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Abstract We review the Manhattan product of digraphs from the
viewpoint of spectral analysis and obtain some preliminary formu-
lae. As an example, the spectrum of the Manhattan product of the
directed pathP, and the directed cycl€; is obtained as well as its
asymptotic spectral distribution.

1 Introduction

Quantum probabilistic techniques have been developed for (asymptotic) spectral
analysis of graphs, see e.g., [10]. One of the main techniques is based on the
relation between notions of independence and product structures of graphs. In
this note we initiate an attempt to generalize the quantum probabilistic approach
to digraphs (directed graphs).
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Figure 1.1: Manhattan street network

There is a long history of spectral analysis of digraphs with many relevant
topics. From the viewpoint of product structure of digraphs the first non-trivial
example we consider would be the Manhattan street network. The spectra of the
Manhattan street networks are described by Comelias. [5, 6]. Their method



relies on direct calculation and a more conceptual derivation is desirable. In this
line it is natural to formulate the Manhattan street network as a kind of product
of digraphs. In fact, in their more recent papers [7, 8] Comellas,atid Fiol
introduce the notion oManhattan productbf digraphs and obtain some basic
properties. The main purpose of this note is to reformulate the Manhattan product
in a slightly more general context and to discuss the spectral properties of simple
examples.

Independently of spectral analysis, the Manhattan street network was intro-
duced beforehand by Maxemchuk [12] and Moriéb al. [13] for simple and
effective structure of communication networks, see also [3, 11, 14]. In some liter-
atures, e.g., [2], the notion dlanhattan networlappears, however, it isfiierent
from the Manhattan street network.

2 Spectrum of a Digraph

A digraph (directed graphjs a pairG = (V,E), whereV is a non-empty set
andE is a subset oV x V. We say thatx € V is avertexande = (x,y) € E
is anarc (arrow) fromi to j. In that case we also write — y. By definition a
digraph may have lop, i.e., an arc from a vertex to itself. Throughout this paper,
unless otherwise stated, a digraph means a finite digraph, i.e., a digraph with finite
number of vertices.

The adjacency matrix of a digragh = (V, E) is a matrixA with index set

V x V defined by
1, ifx-oy,
A Xy = .
Ay {0, otherwise

Then A becomes 40, 1}-matrix. Conversely, everj0, 1}-matrix with index set
V x V defines a digraph with vertex seét A digraph is callecsymmetridf its
adjacency matrix is symmetric. A symmetric digraph with no loops is naturally
identified with a graph in the usual sense. In fact, their adjacency matrices are
characterized by common conditions.

The set of eigenvalues of a digra@is denoted by

eVG = {Al, /12’ ceey /15}7

wherely, 1y, ..., As are distinct eigenvalues of the adjacency ma#iaf G. The
characteristic polynomial oA, often referred to as theharacteristic polynomial
of G, is factorized as follows:

vc(X) = detx — A) = ]i[(x— )™, m > 1
i=1
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Thenm is called thealgebraic multiplicityof A;. While, the dimensiom; of the
eigenspace associated withis called thegeometric multiplicity It is obvious
that 1 < I; < m. Note thatl; < m may happen for a general digraph and that
li = m for a symmetric digraph.
The converseor oppositeof a digraphG = (V, E) is a digraphG"Y = (V,EY),
where
EV={(xy)eVxV;(y,X) € E}.

The adjacency matrix oG" is obtained by transposing that & Hence the
characteristic polynomials @' andG coincide, so do their eigenvalues.

The algebraic (resp. geometric) spectrum of a dig@phthe list of its eigen-
values with algebraic (resp. geometric) multiplicities. The spectra of digraphs are
characteristic quantities and have many applications. For basic results, in particu-
lar on the spectral radius, see the recent survey by Brualdi [1].

Example 2.1 (Cycle) Letn > 2. We put

V=1{0,1,2,...,n-1},
E=1{01),(L2),....(n—2,n-1),(n—1,0).

The digraph 'V, E) is called acycle(or more precisely, directed cyclgof degree
n and is denoted b¢,,. Note that the cycl€, is symmetric. From elementary
knowledge of linear algebra we know that

ec,(X) = X" -1,
evCh={1=0’% w,? ..., 0", w=e"M

Moreover, the algebraic multiplicity of each eigenvalue is one, so coincides with
the geometric multiplicity.

Example 2.2 (Colliding cycle) Let n > 3 and 0< k < n. A colliding cycleis a
digraphC,x = (V, E), where

V=1{0,12...,n-1,
E=1{0,1),(L2),....(k- LK} U{Kk+1K),...,(n—1,n-2),(0,n— 1)

(Addition is taken by module.) Apparently,C, = Cnn = C,. For a non-trivial
colliding cycleC,x with k # 0, n, we have

e(¥) =x",  evCpy = {0}.

The algebraic multiplicity of the eigenvalue Orisvhile the geometric one is 2.



Figure 2.2: Colliding cycle

3 Bipartite Digraphs
A digraphG = (V, E) is calledbipartite if the vertex set admits a partition
V=VvOyuvh vOxgp vBxgp vOaVO=g

such that every arc has its initial vertex\{) and final vertex inv®, or initial
vertex inV; and final vertex inv©. By definition a bipartite digraph has no loops.
The adjacency matrix of a bipartite digraph is of the form:

O C
A= [D O], (3.1)

whereC is a{0, 1}-matrix with index seV©@ x V) andD is a{0, 1}-matrix with
index setv® x VO, From elementary knowledge of linear algebra we have the
following

Proposition 3.1 Let G be a bipartite digraph with adjacency mat(&.1). Then
the characteristic polynomial is given by

os(X) = det(x — A) = x™"det(x* — DC),
where m= |V©| and n= [V®| with m> n.

Given a bipartite digrap = (V, E) we define the parity function = ng :
V = {0,1} by
0, xeVO,

ﬂ@:”d@:{l x e V),
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Note that the parity function depends on the partitoe V© u VY, For an arc
(x,y) € E we haver(x) + 7(y) = 1. We mention some basic properties. The proofs
are straightforward so omitted.

Proposition 3.2 Let G = (V, E) be a bipartite digraph. For any pair of vertices
X,y € V, the parity of the length of a path from x to y (whenever exists) is inde-
pendent of the choice of such a path.

Proposition 3.3 A bipartite digraph does not contain a cycle of odd degree. More
generally, a bipartite digraph does not contain a colliding cycle of odd degree.

Proposition 3.4 A cycle of even degree is bipartite. More generally, so is a col-
liding cycle of even degree.

4 Manhattan Product

Fori = 1,2 letG; = (V;, E) be a bipartite digraph with parity function = 7;.
Consider the direct product

V=V xVy={(XY); xe Vi, ye V,}

and letE consist of pairs of verticesX(y), (X, y’)) satisfying one of the following
two conditions:

() y=vy,and & x) € E; or (X, X) € E; according ag(y) = 0 ormo(y) = 1;
(i) x=x,and{,y) € E;or (y,y) € E; according aw1(X) = 0 ormy(X) = 1.
The digraph 'V, E) is called theManhattan producand is denoted by
G = Gi#G;.

Although not explicitly indicated, the Manhattan product depends on the choice of
the partitionsv; = V? UV®, or equivalently the choice of the parity functions
The (2-dimensional) Manhattan street network [8] is nothing but the Manhattan
productC,#C, with evenm, n.

We now observe a simple property of the Manhattan pro@uet G;#G, =
(V, E). Take o, Yo) € V. The sectiork = {(X,Yo) ; X € V1} has a digraph structure
isomorphic toG; or G} according as(yo) = 0 orm,(yo) = 1. Let

(X0, Yo) = (X1, ¥0) = - -+ — (X, Yo) — -+~ (4.1)

be a path inG and consider the sectio@$x] = {(X,Y); Yy € Vo}. ThenX[x] is
isomorphic toG, or GY, and they occur alternately along the path (4.1). Thisis a
typical property of the Manhattan street networks. In order to maintain this prop-
erty it is natural to take the class of bipartite digraphs for the Manhattan product.
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G

Figure 4.3: Manhattan product

Proposition 4.1 The Manhattan product of two bipartite digraphs is bipartite.

Proor. Consider two bipartite digraplt@ = (Vi, E), i = 1, 2, with partitions
of the vertex set¥; = V@ u v®, Set

VO = VO x v u v x VD, v = vO 5 v uv® x v,

ThenV = VO u VW js a partition of the vertex sat of the Manhattan product
G:1#G,, where there are no arcs lyingVi® or v, ]

Proposition 4.2 Let G be a bipartite digraph with the adjacency matrix, A=
1,2. Then the adjacency matrix A of the Manhattan produet G,# G, satisfies

(A)(x,y)(x’,y’) = Oxx (tﬂl(x)(AZ))yy + (tHZ(y)(Al))xx’ayy, X, X €Vi, VY € Vs,
where {A) = AT stands for the transposition anglis the parity function of G
We consider a simple example. L&t = (V,E) be a bipartite digraph and

consider the Manhattan produs#C, . Let B be the adjacency matrix &. Then
the adjacency matriA is given by

A= [||3 BIT]’ (4.2)

wherel is the identity matrix indexed by x V.
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Figure 4.4:G#C,; (G is not necessarily bipartite.)

Theorem 4.3 Let G = (V,E) be a bipartite digraph with adjacency matrix B.
Then the characteristic polynomial of the Manhattan produ£tCzis given by

o(x) = det((x — B)(x— BT) - 1). (4.3)
Moreover, if
O C
5=Ib o]’
we have

(x*-1)+CC" —x(C+D") ] . (4.4)

() = det[ “XCT+D) (x-1) +DDT

Proor. Let A be the adjacency matrix of the Manhattan prode#C,. Then
the characteristic polynomial is given by

o(X) = det(x — A) = det[x__l B y —_IBT] .

Applying the formula:

X |

detI v

] = det(XY - 1) = det(Y X- 1), (4.5)

whereX, Y aren x n matrices and is the identity matrix, we obtain (4.3). Then
(4.4) follows by direct computation. |

In fact, G#C, may be defined without assuming tleais bipartite, see Fig. 4.4.
In that case todG#C, keeps the typical property of the Manhattan street networks
and the characteristic polynomial is given by (4.3).



Example 4.4 Let P, be the directed path withvertices, i.e.P, = (V, E) with

V={12...,n},
E=1{(12).23),....(n—1n).

The adjacency matrix d®, is given by
0 1 O
00 1
0 1
0]

We see from Theorem 4.3 that the characteristic polynomiB},#L; is given by
on(X) = det(x — B)(x— BT) — 1.
By elementary calculation we obtain

@n(X) = XZ(Pn—l(X) - XZ(Pn—Z(X)-

Then, recalling the recurrence relation of the Chebyshev polynomial of the second
kind, we come to .
en(¥) = X" Un,a(X),

where

~ sinn+ 1)
Un(2 COS@) = % .

Consequently,

kr
ev(P#C,) = {Zcosm, k= 1,2,...,n+1}u{0},

where every non-zero eigenvalue has algebraic multiplicity one.
The asymptotic spectral distribution as— « is also interesting.

Theorem 4.5 The asymptotic (algebraic) spectral distribution g, is given
by

1 1
> 0o + EP(X)dX,

where 1
PO = ——=——= x(22(9).

V4 — X
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Proor. Itis suficient to show that
1 n
Hn = n kZ; 03 cos &%

tends tgpo(X)dxasn — . Let f(x) be a bounded continuous function. Then we
have

f+oo 1 i ki 1
f(Xun(dx) = = f (2 cos—) - f f(2cosrt)dt, asn — oo,
oo n& n+1 0

which follows by the definition of Riemann integral. By change of variable, one

gets
fl 2 dX
f(2 cosnt dt:f f(X) ——.
0 ( ) -2 ( )7r\/4— X2
Consequently,
tm [ 100 = f () — v— = [ 190000x
which completes the proof. |

Remark 4.6 The probability distributiom(x)dxin Theorem 4.5 is called therc-
sine law(with mean 0 and variance 2).

Remark 4.7 As another generalization of (4.2) it is interesting to consider

B |
BT |

A= o . (4.6)

| BT
This is a kind of product ot andC,, (with evenn), which is considered something
between the Manhattan product and the direct product.
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