The Terwilliger Algebras of Group Association Schemes

Eiichi Bannai Akihiro Munemasa

The Terwilliger algebra of an association scheme was introduced by Paul Terwilliger [7] in order to study P-and Q-polynomial association schemes. The purpose of this paper is to discuss in detail properties of the Terwilliger algebra of the group association scheme of a finite group. We shall give bounds on the dimension of the Terwilliger algebra, and define triple regularity.

Let G be a finite group, $C_0 = \{e\}, C_1, \ldots, C_d$ the conjugacy classes of G. For $i = 0, 1, \ldots, d$, define

$$R_i = \{ (x, y) | yx^{-1} \in C_i \}.$$

Then $\mathcal{X}(G) = (G, \{R_i\}_{0 \le i \le d})$ becomes a commutative association scheme, and it is called the group association scheme of the finite group G. Define the adjacency matrix A_i of the relation R_i :

$$(A_i)_{x,y} = \begin{cases} 1 & (x,y) \in R_i \\ 0 & \text{otherwise} \end{cases}$$

Then there exist nonnegative integers p_{ij}^k such that $A_i A_j = \sum_{k=0}^d p_{ij}^k A_k$. This is equivalent to the relation $\underline{C}_i \underline{C}_j = \sum_{k=0}^d p_{ij}^k \underline{C}_k$ where $\underline{C}_i = \sum_{x \in C_i} x \in \mathbf{C}G$ and the multiplication is performed as elements of the group algebra $\mathbf{C}G$. If we put $\mathcal{A} = \langle A_0, \ldots, A_d \rangle_{\mathbf{C}}$, then \mathcal{A} becomes a (d+1)-dimensional subalgebra of the matrix algebra $M_{|G|}(\mathbf{C})$, and is called the Bose–Mesner algebra. It is isomorphic to the center of the group algebra. Let E_0, \ldots, E_d be the primitive idempotents of \mathcal{A} . Since \mathcal{A} is closed under the Hadamard multiplication, we have $E_i \circ E_j \in \mathcal{A}$, so that there exist complex numbers q_{ij}^k such that

$$E_i \circ E_j = \frac{1}{|G|} \sum_{k=0}^d q_{ij}^k E_k$$

(it is known that q_{ij}^k are indeed real and nonnegative, see [2]).

We define the diagonal matrices E_i^*, A_i^* by

$$(E_i^*)_{xx} = \begin{cases} 1 & x \in C_i \\ 0 & \text{otherwise} \end{cases}$$

$$(A_i^*)_{xx} = |G|(E_i)_{e,x}$$

Then we have

$$A_{i}^{*}A_{j}^{*} = \sum_{k=0}^{d} q_{ij}^{k}A_{k}^{*}$$

and the algebra

$$\mathcal{A}^* = \langle A_0^*, \dots, A_d^* \rangle_{\mathbf{C}} = \langle E_0^*, \dots, E_d^* \rangle_{\mathbf{C}}$$

is called the dual Bose–Mesner algebra.

Now the Terwilliger algebra T is the subalgebra of $M_{|G|}(\mathbf{C})$ generated by \mathcal{A} and \mathcal{A}^* . Since T is closed under the conjugate-transpose, T is semisimple, and one can easily see that T is non-commutative if $G \neq 1$.

1 Bounds on $\dim T$

In this section we give upper and lower bounds on the dimension of the Terwilliger algebra of a group association scheme. The following identities will be used in the proof of the next lemma. See [2] for a proof.

$$\bar{E}_i = E_i^T = E_{\hat{i}} \text{ for some } \hat{i} \in \{0, 1, \dots, d\},$$
$$\operatorname{rank} E_j = |G|(E_j)_{e,e},$$
$$q_{\hat{i}k}^j \operatorname{rank} E_j = q_{ij}^k \operatorname{rank} E_k.$$

Lemma 1 (i) $\operatorname{tr}(E_i^*A_jE_k^*\overline{(E_l^*A_mE_n^*)}^T) = \delta_{il}\delta_{jm}\delta_{kn}p_{ij}^k|C_k|.$ (ii) $\operatorname{tr}(E_iA_j^*E_k\overline{(E_lA_m^*E_n)}^T) = \delta_{il}\delta_{jm}\delta_{kn}q_{ij}^k\operatorname{rank} E_k$

Proof. (i) This follows directly from the definition.

(ii) By the identities mentioned above,

$$\operatorname{tr}(E_{i}A_{j}^{*}E_{k}\overline{(E_{l}A_{m}^{*}E_{n})}^{T}) = \operatorname{tr}(E_{l}E_{i}A_{j}^{*}E_{k}E_{n}\overline{A_{m}^{*}})$$

$$= \delta_{il}\delta_{kn}\operatorname{tr}(E_{i}A_{j}^{*}E_{k}\overline{A_{m}^{*}})$$

$$= \delta_{il}\delta_{kn}|G|^{2}\sum_{x,y\in G}(E_{i})_{x,y}(E_{j})_{e,y}(E_{k})_{y,x}(E_{m})_{x,e}$$

$$= \delta_{il}\delta_{kn}|G|^{2}(E_{j}(E_{i}\circ E_{k}^{T})E_{m})_{e,e}$$

$$= \delta_{il}\delta_{kn}\delta_{jm}|G|q_{i\hat{k}}^{j}(E_{j})_{e,e}$$

$$= \delta_{il}\delta_{kn}\delta_{jm}q_{ij}^{k}\operatorname{rank}E_{k}.$$

This completes the proof. \Box

Consider the subspaces T_0 and T_0^* defined by

$$T_0 = \operatorname{span}_{\mathbf{C}} \{ E_i^* A_j E_k^* | 0 \le i, j, k \le d \},$$

$$T_0^* = \operatorname{span}_{\mathbf{C}} \{ E_i A_j^* E_k | 0 \le i, j, k \le d \}.$$

By Lemma 1 we have

dim
$$T_0 = |\{(i, j, k) | p_{ij}^k \neq 0\}|,$$

dim $T_0^* = |\{(i, j, k) | q_{ij}^k \neq 0\}|.$

In other words, dim T_0 is the number of triples (i, j, k) such that $(C_i C_j) \cap C_k \neq \emptyset$. There is a one-to-one correspondence between the set of primitive idempotents $\{E_i\}_{0 \leq i \leq d}$ and the set of complex irreducible characters of G, say $E_i \leftrightarrow \chi_i$. As shown in [2], $q_{ij}^k = \frac{\chi_i(1)\chi_j(1)}{\chi_k(1)}(\chi_i\chi_j,\chi_k)$ holds. Thus, dim T_0^* is the number of triples (i, j, k) such that $(\chi_i\chi_j, \chi_k) \neq 0$.

Let $T = \text{End}_G(\mathbb{C}G)$ be the centralizer algebra of the permutation representation of G acting on G itself by conjugation. The dimension of \tilde{T} is the number of orbits of G acting on $G \times G$ by simultaneous conjugation. As is well-known, this is equal to the average of fixed points, i.e.,

$$\dim \tilde{T} = \frac{1}{|G|} \sum_{a \in G} |C_G(a)|^2 = \sum_{i=0}^d \frac{|G|}{|C_i|}.$$

Theorem 2 We have the following bounds on the dimension of the Terwilliger algebra T.

(i) $|\{(i, j, k)| p_{ij}^k \neq 0\}| \leq \dim T.$ (ii) $|\{(i, j, k)| q_{ij}^k \neq 0\}| \leq \dim T.$ (iii) $\dim T \leq \sum_{i=0}^d |G|/|C_i|.$

Proof. These are direct consequences of $T_0 \subset T$, $T_0^* \subset T$ and $T \subset \tilde{T}$. \Box

If G is abelian, then Theorem 2 implies dim $T_0 = |G|^2$, i.e., T coincides with the full matrix algebra $M_{|G|}(\mathbf{C})$.

2 Triple regularity

If the finite group G acts transitively on the set

$$S_{ijk} = \{(g,h) \in C_i \times C_j | gh \in C_k\}$$

for any $i, j, k \in \{0, 1, \ldots, d\}$ with $S_{ijk} \neq \emptyset$, we say that G is triply transitive. Note that, since $G \times G = \bigcup_{i,j,k} S_{ijk}$ and $\dim T_0 = |\{(i, j, k) | S_{ijk} \neq \emptyset\}|$, G is triply transitive if and only if $\dim T_0 = \dim \tilde{T}$. In this case $T_0 = T = \tilde{T}$ holds. We call the finite group G triply regular if $T_0 = T$, and dually triply regular if $T_0^* = T$. Since T_0 or T_0^* generates T as an algebra, G is triply regular (resp. dually triply regular) precisely when the subspace T_0 (resp. T_0^*) is a subalgebra. A combinatorial meaning of the triple regularity is as follows. Given i, j, k, l, m, n, the size of the set

$$\{z \in C_n | (y, z) \in R_l, (x, z) \in R_m\}$$

depends only on i, j, k, l, m, n, and is independent of the choice of $(x, y) \in S_{ijk}$. This property, when reformulated for association schemes, plays a central role in the theory of spin models (see [4], [5]).

If G is abelian, then dim $T_0 = |G|^2$, so that G is triply transitive.

Examples. (i) Let $G = A_4$ be the alternating group on four letters. G is triply regular but not triply transitive.

(ii) All finite groups of order 16 are triply transitive.

As for the dual triple regularity, we give a sufficient condition in terms of character products.

Theorem 3 Let χ_0, \ldots, χ_d be the complex irreducible characters of the finite group G. If $\chi_i \chi_j$ is multiplicity-free for any i, j, then $T_0^* = \tilde{T}$ holds, in particular, G is dually triply regular. Conversely, $T_0^* = \tilde{T}$ implies that $\chi_i \chi_j$ is multiplicity-free for any i, j.

Proof. Write $\chi_i \chi_j = \sum_{k=0}^d N_{ij}^k \chi_k$. Then we have

$$\sum_{i,j,k} (N_{ij}^k)^2 = \sum_{i,j=0}^d (\chi_i \chi_j, \chi_i \chi_j)$$

$$= \frac{1}{|G|} \sum_{g \in G} (\sum_{i=0}^d \chi_i(g) \overline{\chi_i(g)}) (\sum_{j=0}^d \chi_j(g) \overline{\chi_j(g)})$$

$$= \frac{1}{|G|} \sum_{g \in G} |C_G(g)|^2$$

$$= \sum_{i=0}^d \frac{|G|}{|C_i|}$$

Thus, if $N_{ij}^k \in \{0, 1\}$, then

$$\dim \tilde{T} = \sum_{i=0}^{d} |G| / |C_i|$$

=
$$\sum_{i,j,k} N_{ij}^k$$

=
$$|\{(i,j,k) | N_{ij}^k \neq 0\}|$$

=
$$|\{(i,j,k) | q_{ij}^k \neq 0\}|$$

=
$$\dim T_0^*$$

as desired. The converse can also be seen from the above equalities. \Box

Proposition 4 Let G_1 and G_2 be finite groups.

- (i) If G_1 and G_2 are triply transitive, so is $G_1 \times G_2$.
- (ii) If G_1 and G_2 are triply regular, so is $G_1 \times G_2$.
- (iii) If G_1 and G_2 are dually triply regular, so is $G_1 \times G_2$.

Proof. (i) This follows immediately from the definition.

(ii) If G_1 and G_2 are triply regular, then $T_0(G_1)$ and $T_0(G_2)$ are subalgebras. Since $T_0(G_1 \times G_2) = T_0(G_1) \otimes T_0(G_2)$, it follows that $G_1 \times G_2$ is triply regular.

(iii) Similar as (ii). \Box

Theorem 5 Let $D_{2n} = \langle \sigma, \tau | \sigma^n = 1, \tau^2 = 1, \tau \sigma \tau = \sigma^{-1} \rangle$ be the dihedral group of order 2n. Then D_{2n} is triply transitive and dually triply regular.

Proof. First suppose that n is odd, say n = 2m + 1. Then the conjugacy classes of D_{2n} are $C_0 = \{e\}$, $C_i = \{\sigma^i, \sigma^{-i}\}$ $(1 \le i \le m)$ and $C_{m+1} = \tau \langle \sigma \rangle$. Thus dim $\tilde{T} = 2m^2 + 5m + 4$. In order to compute dim T_0 , let us consider the product $C_i C_j$. If $1 \le i \le m$, then

$$C_i C_j = \begin{cases} C_i & \text{if } j = 0\\ C_0 \cup \{\sigma^{2i}, \sigma^{-2i}\} & \text{if } j = i\\ \{\sigma^{i+j}, \sigma^{-i-j}\} \cup \{\sigma^{i-j}, \sigma^{j-i}\} & \text{if } 1 \le j \le m \text{ and } j \ne i\\ C_{m+1} & \text{if } j = m+1. \end{cases}$$

Also

$$C_{m+1}C_j = \begin{cases} C_{m+1} & \text{if } 0 \le j \le m \\ C_0 \cup \dots \cup C_m & \text{if } j = m+1. \end{cases}$$

We can easily see that the number of triples (i, j, k) with $(C_i C_j) \cap C_k \neq \emptyset$ is $(m+2) + m(2m+2) + (2m+2) = 2m^2 + 5m + 4 = \dim \tilde{T}$, so that D_{2n} is triply transitive.

To show that D_{2n} is dually triply regular, it suffices to prove that $\chi_i \chi_j$ is multiplicity-free, where $\{\chi_0, \ldots, \chi_{m+1}\}$ is the set of complex irreducible characters of D_{2n} . We may assume $\chi_i(1) = \chi_j(1) = 2$, otherwise one of χ_i or χ_j has degree 1, so that $\chi_i \chi_j$ is irreducible. But all irreducible characters of degree 2 are obtained by inducing a linear character of the subgroup $\langle \sigma \rangle$ to D_{2n} . It is now straightforward to check that $\chi_i \chi_j$ is multiplicity-free. Hence D_{2n} is dually triply regular by Theorem 3.

Next suppose that n is even, say n = 2m. Then the conjugacy classes of D_{2n} are $C_0 = \{e\}$, $C_i = \{\sigma^i, \sigma^{-i}\}$ $(1 \le i \le m-1)$, $C_m = \{\sigma^m\}$, $C_{m+1} = \tau \langle \sigma^2 \rangle$, and $C_{m+2} = \tau \sigma \langle \sigma^2 \rangle$. Thus dim $\tilde{T} = 2m^2 + 6m + 8$. A tedious calculation similar to the case n = 2m + 1 establishes dim $T_0 = \dim T_0^* = 2m^2 + 6m + 8$, hence D_{2n} is triply transitive and dually triply regular. \Box

We have computed dim T_0 , dim T_0^* , and dim T for all nonabelian indecomposable finite groups of order at most 100 using GAP [6]. The results are tabulated in the Appendix. We have not found any group for which $\dim T_0 = \dim \tilde{T} > \dim T_0^*$ holds.

To conclude this section, we give a list of indecomposable finite groups of order at most 24 which are not triply transitive. Balmaceda and Oura [1] has determined the Terwilliger algebra for $G = S_5$ and A_5 .

	$\dim T_0$	$\dim T_0^*$	$\dim T$	$\dim \tilde{T}$
A_4	19	19	19	22
5.4	29	29	29	37
7.3	35	35	37	41
SL(2,3)	75	73	75	76
S_4	42	43	43	43

3 Relationship with the quantum double

Let \mathcal{A} be the complex vector space with basis $G \times G \times G$, and define the multiplication in $\tilde{\mathcal{A}}$ by

$$(x,g,a)(y,h,b) = \delta_{x^{-1}ga,h}(xy,g,ab)$$

and extend it linearly to $\tilde{\mathcal{A}}$. Then $\tilde{\mathcal{A}}$ becomes an associative algebra. The subalgebra of $\tilde{\mathcal{A}}$ defined by

$$\mathcal{D} = \langle (h, g, h) | g, h \in G \rangle_{\mathbf{C}} \subset \hat{\mathcal{A}}.$$

is known as the quantum double of the finite group G (precisely speaking, the quantum double is defined for a Hopf algebra, and \mathcal{D} is the quantum double of the group Hopf algebra of G, see [3]). On the other hand, let

$$\mathcal{T} = \langle (1, g, h) | g, h \in G \rangle_{\mathbf{C}} \subset \tilde{\mathcal{A}},$$

and denote by \mathcal{T}^G the *G*-fixed subspace of \mathcal{T} . Then \mathcal{T}^G is isomorphic to the centralizer algebra \tilde{T} defined in Section 2. Therefore, $\tilde{\mathcal{A}}$ is an algebra containing both the quantum double \mathcal{D} and the Terwilliger algebra T.

References

- [1] J. Balmaceda and M. Oura, The Terwilliger algebras of the group association schemes of S_5 and A_5 , preprint.
- [2] E.Bannai and T.Ito "Algebraic Combinatorics I. Association schemes" Benjamin/Cummings, Menlo Park, Calif., 1984.
- [3] V. G. Drinfel'd, Quantum groups, Proc. Internat. Congr. Math. (Berkeley, Calif., 1986), Vol.1, Amer. Math. Soc., Providence, R. I., 1987, pp.798– 820.

- [4] F. Jaeger, Strongly regular graphs and spin models for the Kauffman polynomial, Geom. Dedicata 44 (1992), 23–52.
- [5] F. Jaeger, On spin models, triply regular association schemes, and duality, to appear in J. Algebraic Combinatorics.
- [6] M. Schönert, et.al., GAP: Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1992.
- [7] P. Terwilliger, The subconstituent algebra of an association scheme, I, II, III, J. Algebraic Combinatorics, 1 (1992), 363–388, 2 (1993), 73–103, 2 (1993), 177–210.