Spherical Designs

An Introduction to Designs in Spheres and Complex Projective Spaces

Akihiro Munemasa

Graduate School of Information Sciences
Tohoku University

September 14, 2006
Why can’t we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)? We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^3 of 4 points, or of 6 points, but not of 5 points.
Why can’t we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)? We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^3 of 4 points, or of 6 points, but not of 5 points.
Why can’t we place 5 points on a sphere in a nice way, even though we can easily do the same for 4 points (tetrahedron) or for 6 points (octahedron)? We will answer this question rigorously by defining spherical design. There is no spherical 2-design in \mathbb{R}^3 of 4 points, or of 6 points, but not of 5 points.
Definition of Spherical Design

Let d be a positive integer. Let $\Omega_d = \{x \in \mathbb{R}^d \mid \|x\| = 1\}$ be the unit sphere in \mathbb{R}^d.

A spherical t-design is a finite nonempty subset X of Ω_d satisfying

$$\frac{1}{\text{volume}(\Omega_d)} \int_{\Omega_d} f(\xi) d\xi = \frac{1}{|X|} \sum_{x \in X} f(x)$$

for all polynomial functions f of degree at most t.
Definition

Let d be a positive integer. Let $\Omega_d = \{ x \in \mathbb{R}^d \mid \|x\| = 1 \}$ be the unit sphere in \mathbb{R}^d.

A \emph{spherical t-design} is a finite nonempty subset X of Ω_d satisfying

\[
\frac{1}{\text{volume}(\Omega_d)} \int_{\Omega_d} f(\xi) d\xi = \frac{1}{|X|} \sum_{x \in X} f(x)
\]

for all polynomial functions f of degree at most t.

Akihiro Munemasa
Tohoku University

Designs in Spheres
Definition of Spherical Design

Let d be a positive integer. Let $\Omega_d = \{ \mathbf{x} \in \mathbb{R}^d \mid \| \mathbf{x} \| = 1 \}$ be the unit sphere in \mathbb{R}^d.

A spherical t-design is a finite nonempty subset X of Ω_d satisfying

$$
\frac{1}{\text{volume}(\Omega_d)} \int_{\Omega_d} f(\xi) d\xi = \frac{1}{|X|} \sum_{\mathbf{x} \in X} f(\mathbf{x}) \tag{1}
$$

for all polynomial functions f of degree at most t.
Theorem (Mimura, 1990)

Let \(n, d \) be positive integers with \(d \geq 2 \). Then there exists a spherical 2-design of \(n \) points in \(\mathbb{R}^d \) unless \(n \leq d \) or \(n = d + 2 \) is odd.

In particular, there is no spherical 2-design of 5 points in \(\mathbb{R}^3 \).
If \(n \) or \(d \) is even, then the construction is easy.
If both \(n \) and \(d \) are odd, we will give a construction which is much simpler than Mimura’s.
Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \leq d$ or $n = d + 2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3.

If n or d is even, then the construction is easy.

If both n and d are odd, we will give a construction which is much simpler than Mimura’s.
Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \leq d$ or $n = d + 2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3.

If n or d is even, then the construction is easy.

If both n and d are odd, we will give a construction which is much simpler than Mimura’s.
Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \leq d$ or $n = d + 2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3. If n or d is even, then the construction is easy. If both n and d are odd, we will give a construction which is much simpler than Mimura’s.
Existence of Spherical 2-Designs

Theorem (Mimura, 1990)

Let n, d be positive integers with $d \geq 2$. Then there exists a spherical 2-design of n points in \mathbb{R}^d unless $n \leq d$ or $n = d + 2$ is odd.

In particular, there is no spherical 2-design of 5 points in \mathbb{R}^3. If n or d is even, then the construction is easy. If both n and d are odd, we will give a construction which is much simpler than Mimura’s.
The angle set of a finite set \(X \subset \Omega_d \) is

\[
A(X) = \{(x, y) \mid x, y \in X, \ x \neq y\} \subset [-1, 1).
\]

If we regard it as a multiset, then the property of being a spherical \(t \)-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set \(X \subset \Omega_d \) is a spherical \(t \)-design if and only if

\[
\sum_{x,y \in X} P_k((x, y)) = 0 \quad \text{for } k = 1, 2, \ldots, t,
\]

where \(P_k(x) \ (k = 1, 2, \ldots) \) are Gegenbauer polynomials.
Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_d$ is

$$A(X) = \{(x, y) \mid x, y \in X, \ x \neq y\} \subset [-1, 1).$$

If we regard it as a multiset, then the property of being a spherical t-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_d$ is a spherical t-design if and only if

$$\sum_{x, y \in X} P_k((x, y)) = 0 \quad \text{for} \ k = 1, 2, \ldots, t,$$

where $P_k(x)$ ($k = 1, 2, \ldots$) are Gegenbauer polynomials.
Angle Set of Spherical Design

The angle set of a finite set $X \subset \Omega_d$ is

$$A(X) = \{(x, y) \mid x, y \in X, \ x \neq y\} \subset [-1, 1).$$

If we regard it as a multiset, then the property of being a spherical t-design can be described in terms of the angle set.

Theorem (Delsarte-Goethals-Seidel)

A finite set $X \subset \Omega_d$ is a spherical t-design if and only if

$$\sum_{x, y \in X} P_k((x, y)) = 0 \quad \text{for } k = 1, 2, \ldots, t,$$

where $P_k(x)$ ($k = 1, 2, \ldots$) are Gegenbauer polynomials.
Let $\Omega_d(\mathbb{C})$ denote the set of vectors of \mathbb{C}^d of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_d(\mathbb{C})$, by the equivalence relation

$$x \sim y \iff x = e^{\sqrt{-1}\theta}y \text{ for some } \theta \in \mathbb{R}. $$

Definition

A **t-design** in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

$$\int_{P^{d-1}} f(\xi) d\xi = \frac{1}{|X|} \sum_{x \in X} f(x)$$

for all $f \in \bigoplus_{k=0}^{t} \text{Hom}(k)$, where $d\xi$ denotes the unique normalized Haar measure invariant under the unitary group $U(d, \mathbb{C})$, and $\text{Hom}(k)$ will be defined later.
Let $\Omega_d(\mathbb{C})$ denote the set of vectors of \mathbb{C}^d of unit length. The complex projective space P^{d-1} is the quotient set of $\Omega_d(\mathbb{C})$, by the equivalence relation

$$x \sim y \iff x = e^{\sqrt{-1}\theta}y \quad \text{for some } \theta \in \mathbb{R}.$$

Definition

A t-design in P^{d-1} is a finite nonempty subset X of P^{d-1} satisfying

$$\int_{P^{d-1}} f(\xi) d\xi = \frac{1}{|X|} \sum_{x \in X} f(x) \quad (2)$$

for all $f \in \bigoplus_{k=0}^t \text{Hom}(k)$, where $d\xi$ denotes the unique normalized Haar measure invariant under the unitary group $U(d, \mathbb{C})$, and $\text{Hom}(k)$ will be defined later.
Examples of 2-designs

- $d + 1$ mutually unbiased bases in \mathbb{C}^d
- Symmetric informationally complete positive operator-valued measure (SIC-POVM).
Examples of 2-designs

- $d + 1$ mutually unbiased bases in \mathbb{C}^d
- Symmetric informationally complete positive operator-valued measure (SIC-POVM).