Extremal Lattices and Spherical Designs

Akihiro Munemasa

Graduate School of Information Sciences Tohoku University Japan

(joint work with Boris Venkov)

July 21, 2004 Pusan National University

Extremal Lattices and Spherical Designs – p.1/18

Venkov's Theorem (1984)

Let $\Lambda \subset \mathbb{R}^{24n}$ be an extremal even unimodular lattice.

 $X = \{ x \in \Lambda \mid (x, x) = 2n + 2 \}.$

Then X is a spherical 11-design (after rescaling).

Example: in \mathbb{R}^{24} , the Leech lattice has 196,560 shortest vectors, which form a tight 11-design after scaling.

Theorem 1 (Bannai–Sloane, 1981). Every tight spherical 11-design in \mathbb{R}^{24} is equivalent to the example above.

Definition of a Spherical Design

A spherical *t*-design X is a finite subset of the unit sphere $S^{n-1} \subset \mathbb{R}^n$ s.t.

$$\frac{\int_{S^{n-1}} f d\mu}{\int_{S^{n-1}} 1 d\mu} = \frac{1}{|X|} \sum_{x \in X} f(x)$$

holds for any polynomial f(x) of degree $\leq t$. If X is a spherical (2s + 1)-design in \mathbb{R}^n with X = -X, then

$$|X| \ge 2\binom{n-1+s}{s}$$

X is said to be tight if equality holds.

X: tight spherical 11-design in the unit sphere in \mathbb{R}^{24} \implies $|V| = 2\left(24 - 1 + 5\right) = 106.560$

$$|X| = 2\binom{24 - 1 + 3}{5} = 196,560$$

 $\implies (x, y) \in \{\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, 0\}.$ How can one use the fact that X is a spherical design?

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{\int_{S^{23}} f d\mu}{\int_{S^{23}} 1 d\mu}$$

holds for any polynomial f(x) of degree at most 11. Take $f(x) = (\alpha, x)^2$, with $\alpha \in \mathbb{R}^{24}$, $\alpha \neq 0$.

$$\frac{1}{|X|} \sum_{x \in X} (\alpha, x)^2 = \frac{(\alpha, \alpha)}{24}.$$

Lattice

- A lattice is a \mathbb{Z} -submodule of \mathbb{R}^n of rank n containing a basis of \mathbb{R}^n .
- A lattice Λ is called integral if $\forall x, y \in \Lambda$, $(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^* of an integral lattice Λ is

 $\Lambda^* = \{ x \in \mathbb{R}^n \mid (x, y) \in \mathbb{Z} \; \forall y \in \Lambda \} \supset \Lambda.$

and $|\Lambda^* : \Lambda| < \infty$.

- An integral lattice Λ is called even if $(x, x) \in 2\mathbb{Z} \ \forall x \in \Lambda$.
- An integral lattice Λ is called unimodular if $\Lambda = \Lambda^*$.

X: spherical 11-design, X = -X, $(x, y) \in \{\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, 0\}.$ The lattice $\Lambda = 2\mathbb{Z}X$ is even, since it is integral and is generated by vectors of even norm.

Theorem 2 (Conway). *The Leech lattice is the unique even unimodular lattice of dimension 24 with minimum norm 4.*

$$\min \Lambda = \min\{(x, x) \mid 0 \neq x \in \Lambda\}.$$

We wish to prove $\Lambda = 2\mathbb{Z}X$ is unimodular and Λ has minimum norm 4.

X: spherical 11-design, X = -X, $2X \ni \forall x, y, (x, x) = 4, (x, y) \in \mathbb{Z}$.

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \frac{\int_{S^{23}} f d\mu}{\int_{S^{23}} 1 d\mu}$$

holds for any polynomial f(x) of degree at most 11. Take $f(x) = (\alpha, x)^{2j}$, with $\alpha \in \mathbb{R}^{24}$, j = 1, 2, 3, 4, 5.

$$\sum_{x \in X} (\alpha, x)^{2j} = |X| \frac{(2j-1)!!(\alpha, \alpha)^j}{24 \cdot 26 \cdots (24+2j-2)}$$

holds for j = 1, 2, 3, 4, 5.

$$\sum_{x \in 2X} (\alpha, x)^{2j} = |X| \frac{4^j (2j - 1)!! (\alpha, \alpha)^j}{24 \cdot 26 \cdots (24 + 2j - 2)}$$

holds for j = 1, 2, 3, 4, 5. Take $\alpha \in \Lambda^* = (2\mathbb{Z}X)^*$. Then $(\alpha, x) \in \mathbb{Z}$ for all $x \in 2X$,

$$\sum_{k=1}^{\infty} n_k k^{2j} = |X| \frac{(2j-1)!! 4^j (\alpha, \alpha)^j}{24 \cdot 26 \cdots (24+2j-2)}$$

holds for j = 1, 2, 3, 4, 5, where

 $n_k = |\{x \in 2X \mid (\alpha, x) = \pm k\}| \quad (k = 1, 2, \ldots).$

System of Linear Equations

X: spherical 11-design, X = -X, $2X \ni \forall x, y, (x, x) = 4, (x, y) \in \mathbb{Z}$.

$$\begin{pmatrix} 1 & 2^2 & 3^2 & \cdots \\ 1 & 2^4 & 3^4 & \cdots \\ 1 & 2^6 & 3^6 & \cdots \\ 1 & 2^8 & 3^8 & \cdots \\ 1 & 2^{10} & 3^{10} & \cdots \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} c_1(m) \\ c_2(m) \\ c_3(m) \\ c_4(m) \\ c_5(m) \end{pmatrix}$$

where

$$c_{j}(m) = |X| \frac{(2j-1)!!4^{j}m^{j}}{24 \cdot 26 \cdots (24+2j-2)},$$
$$m = (\alpha, \alpha),$$
$$n_{k} = |\{x \in 2X \mid (\alpha, x) = \pm k\}|$$

Extremal Lattices and Spherical Designs – p.9/18

Trick

X: spherical 11-design, X = -X, $2X \ni \forall x, y, (x, x) = 4, (x, y) \in \mathbb{Z}$. $\Lambda = 2\mathbb{Z}X$. Take $\alpha \in \Lambda^*$ in such a way that

 $m = (\alpha, \alpha) = \min\{(\beta, \beta) \mid 0 \neq \beta \in \alpha + \Lambda\}.$

Then $|(\alpha, x)| \leq 2 \quad \forall x \in 2X$, unless $\alpha \in 2X$. Indeed, since (x, x) = 4, $(\alpha, x) \geq 3 \ (\exists x \in 2X \subset \Lambda) \implies \alpha - x \in \alpha + \Lambda \text{ and}$ $(\alpha - x, \alpha - x) = (\alpha, \alpha) - 2(\alpha, x) + (x, x)$ $\leq (\alpha, \alpha) - 2 \cdot 3 + 4$ $< (\alpha, \alpha).$

Trick

X: spherical 11-design, X = -X, $2X \ni \forall x, y, (x, x) = 4, (x, y) \in \mathbb{Z}$. $\Lambda = 2\mathbb{Z}X$. Take $\alpha \in \Lambda^*$ in such a way that

 $m = (\alpha, \alpha) = \min\{(\beta, \beta) \mid 0 \neq \beta \in \alpha + \Lambda\}.$

Then $|(\alpha, x)| \leq 2 \quad \forall x \in 2X$, unless $\alpha \in 2X$.

$$\begin{pmatrix} 1 & 2^{2} \\ 1 & 2^{4} \\ 1 & 2^{6} \\ 1 & 2^{8} \\ 1 & 2^{10} \end{pmatrix} \begin{pmatrix} n_{1} \\ n_{2} \end{pmatrix} = \begin{pmatrix} c_{1}(m) \\ c_{2}(m) \\ c_{3}(m) \\ c_{4}(m) \\ c_{5}(m) \end{pmatrix}$$

Conclusion

$$\begin{pmatrix} 1 & 2^2 \\ 1 & 2^4 \\ 1 & 2^6 \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} = |X|m \begin{pmatrix} \frac{1}{6} \\ \frac{m}{13} \\ \frac{5m^2}{91} \end{pmatrix}$$

 $m^{2} - 7m + \frac{182}{15} = 0 \implies m \notin \mathbb{Q}.$ But $m = (\alpha, \alpha), \alpha \in \Lambda^{*}, k = |\Lambda^{*} : \Lambda| < \infty$ $\implies k\alpha \in \Lambda \implies (k\alpha, k\alpha) \in \mathbb{Z} \implies m = (\alpha, \alpha) \in \mathbb{Q}.$ Conclusion:

 $\alpha \in \Lambda^*$: minimal in $\alpha + \Lambda, \alpha \notin 2X \implies$ contradiction

This implies $\Lambda^* = \Lambda$ X = shortest vectors of Λ

 $\implies \Lambda =$ Leech lattice.

Observation

$$\begin{pmatrix} 1 & 2^2 \\ 1 & 2^4 \\ 1 & 2^6 \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} = |X|m \begin{pmatrix} \frac{1}{6} \\ \frac{m}{13} \\ \frac{5m^2}{91} \end{pmatrix}$$

- |X| is not important.
- Suffices to assume X is a spherical 6-design (equivalently, 7-design, since X = -X).

Theorem 3. Let X be a spherical 7-design in \mathbb{R}^{24} with X = -X, $4(x, y) \in \mathbb{Z} \ \forall x, y \in X$. Then 2X coincides with the 196,560 shortest vectors of the Leech lattice. **Corollary 1 (Bannai–Sloane, 1981).** A tight spherical 11-design in \mathbb{R}^{24} is unique.

Extremal Lattices

An even unimodular lattice $\Lambda \subset \mathbb{R}^{24n}$ is called extremal if $\min \Lambda = 2n + 2$. Examples:

- 24n = 24, $\min \Lambda = 4$: the Leech lattice.
- 24n = 48, min $\Lambda = 6$: three lattices known.
- 24n = 72, min $\Lambda = 8$: no lattices known.
- $24n \ge 96$, min $\Lambda = 2n + 2$: no lattices known.

Venkov's theorem implies that we always have a spherical 11-design.

Dimension 48

Theorem 4. $\mathbb{R}^{48} \supset X$: spherical 9-design, $X \ni \forall x, y$, $6(x, y) \in \mathbb{Z}, \implies \Lambda = \sqrt{6}\mathbb{Z}X = an$ extremal lattice, $\sqrt{6}X = the$ set of shortest vectors of Λ .

Proof. $\alpha \in \Lambda^*$: minimal in $\alpha + \Lambda$, $m = (\alpha, \alpha)$.

$$\begin{pmatrix} 1 & 2^2 & 3^2 \\ 1 & 2^4 & 3^4 \\ 1 & 2^6 & 3^6 \\ 1 & 2^8 & 3^8 \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} = |X|m \begin{pmatrix} c_1 \\ c_2(m) \\ c_3(m) \\ c_4(m) \end{pmatrix}$$

 \implies an irreducible cubic equation in m.

Remark 1. Such a design is necessarily a spherical 11-design by Venkov's theorem. There are three extremal lattices of dimension 48 known.

Dimension 72

Theorem 5. $\mathbb{R}^{72} \supset X$: spherical 11-design, $X \ni \forall x, y$, $8(x, y) \in \mathbb{Z}, \implies \Lambda = \sqrt{8}\mathbb{Z}X = an$ extremal lattice, $\sqrt{8}X = b$ the set of shortest vectors of Λ .

Proof. $\alpha \in \Lambda^*$: minimal in $\alpha + \Lambda$, $m = (\alpha, \alpha)$.

$$\begin{pmatrix} 1 & 2^2 & 3^2 & 4^2 \\ 1 & 2^4 & 3^4 & 4^4 \\ 1 & 2^6 & 3^6 & 4^6 \\ 1 & 2^8 & 3^8 & 4^8 \\ 1 & 2^{10} & 3^{10} & 4^{10} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \end{pmatrix} = |X|m \begin{pmatrix} c_1 \\ c_2(m) \\ c_3(m) \\ c_4(m) \\ c_5(m) \end{pmatrix}$$

 \implies an irreducible quartic equation in m.

Problem 1. *Does there exist an extremal even unimodular lattice of dimension 72?*

Binary Code Analogues

spherical (2t + 1)-design integral lattice unimodular lattice Venkov's theorem Leech lattice tight 11-design in \mathbb{R}^{24} extremal lattice in \mathbb{R}^{48}

spherical 11-design in \mathbb{R}^{48} spherical 11-design in \mathbb{R}^{72}

t-design binary self-orthogonal code binary self-dual code Assmus–Mattson theorem extended binary Golay code S(5, 8, 24)extended binary quadratic residue code of length 48 self-orthogonal 5-(48, 12, 8) design self-orthogonal 5-(72, 16, 78) design

Binary Code Analogues

Let X be (the set of blocks of) a 5-design which is likely to be derived from a putative extremal doubly even self-dual [72, 36, 16] code.

- $\forall x \in X, \operatorname{wt}(x) = 16.$
- $\forall x, y \in X$, (x, y) = 0 (self-orthogonal).
- |X| = 249849.

Theorem 6 (Harada–Kitazume–Munemasa, 2004). *The set X coincides with the set of vectors of weight* 16 *in an extremal doubly even self-dual* [72, 36, 16] *code.*

An analogous result for length 48 was obtained by Harada–Munemasa–Tonchev (preprint, 2004).