Outline

1. Grassmann graphs
2. Twisted Grassmann graphs
3. Godsil-McKay switching
4. Wang-Qiu-Hu switching
5. Strongly regular graph from polar spaces

Grassmann graph $J_{q}(n, k)$.

- V : n-dim. vector space over $\mathrm{GF}(q)$
- Projective geometry $\bigcup_{j=0}^{n}\left[\begin{array}{c}V \\ j\end{array}\right]$
- Vertices: $\left[\begin{array}{l}V \\ k\end{array}\right]$
- $W_{1} \sim W_{2} \Longleftrightarrow \operatorname{dim} W_{1} \cap W_{2}=k-1$.

For the twisted Grassmann graph, take

$$
n=2 d+1, \quad k=d+1 .
$$

Then

$$
C=\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \backslash\left[\begin{array}{c}
H \\
d+1
\end{array}\right]=\bigcup_{U \in\left[\begin{array}{l}
H \\
d
\end{array}\right]} C_{U}
$$

where

$$
C_{U}=\left\{\left.W \in\left[\begin{array}{c}
V \\
d+1
\end{array}\right] \right\rvert\, W \cap H=U\right\} .
$$

Observe, for $W \in D$,

$$
\begin{aligned}
& \exists W^{\prime} \in C_{U}, W \sim W^{\prime} \\
& \quad \Longleftrightarrow W \supseteq U \\
& \Longleftrightarrow \forall W^{\prime} \in C_{U}, W \sim W^{\prime} .
\end{aligned}
$$

Fix a polarity \perp of H. Redefine edges between C and D by changing

$$
W \sim W^{\prime} \quad\left(\forall W^{\prime} \in C_{U} \text { with } U \subseteq W\right)
$$

to

$$
W \sim W^{\prime} \quad\left(\forall W^{\prime} \in C_{U^{\perp}} \text { with } U \subseteq W\right)
$$

for $W \in D$.
In general, $U \neq U^{\perp}$. In this case $C_{U} \cap C_{U^{\perp}}=\emptyset$. The resulting graph is the twisted Grassmann graph $\tilde{J}_{q}(2 d+1, d+1)$.

For $W \in D, W$ is adjacent to all of $C_{U} \cup C_{U^{\perp}} \quad$ if $W \supseteq U+U^{\perp}$ all of $C_{U} \quad$ if $W \supseteq U$
none of $C_{U^{\perp}} \quad$ if $W \nsupseteq U^{\perp}$
none of $C_{U} \cup C_{U^{\perp}} \quad$ if $W \nsupseteq U, W \nsupseteq U^{\perp}$
"All," "Half," or "None."
The operation is to switch adjacency when "Half" takes place.

Definition of Godsil-McKay switching (1982).
$V(\Gamma)=C \cup D, C=\bigcup_{i} C_{i}$. Assume

$$
\forall i, \forall x \in D,\left|\Gamma(x) \cap C_{i}\right|=\left|C_{i}\right|, \frac{1}{2}\left|C_{i}\right|, 0
$$

Build a new graph $\tilde{\Gamma}$ by redefine $\Gamma(x)$ by

$$
\tilde{\Gamma}(x)=C_{i} \backslash \Gamma(x),
$$

provided

$$
\left|\Gamma(x) \cap C_{i}\right|=\frac{1}{2}\left|C_{i}\right| .
$$

Block graph = graph with blocks as vertices, adjacent iff intersect at maximal size.

- The original definition of $\tilde{J}_{q}(2 d+1, d+1)$ does not use a polarity.
- Both distorting and GM switching rely on a polarity.

Theorem (Godsil-McKay, 1982)
If $\left\{C_{i}\right\}_{i}$ is equitable, then the resulting graph is cospectral with the original.
Equitable: $\forall i, \forall x \in C_{i}, \forall y \in C_{i}, \forall j$, $\left|\Gamma(x) \cap C_{j}\right|=\left|\Gamma(y) \cap C_{j}\right|$.
2005 twisted Grassmann graphs of Van Dam-Koolen
2009 distorted geometric design, Jungnickel-Tonchev
2011 equivalence of these two, M.-Tonchev
2017 distorted \leftrightarrow Godsil-McKay switching

Why cospectral?
$A=$ adjacency matrix of Γ
$A^{\prime}=$ adjacency matrix of the switched graph
Then there exists $Q \in O_{|V(\Gamma)|}(\mathbb{Q})$ such that $Q^{-1} A Q=A^{\prime}$.
To describe Q explicitly, consider the case $C=C_{1}$, and $\forall x \in D$ is adjacent to all, half, or none of C.

Let $m=|C|$, and consider the trivial coherent algebra $\langle I, J\rangle \subseteq M_{m}(\mathbb{C})$. It has primitive idempotents

$$
E_{0}=\frac{1}{m} J, \quad E_{1}=I-\frac{1}{m} J, \quad E_{i} E_{j}=\delta_{i j} E_{i} .
$$

Then $\left(E_{0}-E_{1}\right)^{2}=I$. We claim

$$
\left[\begin{array}{cc}
E_{0}-E_{1} & 0 \\
0 & I
\end{array}\right] A\left[\begin{array}{cc}
E_{0}-E_{1} & 0 \\
0 & I
\end{array}\right]=A^{\prime}
$$

where the rows and columns are indexed by $C \cup D$.

Indeed,

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Since the subgraph induced on C is regular (equitable), of valency k, A_{11} commutes with J, hence also with $E_{0}-E_{1}$. Thus

$$
\left(E_{0}-E_{1}\right) A_{11}\left(E_{0}-E_{1}\right)=A_{11}
$$

How about $A_{21}\left(E_{0}-E_{1}\right)$?
A_{21} consists of three kinds of row vectors, all-one 1, half-one (say u), zero.

$$
\begin{aligned}
\mathbf{1}\left(E_{0}-E_{1}\right) & =\mathbf{1} E_{0}=\mathbf{1} \\
u\left(E_{0}-E_{1}\right) & =u\left(2 E_{0}-I\right)=2\left(u E_{0}\right)-u \\
& =2\left(\frac{1}{2} \mathbf{1}\right)-u=\mathbf{1}-u \\
0\left(E_{0}-E_{1}\right) & =0
\end{aligned}
$$

This realizes Godsil-McKay switching. It is straightforward to generalize to the case $C=\bigcup_{i} C_{i}$ consists of more than one C_{i} 's.

Suppose $V(\Gamma)=C_{1} \cup C_{2} \cup D, m=\left|C_{1}\right|=\left|C_{2}\right|$. This time we use the matrix

$$
Q=\left[\begin{array}{ccc}
E_{1} & E_{0} & 0 \\
E_{0} & E_{1} & 0 \\
0 & 0 & I
\end{array}\right] \in O_{|V(\Gamma)|}(\mathbb{Q})
$$

The fact that this is an orthogonal matrix comes from $E_{i} E_{j}=\delta_{i j} E_{i}$.
In order for $Q A Q$ to become an adjacency matrix of a graph, we need to assume some properties of the partition, as in Godsil-McKay switching.

Ferdinand Ihringer and I came up with a variation of Godsil-McKay switching, but after presenting it in a conference, I was notified by Wei Wang that his group independently discovered it (and published it very recently, gave a talk in the same conference two days later).

Theorem (WQH switching)

Let Γ be a graph whose vertex set is partitioned as $C_{1} \cup C_{2} \cup D$. Assume that $\left|C_{1}\right|=\left|C_{2}\right|$ and that $C_{1} \cup C_{2}$ is an equitable partition of the induced subgraph on $C_{1} \cup C_{2}$, and that all $x \in D$ satisfy one of the following:

1. $\left|\Gamma(x) \cap C_{1}\right|=\left|\Gamma(x) \cap C_{2}\right|$, or
2. $\Gamma(x) \cap\left(C_{1} \cup C_{2}\right) \in\left\{C_{1}, C_{2}\right\}$.

Construct a graph $\bar{\Gamma}$ from Γ by modifying the edges between $C_{1} \cup C_{2}$ and D as follows:
$\bar{\Gamma}(x) \cap\left(C_{1} \cup C_{2}\right)=\left\{\begin{array}{l}C_{1} \text { if } \Gamma(x) \cap\left(C_{1} \cup C_{2}\right)=C_{2}, \\ C_{2} \text { if } \Gamma(x) \cap\left(C_{1} \cup C_{2}\right)=C_{1}, \\ \Gamma(x) \cap\left(C_{1} \cup C_{2}\right) \text { otherwise },\end{array}\right.$

Indeed, $C_{1} \cup C_{2}$ is a complete subgraph since it is contained in an isotropic plane P. Thus $C_{1} \cup C_{2}$ is an equitable partition.
Let $x \in D$.
If $x \in P^{\perp}$, then $C_{1} \cup C_{2} \subset P \subset x^{\perp}$, so x is adjacent to all of $C_{1} \cup C_{2}$.
Otherwise, $x^{\perp} \cap P=L$ is a line. If $L=L_{1}$, then x is adjacent to all of C_{1}, none of C_{2}. Similar for $L=L_{2}$.
If $L \neq L_{1}, L_{2}$, then $\left|L \cap L_{1}\right|=\left|L \cap L_{2}\right|=1$, so x has the same number ($=1$) of neighbors in C_{1} and in C_{2}.

