Neighbor-balanced bijections of hypercubes

Akihiro Munemasa
Tohoku University
(joint work with Steven Surya Tanujaya)

The 4-th Workshop on Algebraic Graph Theory March 1, 2021

Contents

(1) Definitions and notation: balanced sets in hypercubes, definition and examples of neighbor-balanced bijections.
(2) Distance magic labelings: relationship to neighbor-balanced bijections, and to the kernel of the adjacency matrix.
(3) Characterization of linear neighbor-balanced bijections in terms of eigenfunctions: Main
Theorem 1 gives an expansion of the distance magic labeling obtained from a neighbor-balanced bijection in $A G L(n, 2)$ in terms of eigenfunctions.
(4) Nonlinear neighbor-balanced bijections: Main Theorem 2 states that, for every $n \geq 6$, with $n \equiv 2$ $(\bmod 4)$, there exists a nonlinear neighbor-balanced bijection $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ with $f(0)=0$.

Balanced set

$\mathbf{F}_{2}=\{0,1\}$. The n-dimensional hypercube (also known as the Hamming graph $H(n, 2)$) is the graph

- vertex set \mathbf{F}_{2}^{n}
- edge set $\left\{\left\{u, u+e_{j}\right\} \mid u \in \mathbf{F}_{2}^{n}, j \in[n]\right\}$ where e_{1}, \ldots, e_{n} denote the standard basis of \mathbf{F}_{2}^{n}. $n=2$. Neighbors are

$$
\begin{aligned}
& N(00)=N(11)=\{01,10\} \\
& N(01)=N(10)=\{00,11\}
\end{aligned}
$$

A subset $X \subset \mathbf{F}_{2}^{n}$ is called balanced (also known as an orthogonal array of strength 1) if

$$
\left|\left\{x \in X \mid x_{j}=1\right\}\right|=\frac{|X|}{2} \quad(\forall j \in[n])
$$

Regarding X as an $|X| \times n$ matrix, this means that every column of X has the same number of 0 and 1 , or equivalently, every column of X has weight $|X| / 2$.

$$
X=\left[\begin{array}{lll}
(& &) \\
(& &) \\
(& : &)
\end{array}\right] \quad \begin{aligned}
& N(00)=\left[\begin{array}{l}
(01) \\
(10)
\end{array}\right] \\
& N(01)=\left[\begin{array}{l}
(00) \\
(11)
\end{array}\right]
\end{aligned}
$$

For $a \in \mathbf{F}_{2}^{n}$, the weight $\operatorname{wt}(a)$ of a is

$$
\operatorname{wt}(a)=\left|\left\{j \in[n] \mid a_{j}=1\right\}\right| .
$$

Neighbor-balanced bijections

A bijection $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ is called neighbor-balanced if $f(N(u))$ is balanced $\left(\forall u \in \mathbf{F}_{2}^{n}\right)$. $n=2, \mathrm{id}_{\mathbf{F}_{2}^{2}}$ is neighbor-balanced.
For n odd, $|N(u)|=n, N(u)$ or its image $f(N(u))$ is never balanced.

The following construction is due to Gregor-Kovář (2013): Suppose $n=4 p+2$. Define a linear transformation $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ by $f(u)=M u$, where

$$
M=\left[\begin{array}{cccc}
1 & 0 & \mathbf{1}_{2 p} & 0 \\
0 & 1 & 0 & \mathbf{1}_{2 p} \\
0 & 0 & I_{2 p} & J_{2 p} \\
0 & 0 & J_{2 p} & I_{2 p}
\end{array}\right] \in G L(n, 2)
$$

Then $f(N(0))=\left\{M e_{j} \mid j \in[n]\right\}$ consists of the row vectors of

$$
M^{\top}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\mathbf{1}_{2 p}^{\top} & 0 & I_{2 p} & J_{2 p} \\
0 & \mathbf{1}_{2 p}^{\top} & J_{2 p} & I_{2 p}
\end{array}\right]
$$

in which every column has $2 p+1$ zeros and ones.

Since

$$
f(N(u))=f(N(0)+u)=f(N(0))+f(u)
$$

is also balanced, f is neighbor-balanced.

Proposition (Gregor-Kovář, 2013)

 If every row of $M \in G L(n, 2)$ has weight $n / 2$, then the linear transformation defined by M is neighbor-balanced.If $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ is neighbor-balanced, then so is $\alpha \circ f \circ \beta$, for $\alpha, \beta \in$ Aut $H(n, 2)$.

This means that the set of neighbor-balanced bijections is a union of double cosets of $\operatorname{Aut} H(n, 2)$ in the full symmetric group $\operatorname{Sym} \mathbf{F}_{2}^{n}$.

Note

Aut $H(n, 2)=\mathbf{F}_{2}^{n} \rtimes \operatorname{Sym}(n) \leq A G L(n, 2) \leq \operatorname{Sym} \mathbf{F}_{2}^{n}$, where $A G L(n, 2)=\mathbf{F}_{2}^{n} \rtimes G L(n, 2)$.
(1) We characterize neighbor-balanced bijections in $A G L(n, 2)$ in terms of eigenvectors of the adjacency matrix of $H(n, 2)$.
(2) We disprove a conjecture of Gregor-Kovář (2013):

$$
\{\text { neighbor-balanced bijections }\} \subseteq A G L(n, 2)
$$

by constructing a nonlinear neighbor-balanced bijection g with $g(0)=0$.

A bijection $\gamma: \mathbf{F}_{2}^{n} \rightarrow\left\{0,1, \ldots, 2^{n}-1\right\}$ is a distance magic labeling if

$$
\sum_{x \in N(u)} \gamma(x) \text { is a constant } \frac{n\left(2^{n}-1\right)}{2}
$$

Regarding $\gamma \in \mathbb{R}^{2^{n}}$ and using the adjacency matrix A of the hypercube, this means

$$
A \gamma=\mathrm{constant} \cdot \mathbf{1}=\frac{n\left(2^{n}-1\right)}{2}
$$

Distance magic labelings of graphs were studied by Stanley (1973).

Proposition (Gregor-Kovář, 2013)

Let $\zeta: \mathbf{F}_{2}^{n} \rightarrow\left\{0,1 \ldots, 2^{n}-1\right\}$ be the inverse of the 2-adic expansion. If $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ is neighbor-balanced, then $\zeta \circ f$ is a distance magic labeling.
$\sum_{x \in N} \zeta \circ f(x)=\frac{n\left(1+2+\cdots+2^{n-1}\right)}{2}=\frac{n\left(2^{n}-1\right)}{2}$.
$x \in N(u) \quad$ coordinates
$f(N(u)) \begin{cases}(0 &) \xrightarrow{\zeta}\left\{0,1, \ldots, 2^{n}-1\right\} \\ \vdots &) \\ (0 &) \\ (1 &)\end{cases}$

Spectrum of the hypercube

If $\gamma: \mathbf{F}_{2}^{n} \rightarrow\left\{0,1, \ldots, 2^{n}-1\right\}$ is a distance magic labeling, then

$$
A \gamma=\frac{n\left(2^{n}-1\right)}{2} \cdot \mathbf{1}=\frac{2^{n}-1}{2} A \mathbf{1}
$$

So

$$
\gamma-\frac{2^{n}-1}{2} \mathbf{1} \in \operatorname{Ker} A .
$$

Spectrum of A consists of $n-2 i(i=0,1, \ldots, n)$.

$$
\begin{aligned}
V_{i} & =\operatorname{Ker}(A-(n-2 i) I) \quad(i=0,1, \ldots, n), \\
V_{n / 2} & =\operatorname{Ker} A
\end{aligned}
$$

Define

$$
\chi(a)=\left((-1)^{\langle a, x\rangle}\right)_{x \in \mathbf{F}_{2}^{n} \in \mathbb{R}^{2^{n}} .}
$$

Then

$$
A \chi(a)=(n-2 \mathrm{wt}(a)) \chi(a) .
$$

So V_{i} has basis $\left\{\chi(a) \mid a \in \mathbf{F}_{2}^{n}\right.$, wt $\left.(a)=i\right\}$.
In particular, $\operatorname{dim} \operatorname{Ker} A=\binom{n}{n / 2}$, and $\operatorname{Ker} A$ has basis

$$
\left\{\chi(a) \mid a \in \mathbf{F}_{2}^{n}, \text { wt }(a)=n / 2\right\} .
$$

Recall that $\zeta: \mathbf{F}_{2}^{n} \rightarrow\left\{0,1 \ldots, 2^{n}-1\right\}$ is the inverse of the 2 -adic expansion.
If $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}, f(u)=M u$ is neighbor balanced, then $\zeta \circ f$ is a distance magic labeling, so

$$
\zeta \circ f-\frac{2^{n}-1}{2} \mathbf{1} \in \operatorname{Ker} A
$$

It can be shown:

$$
\zeta \circ f-\frac{2^{n}-1}{2} \mathbf{1}=-\sum_{i \in[n]} 2^{i-2} \chi\left(M_{i}\right)
$$

where M_{i} denotes the i-th row vector of M (and hence $\left.\mathrm{wt}\left(M_{i}\right)=n / 2\right)$.

Theorem (M.-Steven S. Tanujaya)

Let $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ be neighbor balanced. Then $f \in A G L(n, 2)$ if and only if

$$
\begin{aligned}
& \exists M_{1}, \ldots, M_{n} \in\left\{x \in \mathbf{F}_{2}^{n} \mid \operatorname{wt}(x)=n / 2\right\} \\
& \exists \epsilon_{1}, \ldots, \epsilon_{n} \in\{ \pm 1\}
\end{aligned}
$$

such that

$$
\zeta \circ f-\frac{2^{n}-1}{2} \mathbf{1}=\sum_{i \in[n]} \epsilon_{i} 2^{i-2} \chi\left(M_{i}\right)
$$

We next construct neighbor-balanced bijections $g \notin A G L(n, 2)$.

The case $n \equiv 0(\bmod 4)$

Proposition

If $n \equiv 0(\bmod 4)$, then there is no distance magic labeling for $H(n, 2)$.

According to Gregor and Kovár (2013), this is due to Barrientos-Cichacz-Fronček-Krop-Raridan.

So there is no neighbor-balanced bijection for $H(n, 2)$ if $n \equiv 0(\bmod 4)$.

This proposition can be proved by observing the action of distance-n matrix A_{n} on $\operatorname{Ker} A$.

If n is even and $\mathrm{wt}(a)=n / 2$, then

$$
\begin{aligned}
A_{n} \chi(a) & =(-1)^{n / 2} \chi(a) & \\
& =\chi(a) & \text { if } n \equiv 0 \quad(\bmod 4) .
\end{aligned}
$$

This means that the eigenvalue of A_{n} on $\operatorname{Ker} A$ is 1 , so A_{n} fixes the vector

$$
\gamma-\frac{2^{n}-1}{2} \mathbf{1}
$$

consisting of 2^{n} distinct entries. This is impossible since A_{n} is a permutation matrix of order 2 .

Nonlinear neighbor-balanced bijections

Now assume $n \geq 6$ and $n \equiv 2(\bmod 4)$.

Gregor-Kovář (2013) conjectured:

Conjecture

Every neighbor-balanced bijection of \mathbf{F}_{2}^{n} is affine linear, that is, an element of $A G L(n, 2)$.

We present counterexamples.
Let $n=4 p+2$. Define $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ by $f(u)=M u$, where

$$
M=\left[\begin{array}{cccc}
1 & 0 & \mathbf{1}_{2 p} & 0 \\
0 & 1 & 0 & \mathbf{1}_{2 p} \\
0 & 0 & I_{2 p} & J_{2 p} \\
0 & 0 & J_{2 p} & I_{2 p}
\end{array}\right]
$$

Then f is a neighbor-balanced bijection,

$$
f \in G L(n, 2) \leq A G L(n, 2)
$$

We modify f slightly to produce a nonlinear neighbor-balanced bijection g with $g(0)=0$.

A construction

Define $\sigma: \mathbf{F}_{2}^{3} \rightarrow \mathbf{F}_{2}^{3}$ by

$$
\sigma(u)= \begin{cases}001 & \text { if } u=110 \\ 110 & \text { if } u=001 \\ u & \text { otherwise }\end{cases}
$$

Note that σ is not linear, since

$$
\sigma\left(e_{1}+e_{2}\right)=e_{3} \neq e_{1}+e_{2}=\sigma\left(e_{1}\right)+\sigma\left(e_{2}\right)
$$

Define $g: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ by

$$
g=\left(\sigma \times \mathrm{id}_{\mathbf{F}_{2}^{n-3}}\right) \circ f
$$

$$
g: \mathbf{F}_{2}^{n} \xrightarrow{f} \mathbf{F}_{2}^{n}=\stackrel{\stackrel{\mathbf{F}_{2}^{\prime}}{\oplus}}{\stackrel{\rightarrow}{\rightarrow}} \stackrel{\mathbf{F}_{2}^{\prime}}{\oplus}=\mathbf{F}_{2}^{n}
$$

We claim that g is a neighbor-balanced bijection.

Clearly, $g(0)=0$, and g is not linear, that is, $g \notin A G L(n, 2)$.

g is neighbor-balanced

Note $g(N(u))=\left\{g\left(u+e_{j}\right) \mid j \in[n]\right\}$.
To show that g is neighbor-balanced, we need:

$$
\left|\left\{j \in[n] \mid g\left(u+e_{j}\right)_{i}=1\right\}\right|=\frac{n}{2} \quad(i \in[n]) .
$$

Since $g=\left(\sigma \times \mathrm{id}_{\mathbf{F}_{2}^{n-3}}\right) \circ f$,

$$
g\left(u+e_{j}\right)_{i}=f\left(u+e_{j}\right)_{i} \quad(i \in\{4,5, \ldots, n\})
$$

Since f is neighbor-balanced,

$$
\begin{aligned}
& \left|\left\{j \in[n] \mid g\left(u+e_{j}\right)_{i}=1\right\}\right| \\
& =\left|\left\{j \in[n] \mid f\left(u+e_{j}\right)_{i}=1\right\}\right| \\
& =\frac{n}{2} \quad(i \in\{4,5, \ldots, n\}) .
\end{aligned}
$$

It remains to check

$$
\left|\left\{j \in[n] \mid g\left(u+e_{j}\right)_{i}=1\right\}\right|=\frac{n}{2} \quad(i \in\{1,2,3\}) .
$$

Let

$$
E=\left\{0, e_{1}, e_{2}, e_{3}\right\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

Lemma

Let $v_{1}, v_{2}, v_{3} \in \mathbf{F}_{2}^{n}$, and suppose

$$
\mathrm{wt}\left(v_{1}\right)=\mathrm{wt}\left(v_{2}\right)=\mathrm{wt}\left(v_{3}\right)=\mathrm{wt}\left(v_{1}+v_{2}+v_{3}\right)=\frac{n}{2} .
$$

Then for $\forall b \in \mathbf{F}_{2}^{3}$, the number of column vectors of the matrix

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

belonging to the set $E+b$ is $n / 2$.
For example, in the matrix

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right],
$$

there are 3 vectors in the set

$$
E+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
$$

Recall $f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ was defined as $f(u)=M u$, where

$$
M=\left[\begin{array}{cccc}
1 & 0 & \mathbf{1}_{2 p} & 0 \\
0 & 1 & 0 & \mathbf{1}_{2 p} \\
0 & 0 & I_{2 p} & J_{2 p} \\
0 & 0 & J_{2 p} & I_{2 p}
\end{array}\right]
$$

$v_{i}=i$-th row of $M(i=1,2,3)$, satisfy the hypothesis of Lemma. Indeed,

$$
\begin{aligned}
v_{1} & =\left(1,0, \mathbf{1}_{2 p}, 0_{2 p}\right), \\
v_{2} & =\left(0,1,0_{2 p}, \mathbf{1}_{2 p}\right), \\
v_{3} & =\left(0,0,1,0_{2 p-1}, \mathbf{1}_{2 p}\right), \\
v_{1}+v_{2}+v_{3} & =\left(1,1,0, \mathbf{1}_{2 p-1}, 0_{2 p}\right) .
\end{aligned}
$$

all have weight $2 p+1=n / 2$.

Let

$$
M^{\prime}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\text { the first } 3 \text { rows of } M
$$

By Lemma, for $\forall b \in \mathbf{F}_{2}^{3}$, the number of column vectors of M^{\prime} belonigng to the set $E+b$ is $n / 2$, i.e.,

$$
\mid\left\{j \in[n] \mid j \text {-th column of } M^{\prime} \in E+b\right\} \left\lvert\,=\frac{n}{2}\right.
$$

It remains to check

$$
\left|\left\{j \in[n] \mid g\left(u+e_{j}\right)_{i}=1\right\}\right|=\frac{n}{2} \quad(i \in\{1,2,3\}) .
$$

Recall

$$
\begin{aligned}
& E=\{000,100,010,001\}, \\
& \sigma(u)= \begin{cases}001 & \text { if } u=110, \\
110 & \text { if } u=001, \\
u & \text { otherwise, }\end{cases} \\
& \mathbf{F}_{2}^{3} \xrightarrow{\sigma} \quad \mathbf{F}_{2}^{3} \\
& g: \mathbf{F}_{2}^{n} \xrightarrow{f} \mathbf{F}_{2}^{n}=\stackrel{\oplus}{\oplus} \quad \stackrel{\mathbf{F}_{2}^{n}}{ } \\
& \mathbf{F}_{2}^{n-3} \xrightarrow{\text { id }} \mathbf{F}_{2}^{n-3}
\end{aligned}
$$

For $i=1$, let $\sigma_{1}: \mathbf{F}_{2}^{3} \xrightarrow{\sigma} \mathbf{F}_{2}^{3} \xrightarrow{\frac{\pi}{l}} \mathbf{F}_{2}$. Then

$$
\begin{aligned}
& g\left(u+e_{j}\right)_{1}=1 \\
& \quad \Longleftrightarrow \sigma_{1}\left(f\left(u+e_{j}\right)_{1}, f\left(u+e_{j}\right)_{2}, f\left(u+e_{j}\right)_{3}\right)=1 \\
& \quad \Longleftrightarrow\left(f\left(u+e_{j}\right)_{i}\right)_{i=1}^{3} \in \sigma_{1}^{-1}(1) \\
& \quad \Longleftrightarrow\left(M\left(u+e_{j}\right)_{i}\right)_{i=1}^{3} \in\{101,001,111,100\} \\
& \Longleftrightarrow M^{\prime} u+M^{\prime} e_{j} \in\{000,100,010,001\}+101 \\
& \Longleftrightarrow j \text {-th column of } M^{\prime} \in E+\left(101+M^{\prime} u\right)
\end{aligned}
$$

Thus

$$
\left|\left\{j \in[n] \mid g\left(u+e_{j}\right)_{1}=1\right\}\right|=\frac{n}{2} .
$$

Similar for $i=2,3$.

Theorem (M.-Steven S. Tanujaya)

Let $n \geq 6$ with $n \equiv 2(\bmod 4)$. Define $\sigma: \mathbf{F}_{2}^{3} \rightarrow \mathbf{F}_{2}^{3}$ by

$$
\sigma(u)= \begin{cases}001 & \text { if } u=110 \\ 110 & \text { if } u=001 \\ u & \text { otherwise }\end{cases}
$$

$f: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ by $f(u)=M u$, where

$$
M=\left[\begin{array}{cccc}
1 & 0 & \mathbf{1}_{2 p} & 0 \\
0 & 1 & 0 & \mathbf{1}_{2 p} \\
0 & 0 & I_{2 p} & J_{2 p} \\
0 & 0 & J_{2 p} & I_{2 p}
\end{array}\right],
$$

and $g: \mathbf{F}_{2}^{n} \rightarrow \mathbf{F}_{2}^{n}$ by

$$
g=\left(\sigma \times \mathrm{id}_{\mathbf{F}_{2}^{n-3}}\right) \circ f
$$

Then $g \notin A G L(n, 2)$ and g is neighbor-balanced.

Gregor-Kovář also posed a problem

Problem

For $n \geq 6$ and $n \equiv 2(\bmod 4)$, Find a distance magic labeling of the n-dimensional hypercube that is not of the form $\zeta \circ f$ for any neighbor-balanced bijection f.

Recently, Savický arXiv:2102.08212 presented examples for $n=6$.

