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Venkov’s Theorem (1984)
Let Λ ⊂ R24n be anextremal even unimodular lattice.

X = {x ∈ Λ | (x, x) = 2n + 2}.

ThenX is aspherical11-design(after rescaling).

Example: in R24, theLeech latticehas 196,560 shortest vectors,
which form atight 11-design after scaling.

Theorem 1 (Bannai–Sloane, 1981). Every tight spherical
11-design in R24 is equivalent to the example above.

Extremal Lattices and Spherical Designs – p.2/18



Definition of a Spherical Design
A sphericalt-designX is a finite subset of the unit sphere
Sn−1 ⊂ Rn s.t.

∫

Sn−1 fdµ
∫

Sn−1 1dµ
=

1

|X|
∑

x∈X

f(x)

holds for any polynomialf(x) of degree≤ t.
If X is a spherical(2s + 1)-design inRn with X = −X, then

|X| ≥ 2

(

n − 1 + s

s

)

.

X is said to betight if equality holds.
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Strategy
X: tight spherical11-design in the unit sphere inR24

=⇒
|X| = 2

(

24 − 1 + 5

5

)

= 196, 560.

=⇒ (x, y) ∈ {±1,±1

2
,±1

4
, 0}.

How can one use the fact thatX is a spherical design?

1

|X|
∑

x∈X

f(x) =

∫

S23 fdµ
∫

S23 1dµ

holds for any polynomialf(x) of degree at most 11.
Takef(x) = (α, x)2, with α ∈ R24, α 6= 0.

1

|X|
∑

x∈X

(α, x)2 =
(α, α)

24
.

In particular,X spansR24. PutΛ = 2ZX.
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Lattice
• A latticeis aZ-submodule ofRn of rankn containing a

basis ofRn.
• A latticeΛ is calledintegralif ∀x, y ∈ Λ, (x, y) ∈ Z.
• Thedual latticeΛ∗ of an integral latticeΛ is

Λ∗ = {x ∈ Rn | (x, y) ∈ Z ∀y ∈ Λ}⊃ Λ.

and|Λ∗ : Λ| < ∞.
• An integral latticeΛ is calledevenif (x, x) ∈ 2Z ∀x ∈ Λ.
• An integral latticeΛ is calledunimodularif Λ = Λ∗.
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Strategy
X: spherical11-design,X = −X,
(x, y) ∈ {±1,±1

2
,±1

4
, 0}.

The latticeΛ = 2ZX is even, since it is integral and is generated
by vectors ofevennorm.

Theorem 2 (Conway).The Leech lattice is the unique even
unimodular lattice of dimension 24 with minimum norm 4.

minΛ = min{(x, x) | 0 6= x ∈ Λ}.

We wish to proveΛ = 2ZX is unimodularandΛ hasminimum

norm4.
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Strategy
X: spherical11-design,X = −X,
2X ∋ ∀x, y, (x, x) = 4, (x, y) ∈ Z.

1

|X|
∑

x∈X

f(x) =

∫

S23 fdµ
∫

S23 1dµ

holds for any polynomialf(x) of degree at most11.
Takef(x) = (α, x)2j, with α ∈ R24, j = 1, 2, 3, 4, 5.

∑

x∈X

(α, x)2j = |X| (2j − 1)!!(α, α)j

24 · 26 · · · (24 + 2j − 2)

holds forj = 1, 2, 3, 4, 5.
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Strategy
∑

x∈2X

(α, x)2j = |X| 4j(2j − 1)!!(α, α)j

24 · 26 · · · (24 + 2j − 2)

holds forj = 1, 2, 3, 4, 5.
Takeα ∈ Λ∗ = (2ZX)∗. Then(α, x) ∈ Z for all x ∈ 2X,

∞
∑

k=1

nkk
2j = |X| (2j − 1)!!4j(α, α)j

24 · 26 · · · (24 + 2j − 2)

holds forj = 1, 2, 3, 4, 5, where

nk = |{x ∈ 2X | (α, x) = ±k}| (k = 1, 2, . . .).
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System of Linear Equations
X: spherical11-design,X = −X,
2X ∋ ∀x, y, (x, x) = 4, (x, y) ∈ Z.

















1 22 32 · · ·
1 24 34 · · ·
1 26 36 · · ·
1 28 38 · · ·
1 210 310 · · ·





























n1

n2

n3

...













=

















c1(m)

c2(m)

c3(m)

c4(m)

c5(m)

















where

cj(m) = |X| (2j − 1)!!4jmj

24 · 26 · · · (24 + 2j − 2)
,

m = (α, α),

nk = |{x ∈ 2X | (α, x) = ±k}|
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Trick
X: spherical11-design,X = −X,
2X ∋ ∀x, y, (x, x) = 4, (x, y) ∈ Z. Λ = 2ZX.
Takeα ∈ Λ∗ in such a way that

m = (α, α) = min{(β, β) | 0 6= β ∈ α + Λ}.

Then|(α, x)| ≤ 2 ∀x ∈ 2X, unlessα ∈ 2X.
Indeed, since(x, x) = 4,
(α, x) ≥ 3 (∃x ∈ 2X ⊂ Λ) =⇒ α − x ∈ α + Λ and

(α − x, α − x) = (α, α) − 2(α, x) + (x, x)

≤ (α, α) − 2 · 3 + 4

< (α, α).
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Trick
X: spherical11-design,X = −X,
2X ∋ ∀x, y, (x, x) = 4, (x, y) ∈ Z. Λ = 2ZX.
Takeα ∈ Λ∗ in such a way that

m = (α, α) = min{(β, β) | 0 6= β ∈ α + Λ}.

Then|(α, x)| ≤ 2 ∀x ∈ 2X, unlessα ∈ 2X.

















1 22

1 24

1 26

1 28

1 210

















(

n1

n2

)

=

















c1(m)

c2(m)

c3(m)

c4(m)

c5(m)
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Conclusion






1 22

1 24

1 26







(

n1

n2

)

= |X|m







1

6

m
13

5m2

91







m2 − 7m + 182

15
= 0 =⇒ m /∈ Q.

But m = (α, α), α ∈ Λ∗, k = |Λ∗ : Λ| < ∞
=⇒ kα ∈ Λ =⇒ (kα, kα) ∈ Z =⇒ m = (α, α)∈ Q.
Conclusion:

α ∈ Λ∗ : minimal inα + Λ, α /∈ 2X =⇒ contradiction

This impliesΛ∗ = Λ
X = shortest vectors ofΛ

=⇒ Λ = Leech lattice.
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Observation






1 22

1 24

1 26







(

n1

n2

)

= |X|m







1

6

m
13

5m2

91







• |X| is not important.
• Suffices to assumeX is a spherical6-design (equivalently,

7-design, sinceX = −X).

Theorem 3. Let X be a spherical 7-design in R24 with
X = −X , 4(x, y) ∈ Z ∀x, y ∈ X . Then 2X coincides with the
196, 560 shortest vectors of the Leech lattice.
Corollary 1 (Bannai–Sloane, 1981). A tight spherical
11-design in R24 is unique.
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Extremal Lattices
An even unimodular latticeΛ ⊂ R24n is calledextremalif
minΛ = 2n + 2.
Examples:

• 24n = 24, min Λ = 4 : the Leech lattice.
• 24n = 48, min Λ = 6 : three lattices known.
• 24n = 72, min Λ = 8 : no lattices known.
• 24n ≥ 96, min Λ = 2n + 2 : no lattices known.

Venkov’s theorem implies that we always have a spherical
11-design.
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Dimension 48
Theorem 4. R48 ⊃ X: spherical 9-design, X ∋ ∀x, y,
6(x, y) ∈ Z, =⇒ Λ =

√
6ZX = an extremal lattice,

√
6X =

the set of shortest vectors of Λ.

Proof. α ∈ Λ∗: minimal inα + Λ, m = (α, α).











1 22 32

1 24 34

1 26 36

1 28 38

















n1

n2

n3






= |X|m











c1

c2(m)

c3(m)

c4(m)











=⇒ an irreducible cubic equation inm.

Remark 1. Such a design is necessarily a spherical11-design by
Venkov’s theorem. There are three extremal lattices of dimension
48 known.
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Dimension 72
Theorem 5. R72 ⊃ X: spherical 11-design, X ∋ ∀x, y,
8(x, y) ∈ Z, =⇒ Λ =

√
8ZX = an extremal lattice,

√
8X =

the set of shortest vectors of Λ.

Proof. α ∈ Λ∗: minimal inα + Λ, m = (α, α).

















1 22 32 42

1 24 34 44

1 26 36 46

1 28 38 48

1 210 310 410



























n1

n2

n3

n4











= |X|m

















c1

c2(m)

c3(m)

c4(m)

c5(m)

















=⇒ an irreducible quartic equation inm.

Problem 1. Does there exist an extremal even unimodular lattice
of dimension 72?
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Binary Code Analogues
spherical(2t + 1)-design t-design

integral lattice binary self-orthogonal code

unimodular lattice binary self-dual code

Venkov’s theorem Assmus–Mattson theorem

Leech lattice extended binary Golay code

tight 11-design inR24 S(5, 8, 24)

extremal lattice inR48 extended binary quadratic residue

code of length48

spherical11-design inR48 self-orthogonal5-(48, 12, 8) design

spherical11-design inR72 self-orthogonal5-(72, 16, 78) design

Extremal Lattices and Spherical Designs – p.17/18



Binary Code Analogues
Let X be (the set of blocks of) a5-design which islikely to be
derived from a putative extremal doubly even self-dual
[72, 36, 16] code.

• ∀x ∈ X, wt(x) = 16.
• ∀x, y ∈ X, (x, y) = 0 (self-orthogonal).
• |X| = 249849.

Theorem 6 (Harada–Kitazume–Munemasa, 2004).The set X
coincides with the set of vectors of weight 16 in an extremal
doubly even self-dual [72, 36, 16] code.

An analogous result for length48 was obtained by
Harada–Munemasa–Tonchev (preprint, 2004).
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