Equiangular lines in Euclidean spaces

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University
joint work with G. Greaves, J. Koolen, and F. Szöllősi September 28, 2019

Shanghai University

By a set of equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^{d}, we mean

$$
\left\{\mathbb{R} \boldsymbol{x}_{1}, \ldots, \mathbb{R} \boldsymbol{x}_{n}\right\}
$$

where $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ are unit vectors such that

$$
\left|\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right|=\alpha \quad(1 \leq i<j \leq n),
$$

and

$$
0 \leq \alpha<1 .
$$

Example: $d=2, \alpha=1 / 2$,
$x_{k}=\left(\cos \frac{2 \pi k}{3}, \sin \frac{2 \pi k}{3}\right) \quad(k=1,2,3)$
$y_{k}=\left(\cos \frac{\pi k}{3}, \sin \frac{\pi k}{3}\right) \quad(k=0,1,2)$

12 vertices of the Icosahedron $=6$ lines

Example: $d=3, \alpha=1 / \sqrt{5}$, six diagonals of the icosahedron

$\arccos (1 / \sqrt{5}) \sim 63^{\circ}$.
(illustration by Gary Greaves)

Set of points in $S^{d-1}=\left\{\boldsymbol{x} \in \mathbb{R}^{d} \mid\|\boldsymbol{x}\|=1\right\}$

Equiangular lines:

$$
\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)= \pm \alpha \quad(1 \leq i<j \leq n) .
$$

Maximize the number of lines n :

$$
\begin{aligned}
N_{\alpha}(d) & =\max \left\{|X|\left|X \subseteq S^{d-1}\right|(\boldsymbol{x}, \boldsymbol{y})= \pm \alpha(\forall \boldsymbol{x}, \boldsymbol{y} \in X, \boldsymbol{x} \neq \boldsymbol{y})\right\}, \\
N(d) & =\max \left\{N_{\alpha}(d) \mid 0 \leq \alpha<1\right\} .
\end{aligned}
$$

A similar problem is the sphere packing (kissing number) problem:

$$
\tau(d)=\max \left\{|X|\left|X \subseteq S^{d-1}\right|(\boldsymbol{x}, \boldsymbol{y}) \leq \frac{1}{2}(\forall \boldsymbol{x}, \boldsymbol{y} \in X, \boldsymbol{x} \neq \boldsymbol{y})\right\}
$$

$N(2)=3, \tau(2)=6$ (hexagon)
$N(3)=6$: Haantjes (1948).
$\tau(3)=12$ (icosahedron): Schütte and van der Waerden (1953).

The value α

$$
N(2)=N_{1 / 2}(2), \quad N(3)=N_{1 / \sqrt{5}}(3) .
$$

For $d \geq 4$, for which $\alpha \in[0,1), N(d)=N_{\alpha}(d)$ holds?

Theorem (Lemmens-Seidel, P. M. Neumann, 1973)

Suppose $\exists n$ equiangular lines with angle $\arccos \alpha$ in \mathbb{R}^{d}.

$$
n>2 d \Longrightarrow \frac{1}{\alpha} \quad \text { is an odd integer } \geq 3
$$

Is the hypothesis $n>2 d$ restrictive? No.

d	2	3	4	5	6	$7-13$	14	\cdots
$N(d)$	3	6	6	10	16	28	$?$	\cdots
$1 / \alpha$	2	$\sqrt{5}$	$\sqrt{5}$ or 3	3	3	3	3 or 5	
$N(d)=\Theta\left(d^{2}\right)(d \rightarrow \infty)$								

$\alpha=1 / 3$: Root systems

Suppose $\exists n$ equiangular lines with angle $\arccos (1 / 3)$ in \mathbb{R}^{d}. The Gram matrix

$$
G=\left(\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)
$$

has diagonal $=1$, off diagonal $= \pm \frac{1}{3}$.
Let J denote the all-one matrix.

$$
\begin{aligned}
& S=3(G-I) \quad \text { (Seidel matrix): off diagonal }= \pm 1 \\
& A=\frac{1}{2}(J-I+S) \quad \text { (adjacency matrix): off diagonal }=0,1 \\
& C=A+2 I=\frac{1}{2} J+\frac{3}{2} G \geq 0 .
\end{aligned}
$$

C is the Gram matrix of a subset of a root system of type A, D, E.

Van Lint-Seidel (1966):

$$
N_{\alpha}(d) \leq 1+\frac{d-1}{1-d \alpha^{2}} \quad \text { if } 1-d \alpha^{2}>0 .
$$

d	3	4	5	6	7
$N_{1 / 3}(d)$	4	6	10	16	28
	$\arccos \frac{1}{3} \sim 70^{\circ}$				

Lemmens-Seidel (1973):
$\left.\begin{array}{rl}\hline d & 3 \\ 4 & 5 \\ \hline\end{array}\right)$

Tremain (2008): $28 \leq N_{1 / 5}(14)$.
Thus

$$
28 \leq N_{1 / 5}(14)=N(14) \leq 30 .
$$

$N(14)$

$$
N(14)=N_{1 / 5}(14)=28 \text { or } 29 \text { or } 30 .
$$

Theorem (Greaves-Koolen-M.-Szöllősi, 2016)
 $N_{1 / 5}(14)<30$.

So

$$
N(14)=N_{1 / 5}(14)=28 \text { or } 29 .
$$

Our method is not powerful enough to rule out 29.

$N_{1 / 5}(14)$

Suppose $\exists n$ equiangular lines with angle $\arccos (1 / 5)$ in \mathbb{R}^{d}. The Gram matrix

$$
G=\left(\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)\right)
$$

has diagonal $=1$, off diagonal $= \pm \frac{1}{5}$, rank $G=d$.

$$
\begin{aligned}
& S=5(G-I) \quad \text { (Seidel matrix): off diagonal }= \pm 1 \\
& A=\frac{1}{2}(J-I+S) \quad \text { (adjacency matrix): off diagonal }=0,1 \\
& C=A+3 I=\frac{1}{2} J+\frac{5}{2} G \geq 0 .
\end{aligned}
$$

C is the Gram matrix of a set of vectors of norm 3, with inner products 0,1 , in \mathbb{R}^{d+1}.

Future work

Root systems:

- The set of vectors of a lattice generated by norm 2 vectors, with inner products $0, \pm 1$.
- Classified by Cartan, Killing, Witt.
- Denoted by $A_{d}(d \geq 2), D_{d}(d \geq 4), E_{d}(d=6,7,8)$.

Sets of vectors of norm 3 with inner products $0, \pm 1$ (no name)

- Such a set generates an integral lattice.
- Classification(?)

Theorem (Conway-Sloane, 1989)

Every integral lattice of rank r can be embedded in a unimodular lattice of rank at most $r+3$.

- Classification of unimodular lattices is available for $d \leq 25$. In particular, for rank $(14+1)+3=18$.

