The Terwilliger Algebras of Group Association Schemes

Eiichi Bannai
Akihiro Munemasa

The Terwilliger algebra of an association scheme was introduced by Paul Terwilliger [7] in order to study P-and Q-polynomial association schemes. The purpose of this paper is to discuss in detail properties of the Terwilliger algebra of the group association scheme of a finite group. We shall give bounds on the dimension of the Terwilliger algebra, and define triple regularity.

Let G be a finite group, $C_{0}=\{e\}, C_{1}, \ldots, C_{d}$ the conjugacy classes of G. For $i=0,1, \ldots, d$, define

$$
R_{i}=\left\{(x, y) \mid y x^{-1} \in C_{i}\right\} .
$$

Then $\mathcal{X}(G)=\left(G,\left\{R_{i}\right\}_{0 \leq i \leq d}\right)$ becomes a commutative association scheme, and it is called the group association scheme of the finite group G. Define the adjacency matrix A_{i} of the relation R_{i} :

$$
\left(A_{i}\right)_{x, y}= \begin{cases}1 & (x, y) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Then there exist nonnegative integers $p_{i j}^{k}$ such that $A_{i} A_{j}=\sum_{k=0}^{d} p_{i j}^{k} A_{k}$. This is equivalent to the relation $\underline{C}_{i} \underline{C}_{j}=\sum_{k=0}^{d} p_{i j}^{k} \underline{C}_{k}$ where $\underline{C}_{i}=\sum_{x \in C_{i}} x \in \mathrm{C} G$ and the multiplication is performed as elements of the group algebra $\mathbf{C} G$. If we put $\mathcal{A}=\left\langle A_{0}, \ldots, A_{d}\right\rangle_{\mathbf{C}}$, then \mathcal{A} becomes a $(d+1)$-dimensional subalgebra of the matrix algebra $M_{|G|}(\mathbf{C})$, and is called the Bose-Mesner algebra. It is isomorphic to the center of the group algebra. Let E_{0}, \ldots, E_{d} be the primitive idempotents of \mathcal{A}. Since \mathcal{A} is closed under the Hadamard multiplication, we have $E_{i} \circ E_{j} \in \mathcal{A}$, so that there exist complex numbers $q_{i j}^{k}$ such that

$$
E_{i} \circ E_{j}=\frac{1}{|G|} \sum_{k=0}^{d} q_{i j}^{k} E_{k}
$$

(it is known that $q_{i j}^{k}$ are indeed real and nonnegative, see [2]).
We define the diagonal matrices E_{i}^{*}, A_{i}^{*} by

$$
\left(E_{i}^{*}\right)_{x x}= \begin{cases}1 & x \in C_{i} \\ 0 & \text { otherwise }\end{cases}
$$

$$
\left(A_{i}^{*}\right)_{x x}=|G|\left(E_{i}\right)_{e, x}
$$

Then we have

$$
A_{i}^{*} A_{j}^{*}=\sum_{k=0}^{d} q_{i j}^{k} A_{k}^{*}
$$

and the algebra

$$
\mathcal{A}^{*}=\left\langle A_{0}^{*}, \ldots, A_{d}^{*}\right\rangle_{\mathbf{C}}=\left\langle E_{0}^{*}, \ldots, E_{d}^{*}\right\rangle_{\mathbf{C}}
$$

is called the dual Bose-Mesner algebra.
Now the Terwilliger algebra T is the subalgebra of $M_{|G|}(\mathbf{C})$ generated by \mathcal{A} and \mathcal{A}^{*}. Since T is closed under the conjugate-transpose, T is semisimple, and one can easily see that T is non-commutative if $G \neq 1$.

1 Bounds on $\operatorname{dim} T$

In this section we give upper and lower bounds on the dimension of the Terwilliger algebra of a group association scheme. The following identities will be used in the proof of the next lemma. See [2] for a proof.

$$
\begin{gathered}
\bar{E}_{i}=E_{i}^{T}=E_{\hat{i}} \quad \text { for some } \hat{i} \in\{0,1, \ldots, d\}, \\
\operatorname{rank} E_{j}=|G|\left(E_{j}\right)_{e, e}, \\
q_{i k}^{j} \operatorname{rank} E_{j}=q_{i j}^{k} \operatorname{rank} E_{k} .
\end{gathered}
$$

(ii) $\operatorname{tr}\left(E_{i} A_{j}^{*} E_{k}{\overline{\left(E_{l} A_{m}^{*} E_{n}\right)}}^{T}\right)=\delta_{i l} \delta_{j m} \delta_{k n} q_{i j}^{k} \operatorname{rank} E_{k}$

Proof. (i) This follows directly from the definition.
(ii) By the identities mentioned above,

$$
\begin{aligned}
\operatorname{tr}\left(E_{i} A_{j}^{*} E_{k} \overline{\left(E_{l} A_{m}^{*} E_{n}\right)^{T}}\right) & =\operatorname{tr}\left(E_{l} E_{i} A_{j}^{*} E_{k} E_{n} \overline{A_{m}^{*}}\right) \\
& =\delta_{i l} \delta_{k n} \operatorname{tr}\left(E_{i} A_{j}^{*} E_{k} \overline{A_{m}^{*}}\right) \\
& =\delta_{i l} \delta_{k n}|G|^{2} \sum_{x, y \in G}\left(E_{i}\right)_{x, y}\left(E_{j}\right)_{e, y}\left(E_{k}\right)_{y, x}\left(E_{m}\right)_{x, e} \\
& =\delta_{i l} \delta_{k n}|G|^{2}\left(E_{j}\left(E_{i} \circ E_{k}^{T}\right) E_{m}\right)_{e, e} \\
& =\delta_{i l} \delta_{k n} \delta_{j m}|G| q_{i \hat{k}}^{j}\left(E_{j}\right)_{e, e} \\
& =\delta_{i l} \delta_{k n} \delta_{j m} q_{i j}^{k} \operatorname{rank} E_{k} .
\end{aligned}
$$

This completes the proof.
Consider the subspaces T_{0} and T_{0}^{*} defined by

$$
T_{0}=\operatorname{span}_{\mathbf{C}}\left\{E_{i}^{*} A_{j} E_{k}^{*} \mid 0 \leq i, j, k \leq d\right\},
$$

$$
T_{0}^{*}=\operatorname{span}_{\mathbf{C}}\left\{E_{i} A_{j}^{*} E_{k} \mid 0 \leq i, j, k \leq d\right\} .
$$

By Lemma 1 we have

$$
\begin{aligned}
\operatorname{dim} T_{0} & =\left|\left\{(i, j, k) \mid p_{i j}^{k} \neq 0\right\}\right|, \\
\operatorname{dim} T_{0}^{*} & =\left|\left\{(i, j, k) \mid q_{i j}^{k} \neq 0\right\}\right| .
\end{aligned}
$$

In other words, $\operatorname{dim} T_{0}$ is the number of triples (i, j, k) such that $\left(C_{i} C_{j}\right) \cap$ $C_{k} \neq \emptyset$. There is a one-to-one correspondence between the set of primitive idempotents $\left\{E_{i}\right\}_{0 \leq i \leq d}$ and the set of complex irreducible characters of G, say $E_{i} \leftrightarrow \chi_{i}$. As shown in [2], $q_{i j}^{k}=\frac{\chi_{i}(1) \chi_{j}(1)}{\chi_{k}(1)}\left(\chi_{i} \chi_{j}, \chi_{k}\right)$ holds. Thus, $\operatorname{dim} T_{0}^{*}$ is the number of triples (i, j, k) such that $\left(\chi_{i} \chi_{j}, \chi_{k}\right) \neq 0$.

Let $\tilde{T}=\operatorname{End}_{G}(\mathbf{C} G)$ be the centralizer algebra of the permutation representation of G acting on G itself by conjugation. The dimension of \tilde{T} is the number of orbits of G acting on $G \times G$ by simultaneous conjugation. As is well-known, this is equal to the average of fixed points, i.e.,

$$
\operatorname{dim} \tilde{T}=\frac{1}{|G|} \sum_{a \in G}\left|C_{G}(a)\right|^{2}=\sum_{i=0}^{d} \frac{|G|}{\left|C_{i}\right|} .
$$

Theorem 2 We have the following bounds on the dimension of the Terwilliger algebra T.
(i) $\left|\left\{(i, j, k) \mid p_{i j}^{k} \neq 0\right\}\right| \leq \operatorname{dim} T$.
(ii) $\left|\left\{(i, j, k) \mid q_{i j}^{k} \neq 0\right\}\right| \leq \operatorname{dim} T$.
(iii) $\operatorname{dim} T \leq \sum_{i=0}^{d}|G| /\left|C_{i}\right|$.

Proof. These are direct consequences of $T_{0} \subset T, T_{0}^{*} \subset T$ and $T \subset \tilde{T}$.
If G is abelian, then Theorem 2 implies $\operatorname{dim} T_{0}=|G|^{2}$, i.e., T coincides with the full matrix algebra $M_{|G|}(\mathbf{C})$.

2 Triple regularity

If the finite group G acts transitively on the set

$$
S_{i j k}=\left\{(g, h) \in C_{i} \times C_{j} \mid g h \in C_{k}\right\}
$$

for any $i, j, k \in\{0,1, \ldots, d\}$ with $S_{i j k} \neq \emptyset$, we say that G is triply transitive. Note that, since $G \times G=\cup_{i, j, k} S_{i j k}$ and $\operatorname{dim} T_{0}=\left|\left\{(i, j, k) \mid S_{i j k} \neq \emptyset\right\}\right|, G$ is triply transitive if and only if $\operatorname{dim} T_{0}=\operatorname{dim} \tilde{T}$. In this case $T_{0}=T=\tilde{T}$ holds. We call the finite group G triply regular if $T_{0}=T$, and dually triply regular if $T_{0}^{*}=T$. Since T_{0} or T_{0}^{*} generates T as an algebra, G is triply regular (resp. dually triply regular) precisely when the subspace T_{0} (resp. T_{0}^{*}) is a subalgebra.

A combinatorial meaning of the triple regularity is as follows. Given i, j, k, l, m, n, the size of the set

$$
\left\{z \in C_{n} \mid(y, z) \in R_{l},(x, z) \in R_{m}\right\}
$$

depends only on i, j, k, l, m, n, and is independent of the choice of $(x, y) \in$ $S_{i j k}$. This property, when reformulated for association schemes, plays a central role in the theory of spin models (see [4], [5]).

If G is abelian, then $\operatorname{dim} T_{0}=|G|^{2}$, so that G is triply transitive.
Examples. (i) Let $G=A_{4}$ be the alternating group on four letters. G is triply regular but not triply transitive.
(ii) All finite groups of order 16 are triply transitive.

As for the dual triple regularity, we give a sufficient condition in terms of character products.

Theorem 3 Let $\chi_{0}, \ldots, \chi_{d}$ be the complex irreducible characters of the finite group G. If $\chi_{i} \chi_{j}$ is multiplicity-free for any i, j, then $T_{0}^{*}=\tilde{T}$ holds, in particular, G is dually triply regular. Conversely, $T_{0}^{*}=\tilde{T}$ implies that $\chi_{i} \chi_{j}$ is multiplicity-free for any i, j.

Proof. Write $\chi_{i} \chi_{j}=\sum_{k=0}^{d} N_{i j}^{k} \chi_{k}$. Then we have

$$
\begin{aligned}
\sum_{i, j, k}\left(N_{i j}^{k}\right)^{2} & =\sum_{i, j=0}^{d}\left(\chi_{i} \chi_{j}, \chi_{i} \chi_{j}\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left(\sum_{i=0}^{d} \chi_{i}(g) \overline{\chi_{i}(g)}\right)\left(\sum_{j=0}^{d} \chi_{j}(g) \overline{\chi_{j}(g)}\right) \\
& =\frac{1}{|G|} \sum_{g \in G}\left|C_{G}(g)\right|^{2} \\
& =\sum_{i=0}^{d} \frac{|G|}{\left|C_{i}\right|}
\end{aligned}
$$

Thus, if $N_{i j}^{k} \in\{0,1\}$, then

$$
\begin{aligned}
\operatorname{dim} \tilde{T} & =\sum_{i=0}^{d}|G| /\left|C_{i}\right| \\
& =\sum_{i, j, k} N_{i j}^{k} \\
& =\left|\left\{(i, j, k) \mid N_{i j}^{k} \neq 0\right\}\right| \\
& =\left|\left\{(i, j, k) \mid q_{i j}^{k} \neq 0\right\}\right| \\
& =\operatorname{dim} T_{0}^{*}
\end{aligned}
$$

as desired. The converse can also be seen from the above equalities.

Proposition 4 Let G_{1} and G_{2} be finite groups.
(i) If G_{1} and G_{2} are triply transitive, so is $G_{1} \times G_{2}$.
(ii) If G_{1} and G_{2} are triply regular, so is $G_{1} \times G_{2}$.
(iii) If G_{1} and G_{2} are dually triply regular, so is $G_{1} \times G_{2}$.

Proof. (i) This follows immediately from the definition.
(ii) If G_{1} and G_{2} are triply regular, then $T_{0}\left(G_{1}\right)$ and $T_{0}\left(G_{2}\right)$ are subalgebras. Since $T_{0}\left(G_{1} \times G_{2}\right)=T_{0}\left(G_{1}\right) \otimes T_{0}\left(G_{2}\right)$, it follows that $G_{1} \times G_{2}$ is triply regular.
(iii) Similar as (ii).

Theorem 5 Let $D_{2 n}=\left\langle\sigma, \tau \mid \sigma^{n}=1, \tau^{2}=1, \tau \sigma \tau=\sigma^{-1}\right\rangle$ be the dihedral group of order $2 n$. Then $D_{2 n}$ is triply transitive and dually triply regular.

Proof. First suppose that n is odd, say $n=2 m+1$. Then the conjugacy classes of $D_{2 n}$ are $C_{0}=\{e\}, C_{i}=\left\{\sigma^{i}, \sigma^{-i}\right\}(1 \leq i \leq m)$ and $C_{m+1}=\tau\langle\sigma\rangle$. Thus $\operatorname{dim} \tilde{T}=2 m^{2}+5 m+4$. In order to compute $\operatorname{dim} T_{0}$, let us consider the product $C_{i} C_{j}$. If $1 \leq i \leq m$, then

$$
C_{i} C_{j}= \begin{cases}C_{i} & \text { if } j=0 \\ C_{0} \cup\left\{\sigma^{2 i}, \sigma^{-2 i}\right\} & \text { if } j=i \\ \left\{\sigma^{i+j}, \sigma^{-i-j}\right\} \cup\left\{\sigma^{i-j}, \sigma^{j-i}\right\} & \text { if } 1 \leq j \leq m \text { and } j \neq i \\ C_{m+1} & \text { if } j=m+1 .\end{cases}
$$

Also

$$
C_{m+1} C_{j}= \begin{cases}C_{m+1} & \text { if } 0 \leq j \leq m \\ C_{0} \cup \cdots \cup C_{m} & \text { if } j=m+1 .\end{cases}
$$

We can easily see that the number of triples (i, j, k) with $\left(C_{i} C_{j}\right) \cap C_{k} \neq \emptyset$ is $(m+2)+m(2 m+2)+(2 m+2)=2 m^{2}+5 m+4=\operatorname{dim} \tilde{T}$, so that $D_{2 n}$ is triply transitive.

To show that $D_{2 n}$ is dually triply regular, it suffices to prove that $\chi_{i} \chi_{j}$ is multiplicity-free, where $\left\{\chi_{0}, \ldots, \chi_{m+1}\right\}$ is the set of complex irreducible characters of $D_{2 n}$. We may assume $\chi_{i}(1)=\chi_{j}(1)=2$, otherwise one of χ_{i} or χ_{j} has degree 1 , so that $\chi_{i} \chi_{j}$ is irreducible. But all irreducible characters of degree 2 are obtained by inducing a linear character of the subgroup $\langle\sigma\rangle$ to $D_{2 n}$. It is now straightforward to check that $\chi_{i} \chi_{j}$ is multiplicity-free. Hence $D_{2 n}$ is dually triply regular by Theorem 3 .

Next suppose that n is even, say $n=2 m$. Then the conjugacy classes of $D_{2 n}$ are $C_{0}=\{e\}, C_{i}=\left\{\sigma^{i}, \sigma^{-i}\right\}(1 \leq i \leq m-1), C_{m}=\left\{\sigma^{m}\right\}$, $C_{m+1}=\tau\left\langle\sigma^{2}\right\rangle$, and $C_{m+2}=\tau \sigma\left\langle\sigma^{2}\right\rangle$. Thus $\operatorname{dim} \tilde{T}=2 m^{2}+6 m+8$. A tedious calculation similar to the case $n=2 m+1$ establishes $\operatorname{dim} T_{0}=\operatorname{dim} T_{0}^{*}=$ $2 m^{2}+6 m+8$, hence $D_{2 n}$ is triply transitive and dually triply regular.

We have computed $\operatorname{dim} T_{0}$, $\operatorname{dim} T_{0}^{*}$, and $\operatorname{dim} \tilde{T}$ for all nonabelian indecomposable finite groups of order at most 100 using GAP [6]. The results
are tabulated in the Appendix. We have not found any group for which $\operatorname{dim} T_{0}=\operatorname{dim} \tilde{T}>\operatorname{dim} T_{0}^{*}$ holds.

To conclude this section, we give a list of indecomposable finite groups of order at most 24 which are not triply transitive. Balmaceda and Oura [1] has determined the Terwilliger algebra for $G=S_{5}$ and A_{5}.

	$\operatorname{dim} T_{0}$	$\operatorname{dim} T_{0}^{*}$	$\operatorname{dim} T$	$\operatorname{dim} \tilde{T}$
A_{4}	19	19	19	22
5.4	29	29	29	37
7.3	35	35	37	41
$S L(2,3)$	75	73	75	76
S_{4}	42	43	43	43

3 Relationship with the quantum double

Let $\tilde{\mathcal{A}}$ be the complex vector space with basis $G \times G \times G$, and define the multiplication in \mathcal{A} by

$$
(x, g, a)(y, h, b)=\delta_{x^{-1} g a, h}(x y, g, a b)
$$

and extend it linearly to $\tilde{\mathcal{A}}$. Then $\tilde{\mathcal{A}}$ becomes an associative algebra. The subalgebra of $\tilde{\mathcal{A}}$ defined by

$$
\mathcal{D}=\langle(h, g, h) \mid g, h \in G\rangle_{\mathbf{C}} \subset \tilde{\mathcal{A}} .
$$

is known as the quantum double of the finite group G (precisely speaking, the quantum double is defined for a Hopf algebra, and \mathcal{D} is the quantum double of the group Hopf algebra of G, see [3]). On the other hand, let

$$
\mathcal{T}=\langle(1, g, h) \mid g, h \in G\rangle_{\mathbf{C}} \subset \tilde{\mathcal{A}},
$$

and denote by \mathcal{T}^{G} the G-fixed subspace of \mathcal{T}. Then \mathcal{T}^{G} is isomorphic to the centralizer algebra \tilde{T} defined in Section 2. Therefore, $\tilde{\mathcal{A}}$ is an algebra containing both the quantum double \mathcal{D} and the Terwilliger algebra T.

References

[1] J. Balmaceda and M. Oura, The Terwilliger algebras of the group association schemes of S_{5} and A_{5}, preprint.
[2] E.Bannai and T.Ito "Algebraic Combinatorics I. Association schemes" Benjamin/Cummings, Menlo Park, Calif., 1984.
[3] V. G. Drinfel'd, Quantum groups, Proc. Internat. Congr. Math. (Berkeley, Calif., 1986), Vol.1, Amer. Math. Soc., Providence, R. I., 1987, pp.798820.
[4] F. Jaeger, Strongly regular graphs and spin models for the Kauffman polynomial, Geom. Dedicata 44 (1992), 23-52.
[5] F. Jaeger, On spin models, triply regular association schemes, and duality, to appear in J. Algebraic Combinatorics.
[6] M. Schönert, et.al., GAP: Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RWTH Aachen, 1992.
[7] P. Terwilliger, The subconstituent algebra of an association scheme, I, II, III, J. Algebraic Combinatorics, 1 (1992), 363-388, 2 (1993), 73-103, 2 (1993), 177-210.

