0}^{n} {V \brack j}$
- Vertices: $\begin{bmatrix} V \\ k \end{bmatrix}$
- $W_1 \sim W_2 \iff \dim W_1 \cap W_2 = k 1.$

For the twisted Grassmann graph, take

$$n = 2d + 1, \quad k = d + 1.$$

Then

$$C = \begin{bmatrix} V \\ d+1 \end{bmatrix} \setminus \begin{bmatrix} H \\ d+1 \end{bmatrix} = \bigcup_{U \in \begin{bmatrix} H \\ d \end{bmatrix}} C_U$$

where

$$C_U = \{ W \in \begin{bmatrix} V \\ d+1 \end{bmatrix} \mid W \cap H = U \}.$$

Observe, for $W \in D$,

$$\exists W' \in C_U, \ W \sim W'$$
$$\iff W \supseteq U$$
$$\iff \forall W' \in C_U, \ W \sim W'.$$

Fix a polarity \perp of H. Redefine edges between C and D by changing

$$W \sim W' \quad (\forall W' \in C_U \text{ with } U \subseteq W)$$

to

$$W \sim W' \quad (\forall W' \in C_{U^{\perp}} \text{ with } U \subseteq W)$$

for $W \in D$.

In general, $U \neq U^{\perp}$. In this case $C_U \cap C_{U^{\perp}} = \emptyset$. The resulting graph is the twisted Grassmann graph $\tilde{J}_q(2d+1, d+1)$. For $W \in D$, W is adjacent to

$$\begin{split} & \text{all of} C_U \cup C_{U^{\perp}} \quad \text{if } W \supseteq U + U^{\perp} \\ & \text{all of} C_U \quad \text{if } W \supseteq U \\ & \text{none of} C_{U^{\perp}} \quad \text{if } W \not\supseteq U^{\perp} \\ & \text{none of} C_U \cup C_{U^{\perp}} \quad \text{if } W \not\supseteq U, W \not\supseteq U^{\perp} \end{split}$$

"All," "Half," or "None." The operation is to switch adjacency when "Half" takes place. Definition of Godsil-McKay switching (1982). $V(\Gamma) = C \cup D, C = \bigcup_i C_i$. Assume

$$\forall i, \ \forall x \in D, \ |\Gamma(x) \cap C_i| = |C_i|, \frac{1}{2}|C_i|, 0$$

Build a new graph $\tilde{\Gamma}$ by redefine $\Gamma(x)$ by

$$\Gamma(x) = C_i \setminus \Gamma(x),$$

provided

$$|\Gamma(x) \cap C_i| = \frac{1}{2}|C_i|.$$

Theorem (Godsil–McKay, 1982)

If $\{C_i\}_i$ is *equitable*, then the resulting graph is cospectral with the original.

Equitable:
$$\forall i, \forall x \in C_i, \forall y \in C_i, \forall j, |\Gamma(x) \cap C_j| = |\Gamma(y) \cap C_j|.$$

- 2005 twisted Grassmann graphs of Van Dam–Koolen
- 2009 distorted geometric design, Jungnickel–Tonchev
- 2011 equivalence of these two, M.-Tonchev
- 2017 distorted↔Godsil–McKay switching

$$\begin{array}{ccc} \mathrm{PG}_d(2d,q) & \xrightarrow{\mathsf{block graph}} & J_q(2d+1,d+1) \\ \\ \mathsf{distort} & & \\ & \mathsf{GM switching} \\ \\ & & \\ \mathsf{new design} & \xrightarrow{\mathsf{block graph}} & \tilde{J}_q(2d+1,d+1) \end{array}$$

Block graph = graph with blocks as vertices, adjacent iff intersect at maximal size.

- The original definition of $\tilde{J}_q(2d+1,d+1)$ does not use a polarity.
- Both distorting and GM switching rely on a polarity.

Why cospectral?

- $A = adjacency matrix of \Gamma$
- A' = adjacency matrix of the switched graph

Then there exists $Q \in O_{|V(\Gamma)|}(\mathbb{Q})$ such that $Q^{-1}AQ = A'$. To describe Q explicitly, consider the case

 $C = C_1$, and $\forall x \in D$ is adjacent to all, half, or none of C.

Let m = |C|, and consider the trivial coherent algebra $\langle I, J \rangle \subseteq M_m(\mathbb{C})$. It has primitive idempotents

$$E_0 = \frac{1}{m}J, \quad E_1 = I - \frac{1}{m}J, \quad E_i E_j = \delta_{ij}E_i.$$

Then $(E_0 - E_1)^2 = I$. We claim

$$\begin{bmatrix} E_0-E_1 & 0\\ 0 & I \end{bmatrix} A \begin{bmatrix} E_0-E_1 & 0\\ 0 & I \end{bmatrix} = A'$$

where the rows and columns are indexed by $C \cup D$.

Indeed,

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

Since the subgraph induced on C is regular (equitable), of valency k, A_{11} commutes with J, hence also with $E_0 - E_1$. Thus

$$(E_0 - E_1)A_{11}(E_0 - E_1) = A_{11}.$$

How about $A_{21}(E_0 - E_1)$?

 A_{21} consists of three kinds of row vectors, all-one 1, half-one (say u), zero.

$$\begin{aligned} \mathbf{1}(E_0 - E_1) &= \mathbf{1}E_0 = \mathbf{1}, \\ u(E_0 - E_1) &= u(2E_0 - I) = 2(uE_0) - u \\ &= 2(\frac{1}{2}\mathbf{1}) - u = \mathbf{1} - u, \\ 0(E_0 - E_1) &= 0. \end{aligned}$$

This realizes Godsil-McKay switching. It is straightforward to generalize to the case $C = \bigcup_i C_i$ consists of more than one C_i 's. Ferdinand Ihringer and I came up with a variation of Godsil-McKay switching, but after presenting it in a conference, I was notified by Wei Wang that his group independently discovered it (and published it very recently, gave a talk in the same conference two days later).

Suppose $V(\Gamma) = C_1 \cup C_2 \cup D$, $m = |C_1| = |C_2|$. This time we use the matrix

$$Q = \begin{bmatrix} E_1 & E_0 & 0\\ E_0 & E_1 & 0\\ 0 & 0 & I \end{bmatrix} \in O_{|V(\Gamma)|}(\mathbb{Q}).$$

The fact that this is an orthogonal matrix comes from $E_i E_j = \delta_{ij} E_i$.

In order for QAQ to become an adjacency matrix of a graph, we need to assume some properties of the partition, as in Godsil-McKay switching.

Theorem (WQH switching)

Let Γ be a graph whose vertex set is partitioned as $C_1 \cup C_2 \cup D$. Assume that $|C_1| = |C_2|$ and that $C_1 \cup C_2$ is an equitable partition of the induced subgraph on $C_1 \cup C_2$, and that all $x \in D$ satisfy one of the following:

1.
$$|\Gamma(x) \cap C_1| = |\Gamma(x) \cap C_2|$$
, or

2. $\Gamma(x) \cap (C_1 \cup C_2) \in \{C_1, C_2\}.$

Construct a graph $\overline{\Gamma}$ from Γ by modifying the edges between $C_1 \cup C_2$ and D as follows:

$$\overline{\Gamma}(x) \cap (C_1 \cup C_2) = \begin{cases} C_1 \text{ if } \Gamma(x) \cap (C_1 \cup C_2) = C_2, \\ C_2 \text{ if } \Gamma(x) \cap (C_1 \cup C_2) = C_1, \\ \Gamma(x) \cap (C_1 \cup C_2) \text{ otherwise,} \end{cases}$$

Consider a polar space of rank at least 3, for example, U(6, q)-space. All subspaces are considered as a set of projective points. $V(\Gamma) =$ the set of isotropic points, and two points are adjacent if they are orthogonal. It has an isotropic plane P. Let $L_1, L_2 \subseteq P$ be distinct lines, and set

 $C_1 = L_1 \backslash L_2, \quad C_2 = L_2 \backslash L_1, \quad D = V(\Gamma) \backslash (C_1 \cup C_2)$

This partition satisfies the hypotheses of WQH switching.

Indeed, $C_1 \cup C_2$ is a complete subgraph since it is contained in an isotropic plane P. Thus $C_1 \cup C_2$ is an equitable partition. Let $x \in D$. If $x \in P^{\perp}$, then $C_1 \cup C_2 \subset P \subset x^{\perp}$, so x is adjacent to all of $C_1 \cup C_2$. Otherwise, $x^{\perp} \cap P = L$ is a line. If $L = L_1$, then x is adjacent to all of C_1 , none of C_2 . Similar for $L = L_2$. If $L \neq L_1, L_2$, then $|L \cap L_1| = |L \cap L_2| = 1$, so xhas the same number (= 1) of neighbors in C_1 and in C_2 .