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Definition of a Spherical Design
A spherical t-design X is a finite subset of the unit sphere Sn−1 ⊂ R

n

s.t. ∫
Sn−1 fdµ∫
Sn−1 1dµ

=
1

|X|
∑
x∈X

f(x)

holds for any polynomial f(x) of degree ≤ t.

This is useful if one wants to investigate properties of a spherical
design, but not convenient if one wants to prove something is a
spherical design. . . .

Equivalently,
∑

x,y∈X

Qj(〈x, y〉) = 0 (j = 1, 2, . . . , t),

where {Qj}∞j=0 are suitably normalized Gegenbauer polynomials,
defined by Q0(x) = 1, Q1(x) = nx,

j + 1
Q ( ) Q ( )

n + j − 3
Q ( ) (j 1 2 3 )
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Association Scheme
A (symmetric) association scheme is a pair (X, {Ri}d

i=0), where X is a
finite set, Ri is a (symmetric) relation on X × X such that

(i) R0 is the diagonal relation.

(ii) {Ri}0≤i≤d is a partition of X × X .

(iii) For any i, j, k ∈ {0, 1, . . . , d}, the number

pk
ij = |{γ ∈ X | (α, γ) ∈ Ri, (γ, β) ∈ Rj}|

is independent of the choice of (α, β) in Rk, and pk
ij = pk

ji.

For i ∈ {0, . . . , d}, let Ai be the adjacency matrix of the relation Ri:

(Ai)α,β :=

{
1 if (α, β) ∈ Ri,

0 otherwise.
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Bose–Mesner Algebra
The linear combinations of the adjacency matrices form a commutative
algebra over R called the Bose–Mesner algebra A.
Let E be a primitive idempotent of A, E �= 1

|X|J . Then E is a real

symmetric positive-semidefinite matrix of rank n = trE.

E = tFF

where F is a n × |X| matrix

|X|
n

E = tFF diagonals = 1

where F is a n × |X| matrix (x-th column=x), and

{column vectors of F} = {x | x ∈ X} ⊂ Sn−1 ⊂ R
n.

If |X|E =
∑d

i=0 θ∗i Ai, then

θ∗
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Spherical Representation
A spherical representation of a symmetric association scheme forms a
spherical t-design iff∑

x,y∈X

Qj(〈x, y〉) = 0 (j = 1, 2, . . . , t).

Equivalently,

d∑
i=0

kiQj(
θ∗i
n

) = 0 (j = 1, 2, . . . , t).

where ki is the valency of the relation Ri, i.e.,

ki =
|Ri|
|X| .
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Spherical Representation

∑
x,y∈X

kiQj(
θ∗i
n

) = 0 (j = 1, 2, . . . , t).

∑
x,y∈X

kiQj(
θ∗i
n

) = 0 (j = 1, 2)

always hold, so a spherical representation X of a symmetric
association scheme X always give a spherical 2-design.
X is a 3-design iff (E ◦ E)E = 0.

Suppose X is Q-polynomial, i.e., if ∃v∗
i (x): polynomial of degree i,

such that

Ei =
1

|X|v
∗
i (|X|E) (i = 0, 1, . . . , d)

are all the primitive idempotents of A.
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Q-Polynomial Scheme

xv∗
i (x) = c∗i+1v

∗
i+1(x) + a∗

i v
∗
i (x) + b∗i−1v

∗
i−1(x)

Lemma 1. Let X denote the embedding of a Q-polynomial association
scheme X into the unit sphere via the primitive idempotent E = E1.

(i) X is a 3-design if and only if a∗
1 = 0.

(ii) X is a 4-design if and only if a∗
1 = 0 and

b∗0b
∗
1c

∗
2 + 2(b∗1c

∗
2 − b∗0

2 + b∗0) = 0.

(iii) X is a 5-design if and only if X is a 4-design and a∗
2 = 0.
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U2d(2) Dual Polar Graph
Among the known infinite families of P- and Q-polynomial association
schemes, only the following family produces spherical 4-designs, when
embedded into the unit sphere via the primitive idempotent E = E1:

The dual polar graph associated with the unitary group U2d(2).

vertices: maximal totally isotropic subspaces

adjacency: intersect at dimension d − 1

n = rankE1 =
22d + 2

3
,

θ∗j
n

= (−1

2
)j.

In fact, this gives a spherical 5-design if d ≥ 3.
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Strongly Perfect Lattices
A lattice whose minimal vectors form a spherical 5-design is called
strongly perfect.
Up to dimension ≤ 9, only certain root lattices and their duals are
stronlgy perfect.
Theorem 1 (Nebe–Venkov). There are exactly two strongly perfect
lattices in dimension 10: Martinet’s lattice K ′

10 and its dual (K ′
10)

∗.

K ′
10 has 270 vectors of norm 4.

(K ′
10)

∗ has 240 vectors of norm 6.

These lattices look very special → it must be very nice: →
association scheme?

sufficient

condition

spherical t-design =⇒ association scheme
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Degree of a Spherical Design
The degree of a finite subset Ω ⊂ Sn−1 is

|{(x, y) | x, y ∈ Ω, x �= y}|.
Theorem 2 (Delsarte–Goethals–Seidel). If Ω is a spherical t-design
of degree s and 2s − 2 ≤ t, then Ω carry a structure of an association
scheme.
The shortest vectors of K ′

10 have norm 4, with degree

s = |{4,2, 1, 0,−1,−2,−4}| = 6, while t = 5.

The shortest vectors of (K ′
10)

∗ have norm 6, with degree

s = |{6, 3, 2, 1, 0,−1,−2,−3,−6}| = 8, while t = 5.
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Molien Series
Let G be a finite irreducible subgroup of the real orthogonal group
O(n, R). The Molien series of G is

ΦG(q) =
1

|G|
∑
g∈G

1

det(I − q · g)
.

Theorem 3 (Goethals–Seidel, 1979). Every G-orbit on the sphere is a
spherical t-design iff

(1 − q2)ΦG(q) = 1 + 0 · q + · · · + 0 · qt︸ ︷︷ ︸+at+1q
t+1 + · · ·

ΦAut(K′
10)(q) = 1 + 2q6 + 3q8 + · · ·
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PSp(4, 3)

PSp(4, 3)
40⊃ line stabilizer

2⊃ H

↓ ↓
S4 ⊃ A4

Then one obtains an commutative (but not symmetric) association
scheme X = PSp(4, 3)/H on 80 points with 2nd eigenmatrix

Q =




1 30 24 15 5 5

1 −30 24 15 −5 −5

1 0 4 −5 5/
√−3 −5/

√−3

1 0 4 −5 −5/
√−3 5/

√−3

1 10/3 −8/3 5/3 −5/3 −5/3

1 −10/3 −8/3 5/3 5/3 5/3



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80 × 3 = 240
The direct product of two association schemes X and Z3 has its 2nd
eigenmatrix the tensor product:

Q =




1 30 24 15 5 5

1 −30 24 15 −5 −5

1 0 4 −5 5/
√−3 −5/

√−3

1 0 4 −5 −5/
√−3 5/

√−3

1 10/3 −8/3 5/3 −5/3 −5/3

1 −10/3 −8/3 5/3 5/3 5/3



⊗


1 1 1

1 ω ω2

1 ω2 ω




Fusing complex conjugates. . . .
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80 × 3 = 240

valency


1 10 48 30 10 10 · · ·
1 5 −24 −15 −10 5 · · ·
1 5 −4 5 0 −5 · · ·
1 10/3 −16/3 10/3 10/3 10/3 · · ·
1 5/3 8/3 −5/3 −10/3 5/3 · · ·
1 0 8 −10 0 0 · · ·
1 −5/3 8/3 −5/3 10/3 −5/3 · · ·
1 −10/3 −16/3 10/3 −10/3 −10/3 · · ·
1 −5 −4 5 0 5 · · ·
1 −5 −24 −15 10 −5 · · ·
1 −10 48 30 −10 −10




1

2

24

27

54

24

54

27

24

2

1
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Cosine Sequence

valency


1 10 · · ·
1 5 · · ·
1 5 · · ·
1 10/3 · · ·
1 5/3 · · ·
1 0 · · ·
1 −5/3 · · ·
1 −10/3 · · ·
1 −5 · · ·
1 −5 · · ·
1 −10 · · ·




1

2

24

}
27

54

24

54

27

24

2

}
1

gives the

cosine sequence




1

1/2

1/3

1/6

0

−1/6

−1/3

−1/2

−1




1

26

27

54

24

54

27

26

1
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Conclusion
• The set of 240 shortest vectors of Martinet’s lattice (K ′

10)
∗ can be

reconstructed from(
permutation representation

of degree 80 of PSp(4, 3)

)⊗
Z3.

Can we generalize this construction to obtain more spherical
5-designs?

• 270 shortest vectors of K ′
10 form an association scheme?

• Nonsymmetric ⊗ Nonsymmetric
fusion
=⇒ symmetric?

Thank you for your attention.
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