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Introduction

Quantum probability theory is based on an algebraic probability space (A, φ), where
A is a unital ∗-algebra and φ : A → C is a state, i.e., a linear function which is positive
(φ(a∗a) ≥ 0 for all a ∈ A) and normalized (φ(1A) = 1). As is well known, a classical ran-
dom variable X on a probability space (Ω,F , P ) is canonically considered as an algebraic
random variable and is decomposed into a sum of its quantum components. This quan-
tum decomposition brings X into a noncommutative regime, where quantum probabilistic
techniques are available. In particular, a crucial role is played by the profound relation
between interacting Fock spaces and orthogonal polynomials, see Accardi–Bożejko [2]. We
apply this idea to asymptotic spectral analysis of the adjacency matrix of a growing graph.
Once the adjacency matrix is considered as an algebraic random variable, the asymptotic
spectral distribution is derived along with various quantum central limit theorems. Our
approach releases cumbersome combinatorial questions about the graph structure and de-
mands instead computation of some statistics related to its local structure.

Quantum probabilistic approach to asymptotic spectral analysis of a growing graph
traces back to Hora [9], where growing distance-regular graphs were studied. His method
was not based upon the quantum decomposition but required some classical results, see also
Hora [10, 11]. Hashimoto–Obata–Tabei [7] applied the method of quantum decomposition
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to Hamming graphs and obtained the limit distributions (Gaussian and Poisson distri-
butions) without combinatorial arguments required in the classical method. Hashimoto
[5] applied the same idea to Cayley graphs and developed a general theory. The idea of
quantum decomposition is so naive that similar consideration is found in various contexts;
however, as a method of analyzing an adjacency matrix or a classical random variable
within quantum probability theory, the term “quantum decomposition” was introduced
first by Hashimoto [5]. Later on, Hashimoto–Hora–Obata [6] studied the limit distribu-
tions for distance-regular graphs in general. In particular, the exponential distributions
(Laguerre polynomials) and the geometric distributions (Meixner polynomials) were de-
rived from Johnson graphs. A general theory for growing regular graphs was established
to some extent by Hora–Obata [15, 16]. In this paper we unify and generalize the above
mentioned works. Theorems 7.1 and 7.2 are our main results.

Relevant topics are found in Accardi–Ben Ghorbal–Obata [1], Hashimoto [4], Hora [12,
13, 14], Obata [19, 20]. For a comprehensive account of our approach, see the forthcoming
monograph Hora–Obata [17].

Acknowledgements. The author is grateful to the Research Center for Theoretical
Physics, Jagna, and particularly to Professors C. C. Bernido and M. V. Carpio-Bernido
for their warm hospitality. This research is supported in part by JSPS Grant-in-Aid for
Scientific Research No. 15340039.

1 Main Problem

Let G = (V,E) be a graph, where V is a non-empty set of vertices and E is a set of
edges, i.e., E ⊂ {{x, y} ; x, y ∈ V, x ̸= y}. Two vertices x, y ∈ V are called adjacent if
{x, y} ∈ E and, in this case we write x ∼ y. The graph structure is fully contained in the
adjacency matrix A = (Axy) defined by

Axy =

{
1, x ∼ y,

0, otherwise.
(1.1)

Apparently, A is symmetric. We are interested in spectral properties of A. If the graph is
finite (i.e., |V | < ∞), the complete list of eigenvalues of A with multiplicities answers to
our question. If not, A becomes an infinite matrix and analytical consideration is required.
Below our question will be formulated in a more concrete form.

We start with some notions of graph theory. A finite sequence x0, x1, . . . , xn ∈ V is
called a walk of length n (connecting x0 and xn) if xi ∼ xi+1 for i = 0, 1, . . . , n − 1. In a
walk some points of x0, x1, . . . , xn may occur repeatedly. A graph is called connected if any
pair of distinct points is connected by a walk. The degree or valency of a vertex x ∈ V is
defined by κ(x) = |{y ∈ V ; y ∼ x}|. A graph is called locally finite if κ(x) < ∞ for all
x ∈ V , uniformly locally finite if sup{κ(x) ; x ∈ V } < ∞, and regular if κ(x) = κ < ∞ for
all x ∈ V .

Convention. Throughout the paper, unless otherwise specified, a graph is always assumed
to be connected and locally finite.

The adjacency algebra A(G) is well defined for the local finiteness. An element of A(G)
is expressible in a polynomial in A with complex coefficients. The adjacency algebra is
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a commutative ∗-algebra (with the identity) and the adjacency matrix is symmetric, i.e.,
A = A∗.

Let ⟨·⟩ be a state on A(G), that is, a 7→ ⟨a⟩ ∈ C is a linear function on A(G), which
is positive (⟨a∗a⟩ ≥ 0 for all a ∈ A(G)) and normalized (⟨1A⟩ = 1). It follows from
Hamburger’s theorem (see e.g., Chihara [3], Shohat–Tamarkin [21]) that there exists a
probability distribution µ on R such that

⟨Am⟩ =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Uniqueness of µ does not hold in general (known as the determinate moment problem).
We call µ the spectral distribution of A in the given state.

Probably a more interesting question is to find the asymptotic spectral distribution of
the adjacency matrix of a large graph or of a growing graph, namely, to find a probability
distribution µ satisfying

⟨Am⟩ ≈
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

in a suitable asymptotic sense. The precise formulation will be given in Section 4.
In fact, up to now, our consideration has been restricted to the vacuum state and its

deformation. In this paper we deal with the vacuum state only. Let G = (V,E) be a graph.
Let ℓ2(V ) be the Hilbert space of square-summable functions on V and C0(V ) the dense
subspace of functions with finite supports. The inner product of ℓ2(V ) is defined by

⟨f, g⟩ =
∑
x∈V

f(x) g(x), f, g ∈ ℓ2(V ).

For x ∈ V define a function δx by

δx(y) =

{
1, if y = x,

0, otherwise.

Then, {δx ; x ∈ V } becomes a complete orthonormal basis of ℓ2(V ) and C0(V ) its linear
span. The adjacency algebra A(G) acts in a natural manner on C0(V ). By analogy of an
interacting Fock space we give the following

Definition 1.1 Let o ∈ V be a fixed origin of a graph G = (V,E). The vector state on
A(G) defined by

⟨a⟩o = ⟨δo, aδo⟩, a ∈ A(G), (1.2)

is called the vacuum state at o ∈ V .

It is noted that ⟨Am⟩o is the number of m-step walks from o ∈ V to itself. More
generally, for x, y ∈ V , we see that (Am)xy = ⟨δx, Amδy⟩ is the number of m-step walks
connecting y and x.
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2 Stratification and Quantum Decomposition

Let G = (V,E) be a graph. As soon as an origin o ∈ V is chosen, a natural stratification
(distance partition) is introduced:

V =
∞∪
n=0

Vn, Vn = {x ∈ V ; ∂(o, x) = n}. (2.1)

If Vm = ∅ happens for some m ≥ 1, then Vn = ∅ for all n ≥ m. We then define three
matrices A+, A−, A◦ by

(Aϵ)yx =

{
Ayx = 1, if y ∼ x and ∂(y, o) = ∂(x, o) + ϵ,

0, otherwise,
x, y ∈ V,

where ϵ takes values +1,−1, 0 according as ϵ = +,−, ◦ (see Figure 1). Obviously,

(A+)∗ = A−, (A◦)∗ = A◦,

and
A = A+ + A− + A◦. (2.2)

This is called the quantum decomposition of A and Aϵ a quantum component. A quantum
decomposition depends on the stratification (2.1), and hence on the choice of an origin o ∈
V . Let Ã(G) be the ∗-algebra generated by {A+, A−, A◦}. (Since the quantum components
Aϵ are locally finite matrices, their products are defined entry-wise.) Apparently, Ã(G)
is a non-commutative extension of the adjacency algebra A(G) and is called the extended
adjacency algebra.

Figure 1: Quantum decomposition: A = A+ + A− + A◦

Given a stratification (2.1), we next define an orthonormal set in ℓ2(V ). For each n ≥ 0
with Vn ̸= ∅ we set

Φn = |Vn|−1/2
∑
x∈Vn

δx. (2.3)
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Let Γ(G) ⊂ ℓ2(V ) be the subspace spanned by {Φn}. Let us observe that Γ(G) is not
necessarily kept invariant under the actions of the quantum components. For x ∈ V and
ϵ ∈ {+,−, ◦} we define

ωϵ(x) = {y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ϵ}. (2.4)

In other words, ωϵ(x) is the set of vertices which are adjacent to x and lie in the upper,
lower or level stratum according as ϵ = +,−, ◦. Obviously,

κ(x) = |ω+(x)|+ |ω−(x)|+ |ω◦(x)|, x ∈ V.

It follows from definition that

|Vn|1/2A+Φn =
∑
x∈Vn

A+δx =
∑

y∈Vn+1

|ω−(y)| δy,

and hence
A+Φn = |Vn|−1/2

∑
y∈Vn+1

|ω−(y)| δy. (2.5)

In a similar fashion we obtain

A−Φn = |Vn|−1/2
∑

y∈Vn−1

|ω+(y)| δy, (2.6)

A◦Φn = |Vn|−1/2
∑
y∈Vn

|ω◦(y)| δy. (2.7)

It is then obvious from (2.5)–(2.7) that Γ(G) is invariant if and only if |ωϵ(y)| is constant
on each stratum Vn. This paper is devoted to the following two cases:

(i) Γ(G) is invariant under the quantum components of A;

(ii) Γ(G) is asymptotically invariant under the quantum components of A.

3 Case of Γ(G) Being Invariant

The following definition is useful.

Definition 3.1 A pair of sequences ({ωn}, {αn}) is called a Jacobi coefficient if (i) {ωn ; n =
1, 2, . . . } is an infinite sequence of positive numbers and {αn ; n = 1, 2, . . . } is an infinite
sequence of real numbers; or (ii) there exists m0 ≥ 1 such that {ωn ; n = 1, 2, . . . ,m0 − 1}
is a finite sequence of positive numbers (or an empty sequence if m0 = 1) and {αn ; n =
1, 2, . . . ,m0} is a finite sequence of real numbers.

Let G = (V,E) be a graph. Given a fixed origin o ∈ V , we consider the quantum
decomposition of the adjacency matrix A = A+ + A− + A◦ and a dense subspace Γ(G) ⊂
ℓ2(V ) spanned by the unit vectors {Φn} defined in (2.3).
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Lemma 3.2 If Γ(G) is invariant under the quantum components Aϵ, ϵ ∈ {+,−, ◦}, there
exists a Jacobi coefficient ({ωn}, {αn}) such that

A+Φn =
√
ωn+1Φn+1, n = 0, 1, 2, . . . , (3.1)

A−Φ0 = 0, A−Φn =
√

ωn Φn−1, n = 1, 2, . . . , (3.2)

A◦Φn = αn+1Φn, n = 0, 1, 2, . . . . (3.3)

In particular, (Γ(G), {Φn}, A+, A−) is an interacting Fock space associated with {ωn}.

The proof is easy from (2.5)–(2.7). In fact,

ω1 = κ(o), α1 = 0. (3.4)

Then, the spectral distribution of A in the vacuum state is obtained directly from the
general theory of an interacting Fock space.

Theorem 3.3 Notations and assumptions being as in Lemma 3.2, let µ be the spectral
distribution of A in the vacuum state, i.e.,

⟨Am⟩o =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Then, the orthogonal polynomials {Pn(x) = xn + . . . } associated with µ obey the following
three-term recurrence relation:

P0(x) = 1,

P1(x) = x− α1,

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x), n = 1, 2, . . . .

Moreover, if µ is the solution of a determinate moment problem, the Stieltjes transform of
µ admits a continued fraction expansion:∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·
, (3.5)

which converges in {Im z ̸= 0}.

Remark 3.4 With a probability distribution µ onR which has finite moments of all orders
we associate a Jacobi coefficient defined through the orthogonal polynomials. Then we have
a surjective map from such probability distributions onto the set of Jacobi coefficients. But
this map is not injective. If the counter image of a Jacobi coefficient consists of a single µ, we
say that µ is the solution of a determinate moment problem. A simple sufficient condition
for this is that ωn = O((n log n)2) and αn = O(n log n). When a Jacobi coefficient is of
finite type, the moment problem is determinate and µ is a finite sum of δ-measures. If µ
has a compact support, it is the solution of a determinate moment problem.
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Figure 2: T4: Homogeneous tree of degree 4

A homogeneous tree is an instructive example of our method. Let κ ≥ 2 and consider
a homogeneous tree Tκ of degree κ. Let A = Aκ be the adjacency matrix.

Following the general theory mentioned above, we fix an origin o and define a Hilbert
space Γ(Tκ) with a complete orthonormal basis {Φn ; n = 0, 1, 2, . . . }. By direct observation
we obtain

AΦ0 =
√
κΦ1,

AΦ1 =
√
κΦ0 +

√
κ− 1Φ2,

AΦn =
√
κ− 1Φn−1 +

√
κ− 1Φn+1. n = 2, 3, . . . ,

In other words,

A+Φ0 =
√
κΦ1, A+Φn =

√
κ− 1Φn+1, n = 1, 2, . . . , (3.6)

A−Φ0 = 0, A−Φ1 =
√

κΦ0, A−Φn =
√

κ− 1Φn−1, n = 2, 3, . . . , (3.7)

A◦Φn = 0, n = 0, 1, 2, . . . . (3.8)

Therefore Γ(Tκ) is invariant under the quantum components of A and Lemma 3.2 is appli-
cable. The corresponding Jacobi coefficient is

ω1 = κ, ω2 = ω3 = · · · = κ− 1; α1 = α2 = · · · = 0.

For this Jacobi coefficient the moment problem is determinate (see Remark 3.4). Let µ
be the spectral distribution of A in the vacuum state and Gµ(z) its Stieltjes transform. It
then follows from the second half of Theorem 3.3 that

Gµ(z) =
1

z −
κ

z −
κ− 1

z −
κ− 1

z − · · ·

= −1

2

−(κ− 2)z + κ
√
z2 − 4(κ− 1)

κ2 − z2
.
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Then, applying the Stieltjes inversion formula, the density function of the absolutely con-
tinuous part of µ is obtained:

ρκ(x) = − 1

π
lim
y→+0

ImG(x+ iy) =
κ

2π

√
4(κ− 1)− x2

κ2 − x2
, |x| ≤ 2

√
κ− 1. (3.9)

We can check easily that ρκ(x)dx is a probability distribution. (In general, a pole of Gµ(z)
may correspond to an atom.) Thus,

Proposition 3.5 Let Tκ be a homogeneous tree of degree κ ≥ 2. For the adjacency matrix
Aκ we have

⟨Am
κ ⟩o =

∫ +2
√
κ−1

−2
√
κ−1

xmρκ(x) dx, m = 1, 2, . . . , (3.10)

where ρκ(x) is given in (3.9).

Kesten [18] studied the Cayley graph of a free group on N generators (i.e., a ho-
mogeneous tree of degree 2N) and obtained the distribution of the transition matrix
PN = (2N)−1A2N in δe. This is a simple scaling transformation of (3.10). The proba-
bility distribution ρκ(x)dx is called the Kesten distribution with parameter κ, κ− 1.

4 Asymptotic Spectral Distribution

Now we formulate the second question in Section 1. Consider a growing family of graphs

G(ν) = (V (ν), E(ν)),

where a growing parameter ν runs over an ordered set. To avoid the trivial case we assume
that |V (ν)| ≥ 2 for all ν. Let Aν denote the adjacency matrix of G(ν). Suppose that each
adjacency algebra A(Gν) is given a state ⟨·⟩ν . Then there exists a probability measure µν

such that

⟨Am
ν ⟩ν =

∫ +∞

−∞
xmµν(dx), m = 1, 2, . . . .

Our interest lies in the behavior of µν in the limit. However, as is suggested by limit
theorems in probability theory, such a limit does not exist in general without suitable
scaling. A natural normalization is given by

Aν − ⟨Aν⟩
Σ(Aν)

, Σ2(Aν) = ⟨(Aν − ⟨Aν⟩)2⟩. (4.1)

(The suffix ν is cumbersome and is occasionally dropped .) Our aim is to find a probability
measure µ satisfying

lim
ν

⟨(
Aν − ⟨Aν⟩
Σ(Aν)

)m⟩
=

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . . (4.2)

The above µ is called the asymptotic spectral distribution of Aν in the state ⟨·⟩ν .
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Again a homogeneous tree Tκ is a good illustration for this situation, where κ → ∞ is
a growing parameter. Let us find the asymptotic spectral distribution of Aκ in the vacuum
state. Since

⟨Aκ⟩o = 0, Σ2(Aν) = ⟨A2
κ⟩o = κ,

the proper normalization of Aκ is given by

Aκ√
κ
=

A+
κ√
κ
+

A−
κ√
κ
.

The actions of these quantum components are immediately obtained from (3.6)–(3.8) as
follows:

A+
κ√
κ
Φ0 = Φ1,

A+
κ√
κ
Φn =

√
κ− 1

κ
Φn+1, n = 1, 2, . . . , (4.3)

A−
κ√
κ
Φ0 = 0,

A−
κ√
κ
Φ1 = Φ0,

A−
κ√
κ
Φn =

√
κ− 1

κ
Φn−1, n = 2, 3, . . . , (4.4)

We then see, at a formal level, that operators defined by

B± = lim
κ→∞

A±
κ√
κ

(4.5)

act on a Hilbert space Γ with a complete orthonormal basis {Ψn} in such a way that

B+Ψn = Ψn+1, n = 0, 1, 2, . . . ,

B−Ψ0 = 0, B−Ψn = Ψn−1, n = 1, 2, . . . .

These are nothing but the actions of the annihilation and creation operators of a free Fock
space, namely, (Γ, {Ψn}, B+, B−) is a free Fock space. Recall that a free Fock space is an
interacting Fock space associated with a Jacobi sequence {ωn ≡ 1}.

Thus, (4.5) means that the normalized quantum components of Aκ “converges” to the
annihilation and creation operators in the free Fock space. Remind that for a different κ,
the operators A±

κ act on a different space Γ(Tκ). So we need to give the precise meaning
of the limit in (4.5). According to the standard notion in quantum probability theory, we
give the following

Definition 4.1 Let G(ν) = (V (ν), E(ν)) be a growing graph and Aν the adjacency matrix.
Assume that for each ν we are given a normalized linear function ⟨·⟩ν and consider the
normalized quantum components:

C±
ν =

A±
ν

Σ(Aν)
, C◦

ν =
A◦

ν − ⟨Aν⟩ν
Σ(Aν)

, Σ2(Aν) = ⟨(Aν − ⟨Aν⟩)2⟩.

(Here we do not assume the positivity of ⟨·⟩ν but require Σ2(Aν) > 0.) Let Γ{ωn} =
(Γ, {Ψn}, B+, B−) be an interacting Fock space associated with Jacobi sequence {ωn} and
B◦ a diagonal operator. We say that the normalized quantum components Cϵ

ν of the
adjacency matrix converge stochastically to Bϵ if

lim
ν

⟨Cϵm
ν . . . Cϵ2

ν Cϵ1
ν ⟩ν = ⟨Bϵm . . . Bϵ2Bϵ1⟩ (4.6)

for any choice of ϵ1, ϵ2, . . . , ϵm ∈ {+,−, ◦}, m = 1, 2, . . . , where ⟨·⟩ in the right hand side
of (4.6) is a normalized linear function on Γ{ωn}.
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If (4.6) holds, as a classical reduction we have

lim
ν

⟨(
Aν − ⟨Aν⟩
Σ(Aν)

)m⟩
ν

= ⟨(B+ +B− +B◦)m⟩, m = 1, 2, . . . .

Moreover, if ⟨·⟩ν is a state on A(G(ν)) for each ν, then the normalized linear function in
the limit is also a state on the ∗-algebra generated by B+ + B− + B◦. Hence there exists
a probability distribution µ such that

⟨(B+ +B− +B◦)m⟩ =
∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

This µ is the asymptotic spectral distribution which we wanted to investigate in (4.2).
Going back to the growing family of homogeneous trees, we can verify easily the con-

vergence of (4.5) in the sense of Definition 4.1.

Proposition 4.2 Let Aκ be the adjacency matrix of a homogeneous tree Tκ of degree κ ≥ 2
and regard it as an algebraic random variable equipped with the vacuum state at a fixed origin
oκ ∈ Tκ. Then, in the sense of stochastic convergence we have

lim
κ→∞

A±
κ√
κ
= B±

free,

where B±
free are the annihilation and creation operators of the free Fock space equipped with

the vacuum state. In particular,

lim
κ→∞

⟨(
Aκ√
κ

)m⟩
=

1

2π

∫ +2

−2

xm
√
4− x2 dx, m = 1, 2, . . . , (4.7)

where the probability distribution in the right hand side is the Wigner semicircle law.

Remark 4.3 We may obtain the limit distribution (4.7), i.e., the Wigner semicircle law,
directly from the explicit form of the spectral distribution of Aκ described in Proposition
3.5. The above argument of stochastic convergence does not require an explicit form of the
spectral distribution of Aκ.

Remark 4.4 Proposition 4.2 is a prototype of the free central limit theorem initiated by
Voiculescu, see Hiai–Petz [8], Voiculescu–Dykema–Nica [22]. In fact, the adjacency matrix
of a homogeneous tree of even degree (the Cayley graph of a free group) admits a natural
decomposition into a sum of free independent random variables. There are several different
notions of independence in quantum probability theory and their application to spectral
analysis of graphs has been developed recently, for a brief review see Obata [20].

5 Case of Γ(G) Being Asymptotic Invariant: An Example

We continue the study of asymptotic spectral distribution of the adjacency matrix Aν of
a growing graph G(ν) = (V (ν), E(ν)). If Γ(G(ν)) is invariant under the quantum components
of Aν , as is illustrated by homogeneous trees, the method of quantum decomposition and
stochastic convergence is fully applicable. Recall that, as mentioned in Remark 4.3, for
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the asymptotic spectral distribution we do not need to use an explicit form of the spec-
tral distribution of Aν . This suggests that our method is applicable even when Γ(Gν) is
not invariant under the actions of quantum components of Aν . We only need to assume
“asymptotic invariance” of Γ(Gν). We shall illustrate this situation by an example.

For N = 1, 2, . . . consider the N -dimensional integer lattice:

ZN = {x = p1e1 + · · ·+ pNeN ; p1, . . . , pN ∈ Z},

where {ei} is the canonical basis. Taking o = (0, 0, . . . , 0) to be the origin, we introduce
the stratification:

ZN =
∞∪
n=0

Vn, Vn = {x ∈ ZN ; ∂(x, o) = n}.

Keep in mind that ∂(x, y) is not the Euclidean distance but the graph distance. As usual,
for n = 0, 1, 2, . . . we define a unit vector Φn ∈ ℓ2(ZN) by

Φn = |Vn|−1/2
∑
x∈Vn

δx

and introduce their linear span Γ(ZN). On the other hand, according to the stratification
the adjacency matrix A = AN admits a quantum decomposition:

A = A+ + A−.

Note that A◦ = 0 because there is no edge lying in a same stratum Vn, which is verified
also from ∂(o, x) = |p1|+ · · ·+ |pN | for x = p1e1 + · · ·+ pNeN .

We shall observe the actions of A± on Φn. By definition,

|Vn|1/2A+Φn =
∑
x∈Vn

A+δx =
∑

y∈Vn+1

|ω−(y)|δy. (5.1)

It is apparent that |ω−(y)| is not constant for all y ∈ Vn+1 but so is for “almost all” y. In
fact, for a large N , a typical y ∈ Vn+1 is obtained by a walk from o by taking a different
direction at each step. Namely,

|{y ∈ Vn+1 ; ω−(y) = n+ 1}| =
(

N

n+ 1

)
2n+1 =

(2N)n+1

(n+ 1)!
+O(Nn),

|{y ∈ Vn+1 ; ω−(y) < n+ 1}| = O(Nn).

On the other hand,

|Vn| =
(
N

n

)
2n +O(Nn−1) =

(2N)n

n!
+O(Nn−1).

Then (5.1) becomes

A+Φn =
√

2N
√
n+ 1 Φn+1 +O(N−1/2), (5.2)

where O(N−1/2) is in the sense of norm. Similarly,

A−Φn =
√

2N
√
n Φn−1 +O(N−1). (5.3)

11



From (5.2) and (5.3) we obtain

A+√
2N

Φn =
√
n+ 1 Φn+1 +O(N−1),

A−√
2N

Φn =
√
n Φn−1 +O(N−3/2).

(5.4)

For this situation we say that Γ(ZN) is asymptotically invariant under the quantum com-
ponents of A. Formally we set

lim
N→∞

A±
N√
2N

= B±.

The actions of B± are clear from (5.4). They are the actions of the annihilation and creation
operators of the Boson Fock space, i.e., an interacting Fock space associated with a Jacobi
sequence {ωn = n}. Thus (5.4) means that the normalized quantum components converge
to the annihilation and creation operators of the Boson Fock space. The convergence is
justified in the sense of stochastic convergence (Definition 4.1).

Proposition 5.1 Let AN be the adjacency matrix of an N-dimensional integer lattice ZN ,
N ≥ 1, and regard it as an algebraic random variable equipped with the vacuum state at a
fixed origin o ∈ ZN . Then, in the sense of stochastic convergence we have

lim
N→∞

A±
N√
2N

= B±
Boson,

where B±
Boson is the annihilation and creation operators of the Boson Fock space equipped

with the vacuum state. As a classical reduction we have

lim
N→∞

⟨(
AN√
2N

)m⟩
=

1√
2π

∫ +∞

−∞
xme−x2/2dx, m = 1, 2, . . . . (5.5)

where the probability distribution in the right hand side is the standard Gaussian distribu-
tion.

Remark 5.2 Proposition 5.1 is a consequence of the classical (“commutative” in our con-
text) central limit theorem. In fact, the adjacency matrix of ZN is decomposed into a
sum of commutative independent random variables, which become classical independent
random variables through the Fourier transform.

6 Growing Regular Graphs

Suggested by Propositions 4.2, 5.1 and many other examples, we may abstract natural
conditions for a growing regular graph in order that the asymptotic spectral distribution in
the vacuum state (as well as in the deformed vacuum states) is derived along with a kind
of quantum central limit theorem.

Before going into the growing regular graphs, we prepare some notations. Let G = (V,E)
be a graph. Given a fixed origin o ∈ V , consider the stratification:

V =
∞∪
n=0

Vn

12



and define as before

ωϵ(x) = {y ∈ V ; y ∼ x, ∂(o, y) = ∂(o, x) + ϵ}, x ∈ V, ϵ ∈ {+,−, ◦}.

Some statistics of |ωϵ(x)| plays a crucial role. We set

M(ωϵ|Vn) =
1

|Vn|
∑
x∈Vn

|ωϵ(x)|

Σ2(ωϵ|Vn) =
1

|Vn|
∑
x∈Vn

{
|ωϵ(x)| −M(ωϵ|Vn)

}2
,

L(ωϵ|Vn) = max{|ωϵ(x)| ; x ∈ Vn}.

M(ωϵ|Vn) is the mean value of |ωϵ(x)| when x runs over Vn, and Σ2(ωϵ|Vn) its variance.
Let G(ν) = (V (ν), E(ν)) be a growing regular graph, where the growing parameter ν runs

over an infinite directed set. The degree of G(ν) is denoted by κ(ν). For each graph G(ν) we
fix an origin oν ∈ V (ν) and consider as usual the stratification:

V (ν) =
∞∪
n=0

V (ν)
n , V (ν)

n = {y ∈ V (ν); ∂(o, y) = n}. (6.1)

(V
(ν)
n = ∅ may occur.) Then, for n = 0, 1, 2, . . . we define a unit vector in ℓ2(V (ν)) by

Φ(ν)
n = |V (ν)

n |−1/2
∑

x∈V (ν)
n

δx. (6.2)

Let Γ(G(ν)) denote the linear span of {Φ(ν)
0 ,Φ

(ν)
1 , . . . }. Let Aν denote the adjacency matrix

of G(ν). According to the stratification (6.1) we have a quantum decomposition:

Aν = A+
ν + A−

ν + A◦
ν , (6.3)

We do not assume that Γ(G(ν)) is invariant under the actions of quantum components Aϵ
ν ,

but we need asymptotic invariance. This requirement is fulfilled by natural conditions on
how the graphs grow.

We consider the following conditions on a growing regular graph G(ν) = (V (ν), E(ν)).

(A1) limν κ(ν) = ∞;

(A2) for each n = 1, 2, . . . there exists a limit

ωn = lim
ν

M(ω−|V (ν)
n ) < ∞. (6.4)

Moreover,

lim
ν

Σ2(ω−|V (ν)
n ) = 0, (6.5)

sup
ν

L(ω−|V (ν)
n ) < ∞; (6.6)
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(A3) for each n = 0, 1, 2, . . . there exists a limit

αn+1 = lim
ν

M

(
ω◦√
κ(ν)

∣∣∣∣∣V (ν)
n

)
= lim

ν

M(ω◦|V (ν)
n )√

κ(ν)
< ∞. (6.7)

Moreover,

lim
ν

Σ2

(
ω◦√
κ(ν)

∣∣∣∣∣V (ν)
n

)
= lim

ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0, (6.8)

sup
ν

L(ω◦|V (ν)
n )√

κ(ν)
< ∞. (6.9)

Remark 6.1 Condition (A2) for n = 1 and (A3) for n = 0 are always satisfied. Note also
that ω1 = 1 and α1 = 0.

Remark 6.2 At a first glance the above conditions seem to be incomplete because there
is no statement for the case of V

(ν)
n = ∅. However, as is proved in Proposition 6.3 below,

for each n ≥ 1 we have V
(ν)
n = ∅ for all large ν.

The meaning of (A1) is clear. It follows from condition (A2) that, in each stratum most
of the vertices have the same number of downward edges independently of the growth and
the statistical fluctuation (variance and range) of that number is controlled. Condition
(A3) gives a similar restriction for level edges. The number of level edges may increase
as the graph grows, but the growth rate is bounded by

√
κ(ν). Roughly speaking, as the

graph grows keeping conditions (A1)–(A3), most of the new edges connect new vertices
lying in a upper stratum with new and old ones in a lower stratum.

Proposition 6.3 Let G(ν) = (V (ν), E(ν)) be a growing regular graph satisfying conditions
(A1)–(A3). Then, ({ωn}, {αn}) defined in these conditions is a Jacobi coefficient of infinite
type.

Proof. It is sufficient to show that ωn ≥ 1 for all n ≥ 1. For each ν we define

N(ν) = sup{n ≥ 1 ; V (ν)
n ̸= ∅}.

Note that 1 ≤ N(ν) ≤ ∞. We shall prove that limν N(ν) = ∞. Suppose otherwise. Then
there exist an integer N ≥ 1 and ν1 < ν2 < · · · → ∞ such that N(νi) ≤ N . Since N(νi) is
an integer, we may assume N(νi) = N (by taking a subsequence and another N). Consider

a vertex x ∈ V
(νi)
N . Since x has no upward edge, we have

κ(νi) = |ω−(x)|+ |ω◦(x)| ≤ L(ω−|V (νi)
N ) + L(ω◦|V (νi)

N ) = O(
√

κ(νi) ), (6.10)

where the last estimate follows from (6.6) and (6.9). Then (6.10) causes contradiction
against (A1). We have thus proved that limν N(ν) = ∞. In other words, for n ≥ 1 there

exists ν0 = ν0(n) such that V
(ν)
n ̸= ∅ for all ν ≥ ν0, and hence M(ω−|V (ν)

n ) ≥ 1 because

|ω−(x)| ≥ 1 for all x ∈ V
(ν)
n . Consequently, ωn ≥ 1 for all n ≥ 1.

Some part of conditions (A1)–(A3) are rephrased in slightly different forms. Here we
only prove the following
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Proposition 6.4 In the conditions (A1)–(A3), we may replace (6.4), (6.5) with a single
condition: for each n = 1, 2, . . . there exists a constant number ωn independent of ν such
that

lim
ν

|{x ∈ V
(ν)
n ; |ω−(x)| = ωn}|

|V (ν)
n |

= 1. (6.11)

Proof. Throughout the proof n = 1, 2, . . . is fixed arbitrarily. We first prove that
(6.11) implies (6.4) and (6.5). Divide V

(ν)
n into two parts:

U (ν)
reg = {x ∈ V (ν)

n ; |ω−(x)| = ωn}, U
(ν)
sing = {x ∈ V (ν)

n ; |ω−(x)| ̸= ωn},

where the index n is omitted for simplicity. The average of |ω−(x)| is given by

M(ω−|V (ν)
n ) =

1

|V (ν)
n |

( ∑
x∈U(ν)

reg

|ω−(x)|+
∑

x∈U(ν)
sing

|ω−(x)|

)

=
|U (ν)

reg |
|V (ν)

n |
ωn +

1

|V (ν)
n |

∑
x∈U(ν)

sing

|ω−(x)|.

In view of (6.6) we set
Ln = sup

ν
L(ω−|V (ν)

n ) < ∞.

Then |ω−(x)| ≤ Ln for x ∈ V
(ν)
n and we obtain

|M(ω−|V (ν)
n )− ωn| ≤

(
1− |U (ν)

reg |
|V (ν)

n |

)
ωn +

|U (ν)
sing|

|V (ν)
n |

Ln ≤
|U (ν)

sing|
|V (ν)

n |
(ωn + Ln).

Since

lim
ν

|U (ν)
sing|

|V (ν)
n |

= 0, (6.12)

by (6.11), we obtain
lim
ν

M(ω−|V (ν)
n ) = ωn, (6.13)

which proves (6.4). We next consider the variance. By Minkowski’s inequality, we obtain

Σ(ω−|V (ν)
n )

=

{
1

|V (ν)
n |

∑
x∈V (ν)

n

(|ω−(x)| −M(ω−|V (ν)
n ))2

}1/2

≤
{

1

|V (ν)
n |

∑
x∈V (ν)

n

(|ω−(x)| − ωn)
2

}1/2

+

{
1

|V (ν)
n |

∑
x∈V (ν)

n

(ωn −M(ω−|V (ν)
n ))2

}1/2

=

{
1

|V (ν)
n |

∑
x∈U(ν)

sing

(|ω−(x)| − ωn)
2

}1/2

+
∣∣ωn −M(ω−|V (ν)

n )
∣∣.
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Since ||ω−(x)| − ωn| ≤ |ω−(x)|+ ωn ≤ Ln + ωn for x ∈ V
(ν)
n , we have

Σ(ω−|V (ν)
n ) ≤

( |U (ν)
sing|

|V (ν)
n |

)1/2

(Ln + ωn) +
∣∣ωn −M(ω−|V (ν)

n )
∣∣

and hence (6.5) follows by (6.12) and (6.13).
We next show that (6.11) is derived from (6.4) and (6.5). By (6.4), for any ϵ > 0 there

exists ν0 such that
|M(ω−|V (ν)

n )− ωn| < ϵ, ν ≥ ν0.

If x ∈ V
(ν)
n satisfies ||ω−(x)| − ωn| ≥ 2ϵ, we have∣∣|ω−(x)| −M(ω−|V (ν)

n )
∣∣ ≥ ||ω−(x)| − ωn| − |ωn −M(ω−|V (ν)

n )| ≥ ϵ.

Hence

|{x ∈ V
(ν)
n ; ||ω−(x)| − ωn| ≥ 2ϵ}|

|V (ν)
n |

≤
|{x ∈ V

(ν)
n ;

∣∣|ω−(x)| −M(ω−|V (ν)
n )

∣∣ ≥ ϵ}|
|V (ν)

n |
.

By Chebyshev’s inequality and (6.5) we have

|{x ∈ V
(ν)
n ; ||ω−(x)| − ωn| ≥ 2ϵ}|

|V (ν)
n |

≤ Σ2(ω−|V (ν)
n )

ϵ2
→ 0, ν → ∞. (6.14)

We prove that ωn is an integer. Suppose otherwise. Then, since |ω−(x)| is always an integer,
we can choose a sufficiently small ϵ > 0 such that

V (ν)
n = {x ∈ V (ν)

n ; ||ω−(x)| − ωn| ≥ 2ϵ}.

But this contradicts (6.14) and hence ωn is an integer. Since |ω−(x)| and ωn are all integers,
we may choose a sufficiently small ϵ > 0 such that

|{x ∈ V
(ν)
n ; |ω−(x)| ̸= ωn}|

|V (ν)
n |

=
|{x ∈ V

(ν)
n ; ||ω−(x)| − ωn| ≥ 2ϵ}|

|V (ν)
n |

. (6.15)

As is shown in (6.14), the right hand side of (6.15) tends to 0 as ν → ∞. Therefore

lim
ν

|{x ∈ V
(ν)
n ; ω−(x) ̸= ωn}|

|V (ν)
n |

= 0

and (6.11) follows.

During the above proof we have observed the following

Proposition 6.5 Let G(ν) = (V (ν), E(ν)) be a growing regular graph satisfying conditions
(A1)–(A3). Then, the Jacobi sequence {ωn} defined therein consists of positive integers.
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7 Quantum Central Limit Theorem in Vacuum State

Theorem 7.1 Let G(ν) = (V (ν), E(ν)) be a growing graph satisfying conditions (A1)–(A3)
and Aν its adjacency matrix. Let (Γ, {Ψn}, B+, B−) be the interacting Fock space associated
with {ωn} and B◦ the diagonal operator associated with {αn}, where {ωn} and {αn} are
given in conditions (A1)–(A3). Then we have

lim
ν

Aϵ
ν√

κ(ν)
= Bϵ, ϵ ∈ {+,−, ◦},

in the sense of stochastic convergence with respect to the vacuum states in both sides.

As a classical reduction, we obtain immediately the following

Theorem 7.2 Notations and assumptions being the same as in Theorem 7.1, let µ be
a probability distribution of which the Jacobi coefficient is ({ωn}, {αn}). Then µ is the
asymptotic spectral distribution in the vacuum state, i.e.,

lim
ν

⟨(
Aν√
κ(ν)

)m⟩
o

=

∫ +∞

−∞
xmµ(dx), m = 0, 1, 2, . . . .

We shall sketch the proof of Theorem 7.1. For the time being, let us consider a single
regular graph G = (V,E) with degree κ. As usual, fix an origin o ∈ V and consider the
stratification.

Lemma 7.3 For any n = 0, 1, 2, . . . with Vn ̸= ∅ we have

M(ω−|Vn+1)|Vn+1| = κ|Vn|
(
1− M(ω−|Vn)

κ
− M(ω◦|Vn)

κ

)
. (7.1)

Proof. Suppose first that Vn+1 ̸= ∅. Since |ω+(x)| + |ω−(x)| + |ω◦(x)| = κ for all
x ∈ V , we have

κ|Vn| =
∑
x∈Vn

|ω+(x)|+
∑
x∈Vn

|ω−(x)|+
∑
x∈Vn

|ω◦(x)|

=
∑

y∈Vn+1

|ω−(y)|+
∑
x∈Vn

|ω−(x)|+
∑
x∈Vn

|ω◦(x)|

= M(ω−|Vn+1)|Vn+1|+M(ω−|Vn)|Vn|+M(ω◦|Vn)|Vn|. (7.2)

This proves (7.1). If Vn+1 = ∅, then the first term in (7.2) is zero and (7.1) remains true
understanding the left hand side is zero.

Lemma 7.4 Let n = 1, 2, . . . . If Vn ̸= ∅, then M(ω−|Vk) ≥ 1 for k = 1, 2, . . . , n and

|Vn| =
κn

n∏
k=1

M(ω−|Vk)

+O(κn−1),

where O(κn−1) is a polynomial in κ of degree (n− 1).
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Proof. An immediate consequence by repeated application of (7.1).

The explicit actions of the quantum components Aϵ are given in (2.5)–(2.7). Inserting
the mean values M(ωϵ|Vn) therein, we obtain

A+Φn = M(ω−|Vn+1)

(
|Vn+1|
|Vn|

)1/2

Φn+1 +
1√
|Vn|

∑
y∈Vn+1

(|ω−(y)| −M(ω−|Vn+1))δy,

A−Φn = M(ω+|Vn−1)

(
|Vn−1|
|Vn|

)1/2

Φn−1 +
1√
|Vn|

∑
y∈Vn−1

(|ω+(y)| −M(ω+|Vn−1))δy,

A◦Φn = M(ω◦|Vn)Φn +
1√
|Vn|

∑
y∈Vn

(|ω◦(y)| −M(ω◦|Vn))δy,

for n = 0, 1, 2, . . . , understanding that A−Φ0 = 0 for the second formula. It is convenient
to unify the above three formulae. We set

γ+
n = M(ω−|Vn)

(
|Vn|

κ|Vn−1|

)1/2

, n = 1, 2, . . . , (7.3)

γ−
n = M(ω+|Vn)

(
|Vn|

κ|Vn+1|

)1/2

, n = 0, 1, 2, . . . , (7.4)

γ◦
n =

M(ω◦|Vn)√
κ

, n = 0, 1, 2, . . . , (7.5)

and

S+
n =

1√
κ|Vn−1|

∑
y∈Vn

(|ω−(y)| −M(ω−|Vn))δy, n = 1, 2, . . . ,

S−
n =

1√
κ|Vn+1|

∑
y∈Vn

(|ω+(y)| −M(ω+|Vn))δy, n = 0, 1, 2, . . . ,

S◦
n =

1√
κ|Vn|

∑
y∈Vn

(|ω◦(y)| −M(ω◦|Vn))δy, n = 0, 1, 2, . . . .

We tacitly set
γ−
−1Φ−1 = S−

−1 = 0.

With these notations we have

Aϵ√
κ
Φn = γϵ

n+ϵΦn+ϵ + Sϵ
n+ϵ, ϵ ∈ {+,−, ◦}, n = 0, 1, 2, . . . . (7.6)

Then its repeated action is expressible in a concise form:

Aϵm

√
κ
. . .

Aϵ1

√
κ
Φn = γϵ1

n+ϵ1
γϵ2
n+ϵ1+ϵ2

. . . γϵm
n+ϵ1+···+ϵmΦn+ϵ1+···+ϵm

+
m∑
k=1

γϵ1
n+ϵ1

. . . γ
ϵk−1

n+ϵ1+···+ϵk−1︸ ︷︷ ︸
(k − 1) times

Aϵm

√
κ
. . .

Aϵk+1

√
κ︸ ︷︷ ︸

(m− k) times

Sϵk
n+ϵ1+···+ϵk

. (7.7)
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By observing the up-down actions of Aϵ we see immediately that

Aϵm

√
κ
. . .

Aϵ1

√
κ
Φn = 0

unless
n+ ϵ1 ≥ 0, n+ ϵ1 + ϵ2 ≥ 0, . . . , n+ ϵ1 + ϵ2 + · · ·+ ϵm ≥ 0. (7.8)

We need to estimate the error term of (7.7). Let us recall

L(ω−|Vk) = max{|ω−(x)| ; x ∈ Vk}, L(ω◦|Vk) = max{|ω◦(x)| ; x ∈ Vk}.

Then, for n, q = 1, 2, . . . and q = 1, 2, . . . we define M−
n,q by

M−
n,q = max

{
q∏

j=1

L(ω−|Vkj) ; 1 ≤ k1, k2, . . . , kq ≤ n

}
, (7.9)

and set M−
n,0 = 1. Similarly, (taking condition (A3) in mind) we set

M◦
n,q = max

{
q∏

j=1

L(ω◦|Vkj)√
κ

; 1 ≤ k1, k2, . . . , kq ≤ n

}
, (7.10)

and set M◦
n,0 = 1.

Lemma 7.5 Let ϵ1, . . . , ϵm ∈ {+,−, ◦}, m ≥ 1, be given arbitrarily. Let p, q and r be the
numbers of +, − and ◦ in {ϵ1, . . . , ϵm}, respectively. Then for any n ≥ 1 with n+p− q ≥ 0
we have∣∣∣∣⟨Φn+p−q,

Aϵm

√
κ
. . .

Aϵ1

√
κ
S+
n

⟩∣∣∣∣ ≤ Σ(ω−|Vn)M
−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn−1|
, (7.11)

∣∣∣∣⟨Φn+p−q,
Aϵm

√
κ
. . .

Aϵ1

√
κ
S−
n

⟩∣∣∣∣
≤ {Σ(ω−|Vn) + Σ(ω◦|Vn)}M−

n+p,qM
◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn+1|
, (7.12)

∣∣∣∣⟨Φn+p−q,
Aϵm

√
κ
. . .

Aϵ1

√
κ
S◦
n

⟩∣∣∣∣ ≤ Σ(ω◦|Vn)M
−
n+p,qM

◦
n+p,r

κp+ r−m−1
2

√
|Vn|√

|Vn+p−q|
. (7.13)

Proof. We only show the outline for (7.11). It is sufficient to prove the assertion
under (7.8), since otherwise the left hand side of (7.11) vanishes. Note first

Aϵm

√
κ
. . .

Aϵ1

√
κ
S+
n =

1

(κ|Vn−1|)1/2
∑
y∈Vn

(|ω−(y)| −M(ω−|Vn))
Aϵm

√
κ
. . .

Aϵ1

√
κ
δy

=
κ−m/2

(κ|Vn−1|)1/2
∑
y∈Vn

(|ω−(y)| −M(ω−|Vn))A
ϵm . . . Aϵ1δy. (7.14)
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We use a new notation. For y, z ∈ V and ϵ ∈ {+,−, ◦} we write y
ϵ→ z if z ∼ y and

∂(z, o) = ∂(y, o) + ϵ. For y, z ∈ V we put

w(y; ϵ1, . . . , ϵm; z)

= |{(z1, . . . , zm−1) ∈ V m−1 ; y
ϵ1→ z1

ϵ2→ z2 · · ·
ϵm−1→ zm−1

ϵm→ z}|.

This counts the walks from y to z along edges with directions ϵ1, . . . , ϵm. Then (7.14)
becomes

Aϵm

√
κ
. . .

Aϵ1

√
κ
S+
n =

κ−m/2

(κ|Vn−1|)1/2
∑
y∈Vn

∑
z∈Vn+p−q

(|ω−(y)| −M(ω−|Vn))w(y; ϵ1, . . . , ϵm; z)δz.

Therefore,⟨
Φn+p−q,

Aϵm

√
κ
. . .

Aϵ1

√
κ
S+
n

⟩
=

1

|Vn+p−q|1/2
κ−m/2

(κ|Vn−1|)1/2
∑
y∈Vn

∑
z∈Vn+p−q

(|ω−(y)| −M(ω−|Vn))w(y; ϵ1, . . . , ϵm; z). (7.15)

Let y ∈ Vn be fixed. Then ∑
z∈Vn+p−q

w(y; ϵ1, . . . , ϵm; z) (7.16)

coincides with the number of walks from y to a certain point in Vn+p−q along m edges
with directions ϵ1, . . . , ϵm in order. Consider an intermediate point ξ ∈ Vk in such a walk.
The number of edges from ξ with − direction is bounded by L(ω−|Vk), with ◦ direction by
L(ω◦|Vk), and with + direction by κ. Given (ϵ1, . . . , ϵm), +, − and ◦ directions appear p,
q and r times, respectively, and the intermediate point ξ lie in V0 ∪ V1 ∪ · · · ∪ Vn+p. Hence
by (7.9) and (7.10) we obtain∑

z∈Vn+p−q

w(y; ϵ1, . . . , ϵm; z) ≤ κp+ r
2M−

n+p,qM
◦
n+p,r,

where the right hand side is independent of y ∈ Vn. Now we come to an estimate of (7.15).
In fact, ∣∣∣∣⟨Φn+p−q,

Aϵm

√
κ
. . .

Aϵ1

√
κ
S+
n

⟩∣∣∣∣
≤

κp+ r
2M−

n+p,qM
◦
n+p,r

|Vn+p−q|1/2
κ−m/2

(κ|Vn−1|)1/2
∑
y∈Vn

||ω−(y)| −M(ω−|Vn)|

≤
κp+ r

2
−m

2
− 1

2M−
n+p,qM

◦
n+p,r

|Vn+p−q|1/2|Vn−1|1/2

(∑
y∈Vn

||ω−(y)| −M(ω−|Vn)|2
)1/2

|Vn|1/2

= Σ(ω−|Vn)M
−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|

|Vn+p−q|1/2|Vn−1|1/2
.
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This proves inequality (7.11).

We go back to the proof of Theorem 7.1. Let Gν = (V (ν), E(ν)) be a growing regular
graph as stated therein. We consider a general matrix element:⟨

Φ
(ν)
j ,

Aϵm
ν√
κ(ν)

. . .
Aϵ1

ν√
κ(ν)

Φ(ν)
n

⟩
. (7.17)

Of course, this is zero unless (7.8) is fulfilled. So we assume (7.8) and j = n+ p− q, where
p, q, r are the numbers of +,−, ◦ appearing in {ϵ1, . . . , ϵm}. Using (7.7), one obtains⟨

Φ
(ν)
j ,

Aϵm
ν√
κ(ν)

. . .
Aϵ1

ν√
κ(ν)

Φ(ν)
n

⟩
= γϵ1

n+ϵ1
γϵ2
n+ϵ1+ϵ2

. . . γϵm
n+ϵ1+···+ϵm

+
m∑
k=1

γϵ1
n+ϵ1

. . . γ
ϵk−1

n+ϵ1+···+ϵk−1

⟨
Φ

(ν)
j ,

Aϵm
ν√
κ(ν)

. . .
A

ϵk+1
ν√
κ(ν)

Sϵk
n+ϵ1+···+ϵk

⟩
. (7.18)

We shall prove that the second term vanishes in the limit. The coefficients γϵ
n depends on

ν. Explicit expressions of γϵ
n being given in (7.3)–(7.5), with the help of Lemma 7.3 and

conditions (A1)–(A3) we come to

lim
ν

γ+
n = lim

ν

√
M(ω−|Vn) =

√
ωn, (7.19)

lim
ν

γ−
n = lim

ν
{κ−M(ω−|Vn)−M(ω◦|Vn)}

√
M(ω−|Vn+1)

κ
=
√

ωn+1, (7.20)

lim
ν

γ◦
n = αn+1. (7.21)

Therefore, in order to prove that the second term of (7.18) vanishes in the limit it is
sufficient to show that

lim
ν

⟨
Φ

(ν)
j ,

Aϵm√
κ(ν)

. . .
Aϵk+1√
κ(ν)

Sϵk
n+ϵ1+···+ϵk

⟩
= 0. (7.22)

This follows by Lemma 7.5. In fact, for ϵk = + we use (7.11), where we see that

M−
n+p,qM

◦
n+p,r

κp+ r−m−1
2 |Vn|√

|Vn+p−q||Vn−1|

stays bounded in the limit. Hence the condition limν Σ(ω−|Vn) = 0 works to obtain (7.22).
The arguments for ϵk = −, ◦ are similar. Thus, only the first term of (7.18) contributes to
the limit and we come to

lim
ν

⟨
Φ

(ν)
j ,

Aϵ1
ν√
κ(ν)

. . .
Aϵm

ν√
κ(ν)

Φ(ν)
n

⟩
= lim

ν
γϵ1
n+ϵ1

γϵ2
n+ϵ1+ϵ2

. . . γϵm
n+ϵ1+···+ϵm . (7.23)

The right hand side is readily known from (7.19)–(7.21) and equal to

⟨Ψj, B
ϵm . . . Bϵ1Ψn⟩. (7.24)

21



by the definition of an interacting Fock space Γ{ωn} = (Γ, B+, B−). Unless (7.8) and
j = n + p − q are fulfilled, (7.17) is zero and hence so is its limit. In that case, obviously,
(7.24) is zero. Consequently,

lim
ν

⟨
Φ

(ν)
j ,

Aϵ1
ν√
κ(ν)

. . .
Aϵm

ν√
κ(ν)

Φ(ν)
n

⟩
= ⟨Ψj, B

ϵm . . . Bϵ1Ψn⟩

holds for any choice of ϵ1, . . . ϵm ∈ {+,−, ◦}, m = 1, 2, . . . , and j, n = 0, 1, 2, . . . . This
being slightly more than necessary, the proof of Theorem 7.1 is now complete.

Theorem 7.1 generalizes the main result in Hora–Obata [15]. Some concrete examples
are found in Hashimoto [5], Hashimoto–Hora–Obata [6], Hashimoto–Obata–Tabei [7], Hora
[9, 10], Hora–Obata [16]. Further study, in particular, concering deformed vacuum states
is now in progress and will appear elsewhere.
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