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The Terwilliger algebra of an association scheme was introduced by Paul
Terwilliger [7] in order to study P-and Q-polynomial association schemes.
The purpose of this paper is to discuss in detail properties of the Terwilliger
algebra of the group association scheme of a finite group. We shall give
bounds on the dimension of the Terwilliger algebra, and define triple regu-
larity.

Let G be a finite group, C0 = {e}, C1, . . . , Cd the conjugacy classes of G.
For i = 0, 1, . . . , d, define

Ri = {(x, y)|yx−1 ∈ Ci}.

Then X (G) = (G, {Ri}0≤i≤d) becomes a commutative association scheme,
and it is called the group association scheme of the finite group G. Define
the adjacency matrix Ai of the relation Ri:

(Ai)x,y =

{
1 (x, y) ∈ Ri

0 otherwise

Then there exist nonnegative integers pk
ij such that AiAj =

∑d
k=0 pk

ijAk. This

is equivalent to the relation C iCj =
∑d

k=0 pk
ijCk where Ci =

∑
x∈Ci

x ∈ CG
and the multiplication is performed as elements of the group algebra CG. If
we put A = 〈A0, . . . , Ad〉C, then A becomes a (d+1)-dimensional subalgebra
of the matrix algebra M|G|(C), and is called the Bose–Mesner algebra. It is
isomorphic to the center of the group algebra. Let E0, . . . , Ed be the primitive
idempotents of A. Since A is closed under the Hadamard multiplication, we
have Ei ◦ Ej ∈ A, so that there exist complex numbers qk

ij such that

Ei ◦ Ej =
1

|G|

d∑
k=0

qk
ijEk

(it is known that qk
ij are indeed real and nonnegative, see [2]).

We define the diagonal matrices E∗
i , A

∗
i by

(E∗
i )xx =

{
1 x ∈ Ci

0 otherwise
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(A∗
i )xx = |G|(Ei)e,x

Then we have

A∗
i A

∗
j =

d∑
k=0

qk
ijA

∗
k

and the algebra

A∗ = 〈A∗
0, . . . , A

∗
d〉C = 〈E∗

0 , . . . , E
∗
d〉C

is called the dual Bose–Mesner algebra.
Now the Terwilliger algebra T is the subalgebra of M|G|(C) generated by

A and A∗. Since T is closed under the conjugate-transpose, T is semisimple,
and one can easily see that T is non-commutative if G 6= 1.

1 Bounds on dim T

In this section we give upper and lower bounds on the dimension of the
Terwilliger algebra of a group association scheme. The following identities
will be used in the proof of the next lemma. See [2] for a proof.

Ēi = ET
i = Eî for some î ∈ {0, 1, . . . , d},

rank Ej = |G|(Ej)e,e,

qj

îk
rank Ej = qk

ijrank Ek.

Lemma 1 (i) tr(E∗
i AjE

∗
k (E∗

l AmE∗
n)

T
) = δilδjmδknp

k
ij|Ck|.

(ii) tr(EiA
∗
jEk(ElA∗

mEn)
T
) = δilδjmδknq

k
ijrank Ek

Proof. (i) This follows directly from the definition.
(ii) By the identities mentioned above,

tr(EiA
∗
jEk(ElA∗

mEn)
T
) = tr(ElEiA

∗
jEkEnA∗

m)

= δilδkntr(EiA
∗
jEkA∗

m)

= δilδkn|G|2
∑

x,y∈G

(Ei)x,y(Ej)e,y(Ek)y,x(Em)x,e

= δilδkn|G|2(Ej(Ei ◦ ET
k )Em)e,e

= δilδknδjm|G|qj

ik̂
(Ej)e,e

= δilδknδjmqk
ijrank Ek.

This completes the proof. 2

Consider the subspaces T0 and T ∗
0 defined by

T0 = spanC{E∗
i AjE

∗
k |0 ≤ i, j, k ≤ d},



T ∗
0 = spanC{EiA

∗
jEk|0 ≤ i, j, k ≤ d}.

By Lemma 1 we have

dim T0 = |{(i, j, k)|pk
ij 6= 0}|,

dim T ∗
0 = |{(i, j, k)|qk

ij 6= 0}|.

In other words, dim T0 is the number of triples (i, j, k) such that (CiCj) ∩
Ck 6= ∅. There is a one-to-one correspondence between the set of primitive
idempotents {Ei}0≤i≤d and the set of complex irreducible characters of G,

say Ei ↔ χi. As shown in [2], qk
ij = χi(1)χj(1)

χk(1)
(χiχj, χk) holds. Thus, dim T ∗

0

is the number of triples (i, j, k) such that (χiχj, χk) 6= 0.
Let T̃ = EndG(CG) be the centralizer algebra of the permutation repre-

sentation of G acting on G itself by conjugation. The dimension of T̃ is the
number of orbits of G acting on G × G by simultaneous conjugation. As is
well-known, this is equal to the average of fixed points, i.e.,

dim T̃ =
1

|G|
∑
a∈G

|CG(a)|2 =
d∑

i=0

|G|
|Ci|

.

Theorem 2 We have the following bounds on the dimension of the Ter-
williger algebra T .

(i) |{(i, j, k)|pk
ij 6= 0}| ≤ dim T .

(ii) |{(i, j, k)|qk
ij 6= 0}| ≤ dim T .

(iii) dim T ≤ ∑d
i=0 |G|/|Ci|.

Proof. These are direct consequences of T0 ⊂ T , T ∗
0 ⊂ T and T ⊂ T̃ . 2

If G is abelian, then Theorem 2 implies dim T0 = |G|2, i.e., T coincides
with the full matrix algebra M|G|(C).

2 Triple regularity

If the finite group G acts transitively on the set

Sijk = {(g, h) ∈ Ci × Cj|gh ∈ Ck}

for any i, j, k ∈ {0, 1, . . . , d} with Sijk 6= ∅, we say that G is triply transitive.
Note that, since G × G = ∪i,j,kSijk and dim T0 = |{(i, j, k)|Sijk 6= ∅}|, G is
triply transitive if and only if dim T0 = dim T̃ . In this case T0 = T = T̃
holds. We call the finite group G triply regular if T0 = T , and dually triply
regular if T ∗

0 = T . Since T0 or T ∗
0 generates T as an algebra, G is triply

regular (resp. dually triply regular) precisely when the subspace T0 (resp.
T ∗

0 ) is a subalgebra.



A combinatorial meaning of the triple regularity is as follows. Given
i, j, k, l,m, n, the size of the set

{z ∈ Cn|(y, z) ∈ Rl, (x, z) ∈ Rm}

depends only on i, j, k, l,m, n, and is independent of the choice of (x, y) ∈
Sijk. This property, when reformulated for association schemes, plays a cen-
tral role in the theory of spin models (see [4], [5]).

If G is abelian, then dim T0 = |G|2, so that G is triply transitive.

Examples. (i) Let G = A4 be the alternating group on four letters. G is
triply regular but not triply transitive.

(ii) All finite groups of order 16 are triply transitive.

As for the dual triple regularity, we give a sufficient condition in terms of
character products.

Theorem 3 Let χ0, . . . , χd be the complex irreducible characters of the finite
group G. If χiχj is multiplicity-free for any i, j, then T ∗

0 = T̃ holds, in
particular, G is dually triply regular. Conversely, T ∗

0 = T̃ implies that χiχj

is multiplicity-free for any i, j.

Proof. Write χiχj =
∑d

k=0 Nk
ijχk. Then we have

∑
i,j,k

(Nk
ij)

2 =
d∑

i,j=0

(χiχj, χiχj)

=
1

|G|
∑
g∈G

(
d∑

i=0

χi(g)χi(g))(
d∑

j=0

χj(g)χj(g))

=
1

|G|
∑
g∈G

|CG(g)|2

=
d∑

i=0

|G|
|Ci|

Thus, if Nk
ij ∈ {0, 1}, then

dim T̃ =
d∑

i=0

|G|/|Ci|

=
∑
i,j,k

Nk
ij

= |{(i, j, k)|Nk
ij 6= 0}|

= |{(i, j, k)|qk
ij 6= 0}|

= dim T ∗
0

as desired. The converse can also be seen from the above equalities. 2



Proposition 4 Let G1 and G2 be finite groups.
(i) If G1 and G2 are triply transitive, so is G1 × G2.
(ii) If G1 and G2 are triply regular, so is G1 × G2.
(iii) If G1 and G2 are dually triply regular, so is G1 × G2.

Proof. (i) This follows immediately from the definition.
(ii) If G1 and G2 are triply regular, then T0(G1) and T0(G2) are subalge-

bras. Since T0(G1 ×G2) = T0(G1)⊗ T0(G2), it follows that G1 ×G2 is triply
regular.

(iii) Similar as (ii). 2

Theorem 5 Let D2n = 〈σ, τ |σn = 1, τ 2 = 1, τστ = σ−1〉 be the dihedral
group of order 2n. Then D2n is triply transitive and dually triply regular.

Proof. First suppose that n is odd, say n = 2m + 1. Then the conjugacy
classes of D2n are C0 = {e}, Ci = {σi, σ−i} (1 ≤ i ≤ m) and Cm+1 = τ〈σ〉.
Thus dim T̃ = 2m2 +5m+4. In order to compute dim T0, let us consider the
product CiCj. If 1 ≤ i ≤ m, then

CiCj =


Ci if j = 0
C0 ∪ {σ2i, σ−2i} if j = i
{σi+j, σ−i−j} ∪ {σi−j, σj−i} if 1 ≤ j ≤ m and j 6= i
Cm+1 if j = m + 1.

Also

Cm+1Cj =

{
Cm+1 if 0 ≤ j ≤ m
C0 ∪ · · · ∪ Cm if j = m + 1.

We can easily see that the number of triples (i, j, k) with (CiCj) ∩ Ck 6= ∅ is
(m + 2) + m(2m + 2) + (2m + 2) = 2m2 + 5m + 4 = dim T̃ , so that D2n is
triply transitive.

To show that D2n is dually triply regular, it suffices to prove that χiχj

is multiplicity-free, where {χ0, . . . , χm+1} is the set of complex irreducible
characters of D2n. We may assume χi(1) = χj(1) = 2, otherwise one of χi or
χj has degree 1, so that χiχj is irreducible. But all irreducible characters of
degree 2 are obtained by inducing a linear character of the subgroup 〈σ〉 to
D2n. It is now straightforward to check that χiχj is multiplicity-free. Hence
D2n is dually triply regular by Theorem 3.

Next suppose that n is even, say n = 2m. Then the conjugacy classes
of D2n are C0 = {e}, Ci = {σi, σ−i} (1 ≤ i ≤ m − 1), Cm = {σm},
Cm+1 = τ〈σ2〉, and Cm+2 = τσ〈σ2〉. Thus dim T̃ = 2m2 + 6m + 8. A tedious
calculation similar to the case n = 2m + 1 establishes dim T0 = dim T ∗

0 =
2m2 + 6m + 8, hence D2n is triply transitive and dually triply regular. 2

We have computed dim T0, dim T ∗
0 , and dim T̃ for all nonabelian inde-

composable finite groups of order at most 100 using GAP [6]. The results



are tabulated in the Appendix. We have not found any group for which
dim T0 = dim T̃ > dim T ∗

0 holds.
To conclude this section, we give a list of indecomposable finite groups

of order at most 24 which are not triply transitive. Balmaceda and Oura [1]
has determined the Terwilliger algebra for G = S5 and A5.

dim T0 dim T ∗
0 dim T dim T̃

A4 19 19 19 22
5.4 29 29 29 37
7.3 35 35 37 41

SL(2, 3) 75 73 75 76
S4 42 43 43 43

3 Relationship with the quantum double

Let Ã be the complex vector space with basis G × G × G, and define the
multiplication in Ã by

(x, g, a)(y, h, b) = δx−1ga,h(xy, g, ab)

and extend it linearly to Ã. Then Ã becomes an associative algebra. The
subalgebra of Ã defined by

D = 〈(h, g, h)|g, h ∈ G〉C ⊂ Ã.

is known as the quantum double of the finite group G (precisely speaking,
the quantum double is defined for a Hopf algebra, and D is the quantum
double of the group Hopf algebra of G, see [3]). On the other hand, let

T = 〈(1, g, h)|g, h ∈ G〉C ⊂ Ã,

and denote by T G the G-fixed subspace of T . Then T G is isomorphic to
the centralizer algebra T̃ defined in Section 2. Therefore, Ã is an algebra
containing both the quantum double D and the Terwilliger algebra T .
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