Asymptotic Spectral Analysis of Random Graphs — Towards Complex Networks —

Nobuaki Obata Graduate School of Information Sciences Tohoku University Sendai, 980-8579, Japan http://www.math.is.tohoku.ac.jp/~obata

Exploring a quantum probabilistic approach to network science

Bedlewo, August 6-12, 2007

I. Graph Spectrum

Definition. A graph is a pair G = (V, E), where V is the set of vertices and E the set of edges. For $x, y \in V$ we write $x \sim y$ (adjacent) if they are connected by an edge.

 \star In this talk we focus on *finite graphs* with $|V| = n < \infty$ and their limit as $n \to \infty$.

Definition. The *adjacency matrix* $A = (A_{ij})_{i,j \in V}$ is defined by $A_{ij} = \begin{cases} 1, i \sim j, \\ 0, \text{ otherwise.} \end{cases}$

- The characteristic polynomial of G : $\varphi_G(x) = \det(xE A)$
- The spectrum of G: eigenvalues of A, say, $\lambda_1, \ldots, \lambda_n$
- The spectral distribution of G:

$$\mu_G(dx) = \frac{1}{n} \sum_{k=1}^n \delta(x - \lambda_k) dx$$

• The moment sequence:

$$M_m(\mu_G) = \int_{-\infty}^{+\infty} x^m \mu_G(dx) = \frac{1}{n} \sum_{k=1}^n \lambda_k^m = \frac{1}{n} \operatorname{Tr} A^m$$

* The graph spectrum is not enough to characterize a graph (up to isomorphisms), but contains valuable information about graph geometry (cf. algebraic graph theory).

II. Random Graphs

Let $V = \{0, 1, \dots, n-1\}$ be a fixed set of vertices (|V| = n).

 $\mathcal{G} = \{G; G \text{ is a graph whose vertex set is } V\}, \qquad |\mathcal{G}| = 2^{\binom{n}{2}}.$

Given a probability measure P, (\mathcal{G}, P) is called a *random graph*.

- The adjacency matrix $A = A_G$ of $G \in \mathcal{G} \implies$ random matrix
- The spectral distribution $\mu = \mu_G$ of $G \in \mathcal{G} \implies$ random distribution

Main objectives are:

• The *mean spectral distribution* of a random graph:

$$\mu = \mathbf{E}(\mu_G) = \sum_{G \in \mathcal{G}} P(\{G\}) \mu_G$$

• The moment sequence:

$$M_m(\mu) = \int_{-\infty}^{+\infty} x^m \mu(dx) = \frac{1}{n} \mathbf{E}(\text{Tr } A^m), \qquad m = 1, 2, \dots$$

• The asymptotic behaviour as $n \to \infty$ (with some scaling balance)

A typical example: $\mathcal{G}(n,p)$ the *Erdős–Rényi random graph*

$$\begin{split} V &= \{0, 1, 2, \dots, n-1\}, \qquad 0$$

For example, $\mathcal{G}(3,p)$

The mean spectral distribution:

$$\mu_{3,p} = p^3 \nu_3 + 3p^2 (1-p)\nu_2 + 3p(1-p)^2 \nu_1 + (1-p)^3 \nu_0$$

III. Why Random Graphs?

Models of *real world networks* in our life (technological, social, biological, etc.)

Epoch-making papers:

- [1] D. J. Watts and S. H. Strogatz: Collective dynamics of 'small-world' networks, Nature 393 (1998), 440–442. ⇒ small world model (short distance between vertices)
- [2] A.-L. Barabási and R. Albert: Emergence of scaling in random networks, Science 286 (1999), 509–512. → scale-free model (power law of the degree distribution)
- Both models are suitable for computer simulation.
- But mathematical analysis remains open (seems very difficult).
- In particular, *spectral analysis of real world networks* is an interesting topic
- Also interesting for testing the recently developed techniques of quantum probability \implies My challenging theme

My Strategy:

- 1. Study Erdős–Rényi randoms (1960)
 - Original purpose was to prove existence of a graph having certain properties.
 - Referred to often as a first step toward real world networks, however, not realistic.
 - The explicit form of the asymptotic spectral distribution is still unknown.
- 2. Modify the WS-model and BA-model with the idea of random graphs and derive mathematically rigorous results.
- 3. Spectral analysis of the WS-model and BA-model and go further.

In this talk I will report preliminary consideration and some results:

- (i) Propose a model based on WS-model and ER-random graphs
- (ii) Combinatorial formula for the asymptotic spectral distributions

IV. Our Model

Our model

 $\{X_{ij}; i, j \in V, i \neq j\}$: independent random variables with values in $\{0, 1\}$ $A = (A_{ij})$ with $A_{ij} = \frac{1}{2}(X_{ij} + X_{ji})$: adjacency matrix of a "weighted" graph (network)

Moreover, "geometric location" is taken into account.

E.g., near vertices are connected at a large probability and remote ones at a small probability Fix a subset $R \subset \{(i, j) \in V \times V; i \neq j\}$ Let 0 and <math>0 < p' < 1. Define a random variable X_{ij} by (i) If $(i, j) \in R$, set $P(X_{ij} = 1) = p$ and $P(X_{ij} = 0) = 1 - p$. (ii) If $(i, j) \notin R$, set $P(X_{ij} = 1) = p'$ and $P(X_{ij} = 0) = 1 - p'$. Then $A_{ij} = \frac{1}{2}(X_{ij} + X_{ji})$ has 3 different distributions according to the location of i and j.

Thus, our model $\mathcal{G}(n, R; p, p')$ contains:

(i) grade of connection, i.e., $A_{ij} = 1$ (tight), $A_{ij} = 1/2$ (loose), $A_{ij} = 0$ (none).

(ii) probability of connection depends on location of vertices, $A_{ij} \sim \alpha, \beta, \gamma$.

V. Some general results on $\mathcal{G}(n, R; p, p')$

We assume "symmetry" in order that all vertices i are "statistically equivalent."

For any $i_0 \in V$ there exists a permutation σ on V such that $\sigma(i_0) = 0$ and for all $i, j \in V$, the distributions of A_{ij} and $A_{\sigma(i)\sigma(j)}$ coincide. (This is a condition on R.)

Mean degree of $\mathcal{G}(n,R;p,p')$

$$\bar{d}(\mathcal{G}(n,R;p,p')) = \frac{1}{n} \sum_{i \in V} \mathbf{E}(\deg_G(i)) = \frac{1}{n} \sum_{i \in V} \sum_{j \neq i} \mathbf{E}(A_{ij})$$
$$= \sum_{j \neq 0} \mathbf{E}(A_{0j}) = pR_2 + \frac{p+p'}{2}R_1 + p'R_0,$$

where $R_0 + R_1 + R_2 = n - 1$ and

$$R_{2} = |\{j \in V; (0, j) \in R \cap R^{t}\}|, \quad R_{0} = |\{j \in V; j \neq 0, (0, j) \notin R \cup R^{t}\}|, R_{1} = |\{j \in V; (0, j) \in R \cup R^{t} \text{ but } \notin R \cap R^{t}\}|.$$

Sparse limit (Poisson limit): $n \to \infty$ and $\bar{d} \to \text{constant}$.

E.g., in case of $R=\{(i,i+1)\,;\,i\in V\}$, we take

$$n \to \infty, \qquad p' \to 0, \qquad np' \to \lambda \text{ (constant)}$$

Mean spectral distribution of $\mathcal{G}(n, R; p, p')$ is characterized by the moment sequence:

$$M_m = \sum_{\mathcal{L} \in \Lambda_m(\{\alpha, \beta, \gamma\})} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L}) t(\mathcal{L}; n) \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \alpha}} \alpha_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \beta}} \beta_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \gamma}} \gamma_{\kappa(e)},$$

where α_{κ} , β_{κ} , γ_{κ} are the κ -th moments of the distributions α, β, γ , respectively. Namely,

$$\alpha_{\kappa} = p^2 + \frac{2p(1-p)}{2^{\kappa}}, \quad \beta_{\kappa} = pp' + \frac{p+p'-2pp'}{2^{\kappa}}, \quad \gamma_{\kappa} = p'^2 + \frac{2p'(1-p')}{2^{\kappa}}.$$

 $\Lambda_m(\{\alpha,\beta,\gamma\}) \ni \mathcal{L} = (\mathcal{V},\mathcal{E},o,\nu,\kappa) \text{ is a } \{\alpha,\beta,\gamma\}\text{-labeled rooted graph of size } m \text{, i.e.,}$

- (L1) a connected graph $(\mathcal{V}, \mathcal{E})$ with $2 \leq |\mathcal{V}| \leq m$;
- (L2) a distinguished vertex $o \in \mathcal{V}$ which is called the root;
- (L3) a map $\nu : \mathcal{E} \to {\alpha, \beta, \gamma};$
- (L4) a map $\kappa : \mathcal{E} \to \{1, 2, \dots, m\}$ such that $\sum_{e \in \mathcal{E}} \kappa(e) = m$.

 $u(\mathcal{L})$: the number of unicursal walks in \mathcal{L}

 $t(\mathcal{L}; n)$: the number of A-admissible embeddings, i.e., injections $\varphi : \mathcal{V} \to \{0, 1, \dots, n-1\}$ such that $\varphi(o) = 0$ and for every $\{v, v'\} \in \mathcal{E}$, $\nu(\{v, v'\})$ coincides with the distribution of $A_{\varphi(v)\varphi(v')}$.

Outline of proof:

(1) By definition and symmetry assumption,

$$M_m = \frac{1}{n} \mathbf{E}(\operatorname{Tr} A^m) = \mathbf{E}\langle \delta_0, A^m \delta_0 \rangle = \sum_{[i] \in \mathcal{W}(V,m)} \mathbf{E}(A_{0i_1} A_{i_1 i_2} \cdots A_{i_{m-1} 0}),$$

$$\mathcal{W}(V,m) = \{ [i] : 0 \neq i_1 \neq \cdots \neq i_{m-1} \neq 0, \ i_k \in V \}.$$

(2) Let G[i] be the underlying graph and for $e=\{j,j'\}\in E(G[i])$ we define

$$\nu(e) = \text{the distribution of } A_{jj'} = A_{j'j},$$

$$\kappa(e) = |\{0 \le s \le m - 1; \{i_s, i_{s+1}\} = \{j, j'\}\}|.$$

(3) By independence of $\{A_{jj'}; 0 \le j < j' \le n-1\}$,

$$M_m = \sum_{[i]} \mathbf{E} \left(\prod_{j < j'} A_{jj'}^{\kappa(j,j')} \right) = \sum_{[i]} \prod_{j < j'} \mathbf{E} (A_{jj'}^{\kappa(j,j')}) = \sum_{[i] \in \mathcal{W}(V,m)} \prod_{e \in E(G[i])} M_{\kappa(e)}(\nu(e))$$

(4) Setting $\mathcal{L}[i] = (G[i], 0, \nu, \kappa)$,

$$M_{m} = \sum_{\mathcal{L} \in \Lambda_{m}(\{\alpha,\beta,\gamma\})} |\{[i] \in \mathcal{W}(V,m); \mathcal{L}[i] \cong \mathcal{L}\}| \prod_{e \in E(\mathcal{L})} M_{\kappa(e)}(\nu(e))$$
$$= \sum_{\mathcal{L} \in \Lambda_{m}(\{\alpha,\beta,\gamma\})} |\operatorname{Aut}(\mathcal{L})|^{-1}u(\mathcal{L})t(\mathcal{L};n) \prod_{\substack{e \in E(\mathcal{L})\\\nu(e) = \alpha}} \alpha_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L})\\\nu(e) = \beta}} \beta_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L})\\\nu(e) = \gamma}} \gamma_{\kappa(e)}.$$

VI. Model I: $R = \{(i, i+1); i \in V\}$

• Note that the distribution α does not appear since $R\cap R^t=\emptyset.$ Hence,

$$M_m(n, p, p') = \sum_{\mathcal{L} \in \Lambda_m(\{\beta, \gamma\})} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L}) t(\mathcal{L}; n) \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \beta}} \beta_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \gamma}} \gamma_{\kappa(e)}$$

• By our definition, an β -edge corresponds to an edge $\{i, i \pm 1\} \in R \cup R^t$.

• If $\mathcal{L} = (\mathcal{V}, \mathcal{E}, o, \nu, \kappa) \in \Lambda_m(\{\beta, \gamma\})$ contains a β -cycle or a β -branch, there is no A-admissible embedding (for a large n).

• The sum is taken over

$$\Lambda_m^*(\{\beta,\gamma\}) = \left\{ \mathcal{L} \in \Lambda_m(\{\beta,\gamma\}); \begin{array}{l} \text{(i) contains no } \beta\text{-cycles}; \\ \text{(ii) contains no } \beta\text{-branches} \end{array} \right\}.$$

In other words, in $\mathcal{L} \in \Lambda_m^*(\{\beta, \gamma\})$ every β -edge appears only as a linear segment (β -segment).

VII. Model I in the Sparse Limit $(n \to \infty, p' \to 0, np' \to \lambda)$

Mean degree: $\lim \overline{d}(\mathcal{G}_I(n, p, p')) = \lim \{p + (n-2)p'\} = p + \lambda$

Moments of β and γ : $\lim \beta_{\kappa} = \frac{p}{2^{\kappa}}$, $\lim n\gamma_{\kappa} = \frac{2\lambda}{2^{\kappa}}$.

Our target:

$$\lim M_m(n, p, p') = \lim \sum_{\mathcal{L} \in \Lambda_m^*(\{\beta, \gamma\})} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L}) t(\mathcal{L}; n) \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \beta}} \beta_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \gamma}} \gamma_{\kappa(e)}.$$

First a few moments:

$$\lim M_1(n, p, p') = 0,$$

$$\lim M_2(n, p, p') = \frac{p}{2} + \frac{\lambda}{2},$$

$$\lim M_3(n, p, p') = 0,$$

$$\lim M_4(n, p, p') = \frac{p}{8} + \frac{\lambda}{8} + \frac{p^2}{4} + p\lambda + \frac{\lambda^2}{2}.$$

THEOREM 1. Let $M_m = M_m(n, p, p')$ be the *m*-th moment of the mean spectral distribution of $\mathcal{G}_I(n, p, p')$. Then, in the sparse limit

$$\lim M_m = \begin{cases} 0, & \text{if } m \text{ is odd,} \\ \sum_{\mathcal{L} \in \Lambda_m^{**}(\{\beta,\gamma\})} |\operatorname{Aut} \left(\mathcal{L}\right)|^{-1} u(\mathcal{L}) \, 2^{|\mathcal{E}_{\gamma}| + 1 - b(\mathcal{L}) - m} \, p^{|\mathcal{E}_{\beta}|} (2\lambda)^{|\mathcal{E}_{\gamma}|}, & \text{if } m \text{ is even.} \end{cases}$$

Outline of Proof. (0) Start with

$$\lim M_m(n, p, p') = \lim \sum_{\mathcal{L} \in \Lambda_m^*(\{\beta, \gamma\})} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L}) t(\mathcal{L}; n) \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \beta}} \beta_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \gamma}} \gamma_{\kappa(e)}.$$

(1) Let $\tilde{\mathcal{L}} = (\tilde{\mathcal{V}}, \tilde{\mathcal{E}})$ be a connected graph obtained from \mathcal{L} by β -edge contraction. (2) Let $b(\mathcal{L})$ be the number of isolated vertices of $(\mathcal{V}, \mathcal{E}_{\beta})$.

$$2^{|\tilde{\mathcal{V}}|-b(\mathcal{L})} (n-2m^2)^{|\tilde{\mathcal{V}}|-1} \le |t(\mathcal{L};n)| \le 2^{|\tilde{\mathcal{V}}|-b(\mathcal{L})} n^{|\tilde{\mathcal{V}}|-1}.$$

(3) For any connected graph G = (V, E) we have $|V| \le |E| + 1$. Moreover, the equality holds if and only if G is a tree.

(4)
$$\lim t(\mathcal{L}; n) \prod \gamma_{\kappa(e)} = 0$$
 unless \mathcal{L} belongs to
 $\Lambda_m^{**}(\{\beta, \gamma\}) = \{\mathcal{L} \in \Lambda_m^*(\{\beta, \gamma\}); \tilde{\mathcal{L}} \text{ is a tree and } |\tilde{\mathcal{E}}| = |\mathcal{E}_{\gamma}| \iff \mathcal{L} \text{ is a tree}\} \}.$

VIII. Model II: $R = \{(i, i \pm 1); i \in V\}$

Mean degree of $\mathcal{G}_{II}(n, p, p')$:

$$\bar{d}(\mathcal{G}_I(n,p,p')) = 2p + (n-3)p'.$$

Moment sequence of $\mathcal{G}_{II}(n, p, p')$:

$$M_m(n, p, p') = \sum_{\mathcal{L} \in \Lambda_m^*(\{\alpha, \gamma\})} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L}) t(\mathcal{L}; n) \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \alpha}} \alpha_{\kappa(e)} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \gamma}} \gamma_{\kappa(e)}.$$

In the sparse limit $n \to \infty$, $p' \to 0$, $np' \to \lambda$:

$$\lim \bar{d}(\mathcal{G}_I(n, p, p')) = 2p + \lambda, \qquad \lim \alpha_{\kappa} = p^2 + \frac{2p(1-p)}{2^{\kappa}}, \qquad \lim n\gamma_{\kappa} = \frac{2\lambda}{2^{\kappa}}.$$

THEOREM 2. Let $M_m(n, p, p')$ be the *m*-th moment of the mean spectral distribution of $\mathcal{G}_{II}(n, p, p')$. Then, in the sparse limit

$$\lim M_m = \begin{cases} 0, & \text{if } m \text{ is odd,} \\ \sum_{\mathcal{L} \in \Lambda_m^{**}(\{\alpha, \gamma\})} |\operatorname{Aut} \left(\mathcal{L} \right)|^{-1} u(\mathcal{L}) \, 2^{|\mathcal{E}_{\gamma}| + 1 - b(\mathcal{L}) - m} \left(2\lambda \right)^{|\mathcal{E}_{\gamma}|} \prod_{\substack{e \in E(\mathcal{L}) \\ \nu(e) = \alpha}} \left((2^{\kappa(e)} - 2)p^2 + 2p \right), \\ & \text{if } m \text{ is even.} \end{cases}$$

IX. The Erdős–Rényi Random Graph

Definition. Let $n \ge 1$, $0 . Let <math>\mathcal{G}(n,p)$ be the set of all graphs with vertex set $V = \{0, 1, 2, \dots, n-1\}$ with probability $P(\{G\})$ defined by

$$P(\{G\}) = p^{|E(G)|}(1-p)^{\binom{n}{2} - |E(G)|}, \qquad E(G) = \{\text{edges of } G\}.$$

Some statistics of $\mathcal{G}(n,p)$

• The mean spectral distribution $\mu_{n,p}$ — rather complicated!

• The mean degree:
$$\bar{d}(\mathcal{G}(n,p)) = \frac{1}{n} \sum_{i \in V} \mathbf{E}(\deg_G(i)) = (n-1)p$$

• The mean number of edges:
$$\mathbf{E}(|E(G)|) = \frac{n}{2}M_2 = \frac{n(n-1)}{2}p$$

• The mean number of triangles:
$$\mathbf{E}(|\triangle(G)|) = \frac{n}{6}M_3 = \frac{n(n-1)(n-2)}{6}p^3$$

Problem: Find $\lim \mu_{n,p}$ in the sparse limit

$$n \to \infty$$
, $p \to 0$, $np \to \lambda$ (constant).

• Cluster coefficient: $\mathbf{E}(|\triangle(G)|)/|\{\text{all possible triangles}\}| = p^3 \rightarrow 0$ (not realistic!)

Moment sequence of $\mu_{n,p}$ (=mean spectral distribution of $\mathcal{G}(n,p)$)

$$M_m(\mu_{n,p}) = \frac{1}{n} \mathbf{E}(\operatorname{Tr} A^m) = \frac{1}{n} \sum_{i \in V} \mathbf{E}((A^m)_{ii}) = \mathbf{E}((A^m)_{00})$$
$$= \sum_{\mathcal{L} \in \Lambda_m} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L})(n-1)(n-2) \cdots (n-(|V(\mathcal{L})|-1)) p^{|E(\mathcal{L})|},$$

where Λ_m is the collection of all labeled graphs $\mathcal{L} = (\mathcal{V}, \mathcal{E}, o, \kappa)$, where

- (i) $(\mathcal{V}, \mathcal{E})$ is a connected graph with $2 \leq |\mathcal{V}| \leq m$,
- (ii) $o \in V$ is a distinguished vertex,

(iii)
$$\kappa : \mathcal{E} \to \{1, 2, ...\}$$
 such that $\sum_{e \in \mathcal{E}} \kappa(e) = m$.

First few moments of $\mu_{n,p}$

$$M_{1}(\mu_{n,p}) = 0, \qquad M_{2}(\mu_{n,p}) = (n-1)p, \qquad M_{3}(\mu_{n,p}) = (n-1)(n-2)p^{3}$$

$$M_{4}(\mu_{n,p}) = (n-1)p + 2(n-1)(n-2)p^{2} + (n-1)(n-2)(n-3)p^{4}$$

$$M_{5}(\mu_{n,p}) = 5(n-1)(n-2)p^{3} + 5(n-1)(n-2)(n-3)p^{4} + (n-1)(n-2)(n-3)(n-4)p^{5}$$

THEOREM 3.

$$M_m \equiv \lim M_m(\mu_{n,p}) = \begin{cases} 0, & m \text{ is odd}, \\ \sum_{\mathcal{L} \in \Lambda_m^{**}} |\operatorname{Aut} (\mathcal{L})|^{-1} u(\mathcal{L}) \lambda^{|E(\mathcal{L})|}, & m \text{ is even}, \end{cases}$$

where Λ_m^{**} is the collection of all labeled graphs $\mathcal{L} = (\mathcal{V}, \mathcal{E}, o, \kappa)$, where

(i)
$$(\mathcal{V}, \mathcal{E})$$
 is a *tree* with $2 \leq |\mathcal{V}| \leq m$,

(ii) $o \in V$ is a distinguished vertex,

(iii)
$$\kappa : \mathcal{E} \to \{1, 2, \dots\}$$
 such that $\sum_{e \in \mathcal{E}} \kappa(e) = m$.

Outline of Proof: (1)

$$M_m(\mu_{n,p}) = \sum_{\mathcal{L}\in\Lambda_m} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L})(n-1)(n-2)\cdots(n-(|V(\mathcal{L})|-1)) p^{|E(\mathcal{L})|}$$
$$\sim \sum_{\mathcal{L}\in\Lambda_m} |\operatorname{Aut}(\mathcal{L})|^{-1} u(\mathcal{L})n^{|V(\mathcal{L})|-1-|E(\mathcal{L})|}(np)^{|E(\mathcal{L})|}.$$
 (*)

- (2) If \mathcal{L} is not a tree, then $|V(\mathcal{L})| \leq |E(\mathcal{L})|$ and (*) vanishes.
- (3) If \mathcal{L} is a tree, then $|V(\mathcal{L})| = |E(\mathcal{L})| + 1$ and we get the result.
- Cf. Bauer–Golinelli (2001), Dorogovtsev–Goltsev–Mendes–Samukhin (2003)

Alternative expression of M_m

THEOREM 4. The sparse limit of the 2m-th moment of mean spectral distribution of the Erdős–Rényi random graph $\mathcal{G}(n, p)$ is given by

$$M_{2m} = \sum_{\vartheta \in \mathcal{P}_{\mathrm{T}}(2m)} \lambda^{|\vartheta|}$$

Outline of Proof: (1)

$$M_{2m}(\mu_{n,p}) = \mathbf{E}((A^{2m})_{00}) = \sum_{[i] \in \mathcal{W}(V,2m)} \mathbf{E}(A_{0i_1}A_{i_0i_1}\cdots A_{i_{2m-1}0}) = \sum_{[i] \in \mathcal{W}(V,2m)} p^{|E(G[i])|}$$

(2) In the limit, we need only consider

$$[i]: 0 \equiv i_0 \neq i_1 \neq i_2 \neq \cdots \neq i_{2m-1} \neq i_{2m} \equiv 0, \qquad i_k \in V,$$

such that G[i] is a tree (by Theorem 3).

(3) For a such $[i] \in \mathcal{W}(V, 2m)$ we associate a partition $\vartheta = \vartheta[i]$ of $\{1, 2, \ldots, 2m\}$. The set of such partitions is denoted by $\mathcal{P}_{\mathrm{T}}(2m)$.

(4) For $\vartheta=\vartheta[i]$ we have $|E(G[i])|=|\vartheta|$ and

$$M_{2m} = \lim \sum_{\vartheta \in \mathcal{P}_{\mathrm{T}}(2m)} \sum_{\substack{[i] \in \mathcal{W}(V, 2m)\\ \vartheta[i] = \vartheta}} p^{|\vartheta|} = \lim \sum_{\vartheta \in \mathcal{P}_{\mathrm{T}}(2m)} (n-1)(n-2) \cdots (n-|\vartheta|) p^{|\vartheta|}.$$

What is $\mathcal{P}_{\mathrm{T}}(2m)$?

Every partition in P_T(2m) is obtained from a non-crossing pair partition of {1, 2, ..., 2m}.
Given ϑ ∈ P_{NCP}(2m), (i) two or more blocks can be joined if their depth = 1; (ii) two or more blocks can be joined if their depth are the same and the upper blocks are already joined.

• Let $\mathcal{P}_{\text{TNC}}(2m)$ be the set of all non-crossing partitions of $\{1, 2, \ldots, 2m\}$ such that each block consists of even number of points. Then $\mathcal{P}_{\text{TNC}}(2m) \subset \mathcal{P}_{\text{T}}(2m)$

Non-crossing approximation

$$M_{2m} = \sum_{\vartheta \in \mathcal{P}_{\mathrm{T}}(2m)} \lambda^{|\vartheta|} \ge \sum_{\vartheta \in \mathcal{P}_{\mathrm{TNC}}(2m)} \lambda^{|\vartheta|} = M_{2m}(\pi_{\lambda/2} \boxplus \pi_{\lambda/2}^{\vee})$$

where $\pi_{\lambda/2}$ be the free Poisson distribution with parameter $\lambda/2$ and $\pi_{\lambda/2}^{\vee}$ its reflection (Bożejko, the free moment–cumulant calculus)

Asymptotics for large λ

$$M_{2m} = \sum_{\vartheta \in \mathcal{P}_{\mathrm{T}}(2m)} \lambda^{|\vartheta|} = |\mathcal{P}_{\mathrm{NCP}}(2m)| \lambda^{m} + O(\lambda^{m-1}).$$

explaining the Erdős-Rényi random graphs behave like a tree.

Summary

- 1. We proposed two models of real world complex networks. Motivated by Erdős–Rényi random graph + Watts-Strogatz small world model.
- 2. We derived combinatorial formulas for the spectral distribution in the sparse limit.
- 3. We examined a similar question for the Erdős-Rényi random graph.
- 4. Analytic study of the limit distribution is left open (a challenging problem for quantum probabilistic method).

References

- M. Bauer and O. Golinelli: Random incidence matrices: moments of the spectral density, J. Statist. Phys. 103 (2001), 301–337.
- [2] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes and A. N. Samukhin: Spectra of complex networks, Phys. Rev. E 68 (2003), 046109.
- [3] A. Hora and N. Obata: *Quantum Probability and Spectral Analysis of Graphs*, Springer, 2007.
- [4] S. Liang, N. Obata and S. Takahashi: Asymptotic spectral analysis of generalized Erdős– Rényi random graphs, to appear in BCP.