Extremal Lattices and Spherical Designs

Akihiro Munemasa
Graduate School of Information Sciences
Tohoku University
Japan

(joint work with Boris Venkov)

July 21, 2004

Venkov's Theorem (1984)

Let $\Lambda \subset \mathbb{R}^{24 n}$ be an extremal even unimodular lattice.

$$
X=\{x \in \Lambda \mid(x, x)=2 n+2\} .
$$

Then X is a spherical 11-design (after rescaling).
Example: in \mathbb{R}^{24}, the Leech lattice has 196,560 shortest vectors, which form a tight 11-design after scaling.

Theorem 1 (Bannai-Sloane, 1981). Every tight spherical 11-design in \mathbb{R}^{24} is equivalent to the example above.

Definition of a Spherical Design

A spherical t-design X is a finite subset of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ s.t.

$$
\frac{\int_{S^{n-1}} f d \mu}{\int_{S^{n-1}} 1 d \mu}=\frac{1}{|X|} \sum_{x \in X} f(x)
$$

holds for any polynomial $f(x)$ of degree $\leq t$. If X is a spherical $(2 s+1)$-design in \mathbb{R}^{n} with $X=-X$, then

$$
|X| \geq 2\binom{n-1+s}{s}
$$

X is said to be tight if equality holds.

Strategy

X : tight spherical 11-design in the unit sphere in \mathbb{R}^{24}

$$
\begin{gathered}
|X|=2\binom{24-1+5}{5}=196,560 . \\
\Longrightarrow(x, y) \in\left\{ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, 0\right\} .
\end{gathered}
$$

How can one use the fact that X is a spherical design?

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{\int_{S^{23}} f d \mu}{\int_{S^{23}} 1 d \mu}
$$

holds for any polynomial $f(x)$ of degree at most 11 .
Take $f(x)=(\alpha, x)^{2}$, with $\alpha \in \mathbb{R}^{24}, \alpha \neq 0$.

$$
\frac{1}{|X|} \sum_{x \in X}(\alpha, x)^{2}=\frac{(\alpha, \alpha)}{24}
$$

Lattice

- A lattice is a \mathbb{Z}-submodule of \mathbb{R}^{n} of rank n containing a basis of \mathbb{R}^{n}.
- A lattice Λ is called integral if $\forall x, y \in \Lambda,(x, y) \in \mathbb{Z}$.
- The dual lattice Λ^{*} of an integral lattice Λ is

$$
\Lambda^{*}=\left\{x \in \mathbb{R}^{n} \mid(x, y) \in \mathbb{Z} \forall y \in \Lambda\right\} \supset \Lambda
$$

and $\left|\Lambda^{*}: \Lambda\right|<\infty$.

- An integral lattice Λ is called even if $(x, x) \in 2 \mathbb{Z} \forall x \in \Lambda$.
- An integral lattice Λ is called unimodular if $\Lambda=\Lambda^{*}$.

Strategy

X : spherical 11-design, $X=-X$,
$(x, y) \in\left\{ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, 0\right\}$.
The lattice $\Lambda=2 \mathbb{Z} X$ is even, since it is integral and is generated by vectors of even norm.

Theorem 2 (Conway). The Leech lattice is the unique even unimodular lattice of dimension 24 with minimum norm 4.

$$
\min \Lambda=\min \{(x, x) \mid 0 \neq x \in \Lambda\} .
$$

We wish to prove $\Lambda=2 \mathbb{Z} X$ is unimodular and Λ has minimum
norm 4.

Strategy

X : spherical 11-design, $X=-X$,
$2 X \ni \forall x, y,(x, x)=4,(x, y) \in \mathbb{Z}$.

$$
\frac{1}{|X|} \sum_{x \in X} f(x)=\frac{\int_{S^{23}} f d \mu}{\int_{S^{23}} 1 d \mu}
$$

holds for any polynomial $f(x)$ of degree at most 11 .
Take $f(x)=(\alpha, x)^{2 j}$, with $\alpha \in \mathbb{R}^{24}, j=1,2,3,4,5$.

$$
\sum_{x \in X}(\alpha, x)^{2 j}=|X| \frac{(2 j-1)!!(\alpha, \alpha)^{j}}{24 \cdot 26 \cdots(24+2 j-2)}
$$

holds for $j=1,2,3,4,5$.

steategy

$$
\sum_{x \in 2 X}(\alpha, x)^{2 j}=|X| \frac{4^{j}(2 j-1)!!(\alpha, \alpha)^{j}}{24 \cdot 26 \cdots(24+2 j-2)}
$$

holds for $j=1,2,3,4,5$.
Take $\alpha \in \Lambda^{*}=(2 \mathbb{Z} X)^{*}$. Then $(\alpha, x) \in \mathbb{Z}$ for all $x \in 2 X$,

$$
\sum_{k=1}^{\infty} n_{k} k^{2 j}=|X| \frac{(2 j-1)!!4^{j}(\alpha, \alpha)^{j}}{24 \cdot 26 \cdots(24+2 j-2)}
$$

holds for $j=1,2,3,4,5$, where

$$
n_{k}=|\{x \in 2 X \mid(\alpha, x)= \pm k\}| \quad(k=1,2, \ldots) .
$$

System of Linear Equations

X : spherical 11-design, $X=-X$,
$2 X \ni \forall x, y,(x, x)=4,(x, y) \in \mathbb{Z}$.

$$
\left(\begin{array}{cccc}
1 & 2^{2} & 3^{2} & \ldots \\
1 & 2^{4} & 3^{4} & \ldots \\
1 & 2^{6} & 3^{6} & \ldots \\
1 & 2^{8} & 3^{8} & \ldots \\
1 & 2^{10} & 3^{10} & \ldots
\end{array}\right)\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
c_{1}(m) \\
c_{2}(m) \\
c_{3}(m) \\
c_{4}(m) \\
c_{5}(m)
\end{array}\right)
$$

where

$$
\begin{aligned}
c_{j}(m) & =|X| \frac{(2 j-1)!!4^{j} m^{j}}{24 \cdot 26 \cdots(24+2 j-2)}, \\
m & =(\alpha, \alpha), \\
n_{k} & =|\{x \in 2 X \mid(\alpha, x)= \pm k\}|
\end{aligned}
$$

Trick

X : spherical 11-design, $X=-X$,
$2 X \ni \forall x, y,(x, x)=4,(x, y) \in \mathbb{Z} . \Lambda=2 \mathbb{Z} X$.
Take $\alpha \in \Lambda^{*}$ in such a way that

$$
m=(\alpha, \alpha)=\min \{(\beta, \beta) \mid 0 \neq \beta \in \alpha+\Lambda\}
$$

Then $|(\alpha, x)| \leq 2 \quad \forall x \in 2 X$, unless $\alpha \in 2 X$.
Indeed, since $(x, x)=4$,
$(\alpha, x) \geq 3(\exists x \in 2 X \subset \Lambda) \Longrightarrow \alpha-x \in \alpha+\Lambda$ and

$$
\begin{aligned}
& (\alpha-x, \alpha-x)=(\alpha, \alpha)-2(\alpha, x)+(x, x) \\
& \leq(\alpha, \alpha)-2 \cdot 3+4 \\
& <(\alpha, \alpha) .
\end{aligned}
$$

Trick

X : spherical 11-design, $X=-X$,
$2 X \ni \forall x, y,(x, x)=4,(x, y) \in \mathbb{Z} . \Lambda=2 \mathbb{Z} X$.
Take $\alpha \in \Lambda^{*}$ in such a way that

$$
m=(\alpha, \alpha)=\min \{(\beta, \beta) \mid 0 \neq \beta \in \alpha+\Lambda\}
$$

Then $|(\alpha, x)| \leq 2 \quad \forall x \in 2 X$, unless $\alpha \in 2 X$.

$$
\left(\begin{array}{cc}
1 & 2^{2} \\
1 & 2^{4} \\
1 & 2^{6} \\
1 & 2^{8} \\
1 & 2^{10}
\end{array}\right)\binom{n_{1}}{n_{2}}=\left(\begin{array}{l}
c_{1}(m) \\
c_{2}(m) \\
c_{3}(m) \\
c_{4}(m) \\
c_{5}(m)
\end{array}\right)
$$

Conclusion

$$
\left(\begin{array}{ll}
1 & 2^{2} \\
1 & 2^{4} \\
1 & 2^{6}
\end{array}\right)\binom{n_{1}}{n_{2}}=|X| m\left(\begin{array}{c}
\frac{1}{6} \\
\frac{m}{13} \\
\frac{5 m^{2}}{91}
\end{array}\right)
$$

$$
\begin{aligned}
& m^{2}-7 m+\frac{182}{15}=0 \Longrightarrow m \neq \mathbb{Q} . \\
& \text { But } m=(\alpha, \alpha), \alpha \in \Lambda^{*}, k=\left|\Lambda^{*}: \Lambda\right|<\infty \\
& \Longrightarrow k \alpha \in \Lambda \Longrightarrow(k \alpha, k \alpha) \in \mathbb{Z} \Longrightarrow m=(\alpha, \alpha) \in \mathbb{Q} .
\end{aligned}
$$

Conclusion:

$$
\alpha \in \Lambda^{*}: \text { minimal in } \alpha+\Lambda, \alpha \notin 2 X \Longrightarrow \text { contradiction }
$$

This implies $\Lambda^{*}=\Lambda$
$X=$ shortest vectors of Λ
$\Longrightarrow \Lambda=$ Leech lattice .

Observation

$$
\left(\begin{array}{ll}
1 & 2^{2} \\
1 & 2^{4} \\
1 & 2^{6}
\end{array}\right)\binom{n_{1}}{n_{2}}=|X| m\left(\begin{array}{c}
\frac{1}{6} \\
\frac{m}{13} \\
\frac{5 m^{2}}{91}
\end{array}\right)
$$

- $|X|$ is not important.
- Suffices to assume X is a spherical 6 -design (equivalently, 7 -design, since $X=-X$).
Theorem 3. Let X be a spherical 7-design in \mathbb{R}^{24} with $X=-X, 4(x, y) \in \mathbb{Z} \forall x, y \in X$. Then $2 X$ coincides with the 196, 560 shortest vectors of the Leech lattice. Corollary 1 (Bannai-Sloane, 1981). A tight spherical 11 -design in \mathbb{R}^{24} is unique.

Extremal Lattices

An even unimodular lattice $\Lambda \subset \mathbb{R}^{24 n}$ is called extremal if $\min \Lambda=2 n+2$.

Examples:

- $24 n=24, \min \Lambda=4$: the Leech lattice.
- $24 n=48, \min \Lambda=6$: three lattices known.
- $24 n=72, \min \Lambda=8:$ no lattices known.
- $24 n \geq 96, \min \Lambda=2 n+2$: no lattices known.

Venkov's theorem implies that we always have a spherical 11-design.

Dimension 48

Theorem 4. $\mathbb{R}^{48} \supset X$: spherical 9-design, $X \ni \forall x, y$, $6(x, y) \in \mathbb{Z}, \Longrightarrow \Lambda=\sqrt{6} \mathbb{Z} X=$ an extremal lattice, $\sqrt{6} X=$ the set of shortest vectors of Λ.

Proof. $\alpha \in \Lambda^{*}$: minimal in $\alpha+\Lambda, m=(\alpha, \alpha)$.

$$
\left(\begin{array}{ccc}
1 & 2^{2} & 3^{2} \\
1 & 2^{4} & 3^{4} \\
1 & 2^{6} & 3^{6} \\
1 & 2^{8} & 3^{8}
\end{array}\right)\left(\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right)=|X| m\left(\begin{array}{c}
c_{1} \\
c_{2}(m) \\
c_{3}(m) \\
c_{4}(m)
\end{array}\right)
$$

\Longrightarrow an irreducible cubic equation in m.
Remark 1. Such a design is necessarily a spherical 11-design by Venkov's theorem. There are three extremal lattices of dimension 48 known.

Dimension 72

Theorem 5. $\mathbb{R}^{72} \supset X$: spherical 11-design, $X \ni \forall x, y$, $8(x, y) \in \mathbb{Z}, \Longrightarrow \Lambda=\sqrt{8} \mathbb{Z} X=$ an extremal lattice, $\sqrt{8} X=$ the set of shortest vectors of Λ.

Proof. $\alpha \in \Lambda^{*}$: minimal in $\alpha+\Lambda, m=(\alpha, \alpha)$.

$$
\left(\begin{array}{cccc}
1 & 2^{2} & 3^{2} & 4^{2} \\
1 & 2^{4} & 3^{4} & 4^{4} \\
1 & 2^{6} & 3^{6} & 4^{6} \\
1 & 2^{8} & 3^{8} & 4^{8} \\
1 & 2^{10} & 3^{10} & 4^{10}
\end{array}\right)\left(\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3} \\
n_{4}
\end{array}\right)=|X| m\left(\begin{array}{c}
c_{1} \\
c_{2}(m) \\
c_{3}(m) \\
c_{4}(m) \\
c_{5}(m)
\end{array}\right)
$$

\Longrightarrow an irreducible quartic equation in m.
Problem 1. Does there exist an extremal even unimodular lattice of dimension 72?

Binary Code Analogues

spherical $(2 t+1)$-design integral lattice unimodular lattice Venkov's theorem Leech lattice tight 11-design in \mathbb{R}^{24} extremal lattice in \mathbb{R}^{48}
spherical 11-design in \mathbb{R}^{48} spherical 11-design in \mathbb{R}^{72}
t-design
binary self-orthogonal code binary self-dual code
Assmus-Mattson theorem
extended binary Golay code

$$
S(5,8,24)
$$

extended binary quadratic residue code of length 48
self-orthogonal 5 -($48,12,8$) design
self-orthogonal 5 -(72, 16, 78) design

Binary Code Analogues

Let X be (the set of blocks of) a 5 -design which is likely to be derived from a putative extremal doubly even self-dual [72, 36, 16] code.

- $\forall x \in X, \mathrm{wt}(x)=16$.
- $\forall x, y \in X,(x, y)=0$ (self-orthogonal).
- $|X|=249849$.

Theorem 6 (Harada-Kitazume-Munemasa, 2004). The set X coincides with the set of vectors of weight 16 in an extremal doubly even self-dual [72, 36, 16] code.

An analogous result for length 48 was obtained by Harada-Munemasa-Tonchev (preprint, 2004).

