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Abstract We review the Manhattan product of digraphs from the
viewpoint of spectral analysis and obtain some preliminary formu-
lae. As an example, the spectrum of the Manhattan product of the
directed pathPn and the directed cycleC2 is obtained as well as its
asymptotic spectral distribution.

1 Introduction

Quantum probabilistic techniques have been developed for (asymptotic) spectral
analysis of graphs, see e.g., [10]. One of the main techniques is based on the
relation between notions of independence and product structures of graphs. In
this note we initiate an attempt to generalize the quantum probabilistic approach
to digraphs (directed graphs).

Figure 1.1: Manhattan street network

There is a long history of spectral analysis of digraphs with many relevant
topics. From the viewpoint of product structure of digraphs the first non-trivial
example we consider would be the Manhattan street network. The spectra of the
Manhattan street networks are described by Comellaset al. [5, 6]. Their method
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relies on direct calculation and a more conceptual derivation is desirable. In this
line it is natural to formulate the Manhattan street network as a kind of product
of digraphs. In fact, in their more recent papers [7, 8] Comellas, Dalfó and Fiol
introduce the notion ofManhattan productof digraphs and obtain some basic
properties. The main purpose of this note is to reformulate the Manhattan product
in a slightly more general context and to discuss the spectral properties of simple
examples.

Independently of spectral analysis, the Manhattan street network was intro-
duced beforehand by Maxemchuk [12] and Morilloet al. [13] for simple and
effective structure of communication networks, see also [3, 11, 14]. In some liter-
atures, e.g., [2], the notion ofManhattan networkappears, however, it is different
from the Manhattan street network.

2 Spectrum of a Digraph

A digraph (directed graph)is a pairG = (V,E), whereV is a non-empty set
andE is a subset ofV × V. We say thatx ∈ V is a vertexande = (x, y) ∈ E
is anarc (arrow) from i to j. In that case we also writex → y. By definition a
digraph may have aloop, i.e., an arc from a vertex to itself. Throughout this paper,
unless otherwise stated, a digraph means a finite digraph, i.e., a digraph with finite
number of vertices.

The adjacency matrix of a digraphG = (V,E) is a matrixA with index set
V × V defined by

(A)xy =

1, if x→ y,

0, otherwise.

ThenA becomes a{0,1}-matrix. Conversely, every{0,1}-matrix with index set
V × V defines a digraph with vertex setV. A digraph is calledsymmetricif its
adjacency matrix is symmetric. A symmetric digraph with no loops is naturally
identified with a graph in the usual sense. In fact, their adjacency matrices are
characterized by common conditions.

The set of eigenvalues of a digraphG is denoted by

evG = {λ1, λ2, . . . , λs},

whereλ1, λ2, . . . , λs are distinct eigenvalues of the adjacency matrixA of G. The
characteristic polynomial ofA, often referred to as thecharacteristic polynomial
of G, is factorized as follows:

φG(x) = det(x− A) =
s∏

i=1

(x− λi)
mi , mi ≥ 1.
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Thenmi is called thealgebraic multiplicityof λi. While, the dimensionl i of the
eigenspace associated withλi is called thegeometric multiplicity. It is obvious
that 1 ≤ l i ≤ mi. Note thatl i < mi may happen for a general digraph and that
l i = mi for a symmetric digraph.

Theconverseor oppositeof a digraphG = (V,E) is a digraphG∨ = (V,E∨),
where

E∨ = {(x, y) ∈ V × V ; (y, x) ∈ E}.
The adjacency matrix ofG∨ is obtained by transposing that ofG. Hence the
characteristic polynomials ofG∨ andG coincide, so do their eigenvalues.

The algebraic (resp. geometric) spectrum of a digraphG is the list of its eigen-
values with algebraic (resp. geometric) multiplicities. The spectra of digraphs are
characteristic quantities and have many applications. For basic results, in particu-
lar on the spectral radius, see the recent survey by Brualdi [1].

Example 2.1 (Cycle)Let n ≥ 2. We put

V = {0, 1,2, . . . , n− 1},
E = {(0,1), (1,2), . . . , (n− 2,n− 1), (n− 1,0)}.

The digraph (V,E) is called acycle(or more precisely, adirected cycle) of degree
n and is denoted byCn. Note that the cycleC2 is symmetric. From elementary
knowledge of linear algebra we know that

φCn(x) = xn − 1,

evCn = {1 = ω0, ω, ω2, . . . , ωn−1}, ω = e2πi/n.

Moreover, the algebraic multiplicity of each eigenvalue is one, so coincides with
the geometric multiplicity.

Example 2.2 (Colliding cycle) Let n ≥ 3 and 0≤ k ≤ n. A colliding cycleis a
digraphCn,k = (V,E), where

V = {0,1,2, . . . ,n− 1},
E = {(0,1), (1,2), . . . , (k− 1, k)} ∪ {(k+ 1, k), . . . , (n− 1,n− 2), (0,n− 1)}.

(Addition is taken by modulon.) Apparently,Cn = Cn,n = C∨n,0. For a non-trivial
colliding cycleCn,k with k , 0,n, we have

φ(x) = xn, evCn,k = {0}.

The algebraic multiplicity of the eigenvalue 0 isn while the geometric one is 2.
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Figure 2.2: Colliding cycle

3 Bipartite Digraphs

A digraphG = (V,E) is calledbipartite if the vertex set admits a partition

V = V(0) ∪ V(1) V(0) , ∅, V(1) , ∅, V(0) ∩ V(1) = ∅

such that every arc has its initial vertex inV(0) and final vertex inV(1), or initial
vertex inV1 and final vertex inV(0). By definition a bipartite digraph has no loops.
The adjacency matrix of a bipartite digraph is of the form:

A =

[
O C
D O

]
, (3.1)

whereC is a {0, 1}-matrix with index setV(0) × V(1) andD is a {0,1}-matrix with
index setV(1) × V(0). From elementary knowledge of linear algebra we have the
following

Proposition 3.1 Let G be a bipartite digraph with adjacency matrix(3.1). Then
the characteristic polynomial is given by

φG(x) = det(x− A) = xm−n det(x2 − DC),

where m= |V(0)| and n= |V(1)| with m≥ n.

Given a bipartite digraphG = (V,E) we define the parity functionπ = πG :
V → {0, 1} by

π(x) = πG(x) =

0, x ∈ V(0),

1, x ∈ V(1).
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Note that the parity function depends on the partitionV = V(0) ∪ V(1). For an arc
(x, y) ∈ E we haveπ(x)+π(y) = 1. We mention some basic properties. The proofs
are straightforward so omitted.

Proposition 3.2 Let G = (V,E) be a bipartite digraph. For any pair of vertices
x, y ∈ V, the parity of the length of a path from x to y (whenever exists) is inde-
pendent of the choice of such a path.

Proposition 3.3 A bipartite digraph does not contain a cycle of odd degree. More
generally, a bipartite digraph does not contain a colliding cycle of odd degree.

Proposition 3.4 A cycle of even degree is bipartite. More generally, so is a col-
liding cycle of even degree.

4 Manhattan Product

For i = 1,2 let Gi = (Vi ,Ei) be a bipartite digraph with parity functionπ = πi.
Consider the direct product

V = V1 × V2 = {(x, y) ; x ∈ V1, y ∈ V2}

and letE consist of pairs of vertices ((x, y), (x′, y′)) satisfying one of the following
two conditions:

(i) y = y′, and (x, x′) ∈ E1 or (x′, x) ∈ E1 according asπ2(y) = 0 orπ2(y) = 1;

(ii) x = x′, and (y, y′) ∈ E2 or (y′, y) ∈ E2 according asπ1(x) = 0 orπ1(x) = 1.

The digraph (V,E) is called theManhattan productand is denoted by

G = G1#G2 .

Although not explicitly indicated, the Manhattan product depends on the choice of
the partitionsVi = V(0)

i ∪V(1)
i , or equivalently the choice of the parity functionsπi.

The (2-dimensional) Manhattan street network [8] is nothing but the Manhattan
productCm#Cn with evenm,n.

We now observe a simple property of the Manhattan productG = G1#G2 =

(V,E). Take (x0, y0) ∈ V. The sectionΣ = {(x, y0) ; x ∈ V1} has a digraph structure
isomorphic toG1 or G∨1 according asπ2(y0) = 0 orπ2(y0) = 1. Let

(x0, y0)→ (x1, y0)→ · · · → (xi , y0)→ · · · (4.1)

be a path inG and consider the sectionsΣ[xi] = {(xi , y) ; y ∈ V2}. ThenΣ[xi] is
isomorphic toG2 or G∨2 , and they occur alternately along the path (4.1). This is a
typical property of the Manhattan street networks. In order to maintain this prop-
erty it is natural to take the class of bipartite digraphs for the Manhattan product.
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Figure 4.3: Manhattan product

Proposition 4.1 The Manhattan product of two bipartite digraphs is bipartite.

Proof. Consider two bipartite digraphsGi = (Vi ,Ei), i = 1,2, with partitions
of the vertex setsVi = V(0)

i ∪ V(1)
i . Set

V(0) = V(0)
1 × V(0)

2 ∪ V(1)
1 × V(1)

2 , V(1) = V(0)
1 × V(1)

2 ∪ V(1)
1 × V(0)

2 .

ThenV = V(0) ∪ V(1) is a partition of the vertex setV of the Manhattan product
G1#G2, where there are no arcs lying inV(0) or V(1).

Proposition 4.2 Let Gi be a bipartite digraph with the adjacency matrix Ai, i =
1,2. Then the adjacency matrix A of the Manhattan product G= G1#G2 satisfies

(A)(x,y)(x′,y′) = δxx′(t
π1(x)(A2))yy′ + (tπ2(y)(A1))xx′δyy′ , x, x′ ∈ V1, y, y′ ∈ V2,

where t(A) = AT stands for the transposition andπi is the parity function of Gi.

We consider a simple example. LetG = (V,E) be a bipartite digraph and
consider the Manhattan productG#C2 . Let B be the adjacency matrix ofG. Then
the adjacency matrixA is given by

A =

[
B I
I BT

]
, (4.2)

whereI is the identity matrix indexed byV × V.
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Figure 4.4:G#C2 (G is not necessarily bipartite.)

Theorem 4.3 Let G = (V,E) be a bipartite digraph with adjacency matrix B.
Then the characteristic polynomial of the Manhattan product G#C2 is given by

φ(x) = det((x− B)(x− BT) − I ). (4.3)

Moreover, if

B =

[
O C
D O

]
,

we have

φ(x) = det

[
(x2 − 1)I +CCT −x(C + DT)
−x(CT + D) (x2 − 1)I + DDT

]
. (4.4)

Proof. Let A be the adjacency matrix of the Manhattan productG#C2. Then
the characteristic polynomial is given by

φ(x) = det(x− A) = det

[
x− B −I
−I x − BT

]
.

Applying the formula:

det

[
X I
I Y

]
= det(XY− I ) = det(YX− I ), (4.5)

whereX,Y aren × n matrices andI is the identity matrix, we obtain (4.3). Then
(4.4) follows by direct computation.

In fact,G#C2 may be defined without assuming thatG is bipartite, see Fig. 4.4.
In that case too,G#C2 keeps the typical property of the Manhattan street networks
and the characteristic polynomial is given by (4.3).
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Example 4.4 Let Pn be the directed path withn vertices, i.e.,Pn = (V,E) with

V = {1,2, . . . , n},
E = {(1,2), (2,3), . . . , (n− 1,n)}.

The adjacency matrix ofPn is given by

B =


0 1 0 · · ·
0 0 1 · · ·

. . .
. . .

0 1
0


We see from Theorem 4.3 that the characteristic polynomial ofPn#C2 is given by

φn(x) = det((x− B)(x− BT) − I ).

By elementary calculation we obtain

φn(x) = x2φn−1(x) − x2φn−2(x).

Then, recalling the recurrence relation of the Chebyshev polynomial of the second
kind, we come to

φn(x) = xn−1Ũn+1(x),

where

Ũn(2 cosθ) =
sin(n+ 1)θ

sinθ
.

Consequently,

ev (Pn#C2) =

{
2 cos

kπ
n+ 2

; k = 1,2, . . . ,n+ 1

}
∪ {0},

where every non-zero eigenvalue has algebraic multiplicity one.

The asymptotic spectral distribution asn→ ∞ is also interesting.

Theorem 4.5 The asymptotic (algebraic) spectral distribution of Pn#C2 is given
by

1
2
δ0 +

1
2
ρ(x)dx,

where

ρ(x) =
1

π
√

4− x2
χ(−2,2)(x).

8



Proof. It is sufficient to show that

µn =
1
n

n∑
k=1

δ2 cos kπ
n+1

tends toρ(x)dx asn→ ∞. Let f (x) be a bounded continuous function. Then we
have∫ +∞

−∞
f (x)µn(dx) =

1
n

n∑
k=1

f

(
2 cos

kπ
n+ 1

)
→

∫ 1

0
f (2 cosπt)dt, asn→ ∞,

which follows by the definition of Riemann integral. By change of variable, one
gets ∫ 1

0
f (2 cosπt)dt =

∫ 2

−2
f (x)

dx

π
√

4− x2
.

Consequently,

lim
n→∞

∫ +∞

−∞
f (x)µn(dx) =

∫ 2

−2
f (x)

dx

π
√

4− x2
=

∫ +∞

−∞
f (x)ρ(x)dx,

which completes the proof.

Remark 4.6 The probability distributionρ(x)dx in Theorem 4.5 is called thearc-
sine law(with mean 0 and variance 2).

Remark 4.7 As another generalization of (4.2) it is interesting to consider

A =



B I
BT I

B I
. . .
. . .

B I
I BT


. (4.6)

This is a kind of product ofG andCn (with evenn), which is considered something
between the Manhattan product and the direct product.
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