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. Graph Spectrum

Definition. A graph is a pair G = (V, E), where V is the set of vertices and F the set of
edges. For z,y € V we write z ~ y (adjacent) if they are connected by an edge.

* In this talk we focus on finite graphs with |V| = n < oo and their limit as n — oo.
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Definition. The adjacency matrix A = (A;;)i jev is defined by A;; = { . _
o ' 0, otherwise.

e The characteristic polynomial of G : () = det(xE — A)
e The spectrum of GG: eigenvalues of A, say, A,..., A\,
e The spectral distribution of G:

1 n
pa(dr) = - Z d(x — Ap)dx
k=1

e The moment sequence:

+00 1 n 1
M,, = "ua(dr) = — A= -TrA™
(1) /Ooxﬂc:( ) n; k nf

*x The graph spectrum is not enough to characterize a graph (up to isomorphisms), but

contains valuable information about graph geometry (cf. algebraic graph theory).
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Il. Random Graphs
Let V' =4{0,1,...,n — 1} be a fixed set of vertices (|V| = n).
G = {G; G is a graph whose vertex set is V'}, G| = o(3),
Given a probability measure P, (G, P) is called a random graph.
e The adjacency matrix A = Agof G € G = random matrix

e The spectral distribution 4 = g of G € G = random distribution

Main objectives are:

e The mean spectral distribution of a random graph:

n=E(ue) =) P{GHuc

Geg

e The moment sequence:

400 1
M, (1) = / " p(dr) = — E(Tr A™), m=1,2,....

00 n

e The asymptotic behaviour as n — oo (with some scaling balance)




A typical example: G(n, p) the Erdés—Rényi random graph

V=1{0,1,2,....n—1}, O<p<l
G = {G; graph whose vertex set is V'},
P({G}) = pPEl(1 = p)B) 1Ol | B(G)| = #redges,

For example, G(3,p)
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The mean spectral distribution:

13, = p°v3 + 3p*(1 — p)vy + 3p(1 — p)*v1 + (1 — p)’uy



Ill. Why Random Graphs?

Models of real world networks in our life (technological, social, biological, etc.)

Epoch-making papers:

[1] D. J. Watts and S. H. Strogatz: Collective dynamics of ‘small-world’ networks, Nature 393
(1998), 440-442. —> small world model (short distance between vertices)

[2] A.-L. Barabdsi and R. Albert: Emergence of scaling in random networks, Science 286
(1999), 509-512. — scale-free model (power law of the degree distribution)

e Both models are suitable for computer simulation.
e But mathematical analysis remains open (seems very difficult).
e In particular, spectral analysis of real world networks is an interesting topic

e Also interesting for testing the recently developed techniques of quantum probability

—> My challenging theme



My Strategy:

1. Study Erdés—Rényi randoms (1960)

e Original purpose was to prove existence of a graph having certain properties.
e Referred to often as a first step toward real world networks, however, not realistic.

e The explicit form of the asymptotic spectral distribution is still unknown.

2. Modify the WS-model and BA-model with the idea of random graphs and derive mathe-

matically rigorous results.

3. Spectral analysis of the WS-model and BA-model and go further.

In this talk | will report preliminary consideration and some results:
(i) Propose a model based on WS-model and ER-random graphs

(ii) Combinatorial formula for the asymptotic spectral distributions



IV. Our Model

Watts-Strogatz model
V={0,1,2,...,n—1}

T G) '@
TSRV RN
i
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Our model

{Xi;; 1,7 €V,i#j}: independent random variables with values in {0,1}

1
A = (Aj;) with A;; = =(X;; + Xj;): adjacency matrix of a “weighted” graph (network)

2
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Moreover, “geometric location™ is taken into account.

E.g., near vertices are connected at a large probability and remote ones at a small probability

Fix a subset R C {(i,5) e V xV;i#j}

Let 0 <p < 1and 0 < p' < 1. Define a random variable X;; by
(i) If (¢,5) € R, set P(X;; =1)=pand P(X;; =0)=1—-p.
(i) If (4,7) € R, set P(X;; =1)=p and P(X;; =0)=1—-p".

1
Then A;; = §(Xif + X;) has 3 different distributions according to the location of ¢ and j.

Pe Ay~ @ l Aj ~ B i Y A~y
.. ¢

(ij)e RNR GheBUR (ij) & RUR!
@) ERNR

Thus, our model G(n, R;p,p’) contains:
(i) grade of connection, i.e., A;; =1 (tight), A;; = 1/2 (loose), A;; = 0 (none).

(ii) probability of connection depends on location of vertices, A;; ~ «, 3, 7.
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V. Some general results on G(n, R;p,p’)

We assume “symmetry” in order that all vertices 7 are “statistically equivalent.”

For any iy € V there exists a permutation o on V such that o(iy) = 0 and for all
i,j €V, the distributions of A;; and A,;)(;) coincide. (This is a condition on R.)

Mean degree of G(n, R; p,p’)

d(G(n, R;p,p)) ZE degq (1) ZZE ii)

zGV ZEV JF#i
p+p
= E(4y) = 5
j#0

where Ry + R1 + Ry =n — 1 and

={jeV;(0,5) eRNRY, Ro=|{jeV;j#0,(0,j)¢ RUR'Y
Ri=|{jeV;(0,j5) € RUR'but ¢ RNR'}|.

Sparse limit (Poisson limit): n — oo and d — constant.

E.g.,incase of R={(i,i+1); 7 €V}, we take

n — oo, p — 0, np’ — X\ (constant)




Mean spectral distribution of G(n, R;p,p') is characterized by the moment sequence:

M= Y At () wiLin) TT e Hm H%

LeNy,({a,6,7}) ecE(L) eeE(L ecE(L
vie)=«a V(e)zﬂ V(e)zv

where o, (., 7. are the k-th moments of the distributions «, 3, 7y, respectively. Namely,

2p(1 —p p+p —2pp 2p'(1 —pf
a{/{:p2+%7 /Bli:pp/+ 2’1 9 fyl{:p/2_|_ (2,% )

Ap{a, 8,7 2 L=V, E,0,v,kK) is a {«a, 3,7 }-labeled rooted graph of size m, i.e.,

(L1) a connected graph (V, &) with 2 < |V| < m;
(L2) a distinguished vertex o € V which is called the root;
(L3) amapv: & — {a, 5,7}
(L4) amap k: & — {1,2,...,m} such that ) ___. k(e) = m.
u(L): the number of unicursal walks in £
t(L;n): the number of A-admissible embeddings, i.e., injections ¢ : V — {0,1,...,n — 1}
such that ¢(o) = 0 and for every {v,v'} € &, v({v,v'}) coincides with the distribution of

p(v)p(v'):
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Outline of proof:
(1) By definition and symmetry assumption,

1
My, = —B(Tr A™) = E{d, A" ) = > B(Aw Ay A o),
eW(vm)

WV,m)={[i] : 0#i1 # - Fip1#0, iz € V}.
(2) Let G|7] be the underlying graph and for e = {j, j'} € E(G|i]) we define
v(e) = the distribution of A;; = Ay,
rle) = {0 < s <m—1; {isicn} = {4, 5"}
(3) By independence of {A;;; 0 < j < j' <n—1}

o= E(I1447) =S I = 3 I s

j<j’ [i] i<y’ [i]leW(Vm) eeE(G

(4) Setting L]i] = (G[i],0, v, k),

My= > HEleW(V,m); Lli] = L}] H Mie
LeAm({a,8,7}) e€E(L
=S Aw@ e [T e H o T o
LeN,({a,6.7}) ecE(L) eEE (L) eeE(L

v(e)=a i B
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VI. Modell: R={(i,i+1);i€V}

e Note that the distribution v does not appear since R N R = (). Hence,

Mu(n,p,p) = > [Aut (L) u(L)H(L;n) H B H V(o)

LeA({B,7}) eeE(L eeE(L
V(e)=ﬁ V(@)Zv

e By our definition, an (3-edge corresponds to an edge {i,7 =1} € RU R".
o If L = (V. & 0,v,k) € Niy({B,7}) contains a B-cycle or a (-branch, there is no A-

admissible embedding (for a large n).

e [he sum is taken over

AL(Bv)) = {E e A({5,7}); (i) contains no (3-cycles; } |

(i) contains no (3-branches

In other words, in £ € A* ({3,7}) every 3-edge appears only as a linear segment (3-segment).
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VII. Model | in the Sparse Limit (n — oo, p’ — 0, np’ — A)

Mean degree: limd(Gr(n,p,p)) =lim{p+ (n —2)p'} =p+ A

2
Moments of 3 and v: lim G, = %, lim ny, = o
Our target:
lim M,,,(n, p,p’) = lim Z |Aut (£)| " 'u(L)t(L;n) H Bra(e) H Vic(e)
LeAy,({81) ceE(L) c€EE(L)
v(e)=p v(e)=y
First a few moments:
lim Ml(napap/) — 07
: A
lim MQ(napap/> — g 57
lim M3(n7p7p/) — 07
. p \ p2 2
lim M. == =+ pA+ —.
m My(n,p,p) =S+ g+ +PA+
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THEOREM 1. Let M,,, = M,,(n,p,p") be the m-th moment of the mean spectral distri-
bution of G;(n, p,p’). Then, in the sparse limit

0, if m is odd,
M =0 ST At ()] () 28O A i m s even.
LeAZF({BNY})

Outline of Proof. (0) Start with
lim M,,(n,p,p’) = lim Z |Aut (L) u(L)t(L:n) H Bra(e) H Vic(e)

LeN:,({8,7)) eeE(L eeE(L
V(e>=ﬁ v(e)zv

(1) Let £ = (V, €) be a connected graph obtained from £ by 3-edge contraction.
(2) Let b(L) be the number of isolated vertices of (V, E3).

WIE) (1 — 9 2)VI1 < 4L )| < 2VI-H0) V11

(3) For any connected graph G = (V, E) we have |V| < |E| + 1. Moreover, the equality

holds if and only if G is a tree.
(4) im¢(L;n) [T Va(e) = 0 unless £ belongs to

N8 ={L e AL({B,7)); Lisatree and || = |E,| (<= L is a tree) } .
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VIIl. Model II: R = {(Z,’L +1);1€ V}
Mean degree of G;1(n, p,p'):

d(Gr(n,p,p') =2p+ (n = 3)pf
Moment sequence of G;;(n, p,p’):

M, (n,p,p') = Z |Aut (L) u(L)t(L;n) H Qye(e H Vic(e)

LeN, ({a,v}) eeE(L eEE
V(e):a l/(e):'y
In the sparse limit n — oo, p’ — 0, npr — X
- 2p(1 — 2\
md(Gr(n,p,p')) =2p+ A, lim o, = p* + % : limny, = o

THEOREM 2. Let M,,(n,p,p’) be the m-th moment of the mean spectral distribution of

Grr(n,p,p"). Then, in the sparse limit

(

0, if m is odd,
b — D Aut (L) Tu(L) 2B AT ())& H ((2r)
m M, =

LeAsi({an)) ceB(L

V(e):a

if m is even.

° + 2p),
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IX. The Erdos—Rényi Random Graph

Definition. Letn > 1,0 < p < 1. Let G(n,p) be the set of all graphs with vertex set
V =4{0,1,2,...,n — 1} with probability P({G}) defined by

P{GY) = gl =L B(G) = {edges of G},
Some statistics of G(n, p)

e The mean spectral distribution ,unp — rather complicated!

e The mean degree: d(G ZE deg(i)) = (n— 1)p
ZEV
n n(n —1)
e The mean number of edges: E(|E(G)|) = §M2 == 5 P
—1 — 2
e The mean number of triangles: E(|A(G)|) = %Mg = n(n 6)(n )]03

Problem: Find lim y,, ,, in the sparse limit

n— oo, p—0, np— A (constant).

o Cluster coefficient: E(|A(G)])/|{all possible triangles}| = p*> — 0 (not realistic!)
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Moment sequence of i, (:mean spectral distribution of G(n, p))

My(jiny) = i B(Tr A™) — ZE (A™);) = B((A™)o0)
ZEV
= > At (L) u(L)(n = 1)(n—2) -+ (n— ([V(L)] - 1)) pFE),
LeAy,

where A\, is the collection of all labeled graphs £ = (V, &, 0, k), where
(i) (V, &) is a connected graph with 2 < [V| < m,
(i) o € V is a distinguished vertex,
(iii) K : € = {1,2,... } such that ) __. k(e) = m.
First few moments of 1,
Mi(piny) =0, M) = (n—=1)p, M) = (n —1)(n = 2)p’
Miy(pnp) = (n = 1)p +2(n — 1)(n — 2)p* + (n — 1)(n — 2)(n — 3)p’
Ms(pnp) = 5(n = 1)(n — 2)p* +5(n — 1)(n — 2)(n = 3)p" + (n — 1)(n = 2)(n — 3)(n — 4)p”

— — H A AL >
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THEOREM 3.
0, m is odd,
D censs |Aut (L) (L) MELI m s even,

where A** is the collection of all labeled graphs £ = (V, &, 0, k), where

My, = lim M, (pnp) =

(i) (V,€) is a tree with 2 < |V| < m,
(ii) 0 € V is a distinguished vertex,

(ii) Kk : € = {1,2,...} such that > ___. k(e) = m.

Outline of Proof: (1)
M) = Y |Aut (L) u(L)(n — 1)(n = 2) -+ (n — (|V(L)] — 1)) p=E)

~ Z [Aut (L) u(L)nV ENIBE ) L] ()

(2) If L is not a tree, then |V(L£)| < |E(L)| and (*) vanishes.
(3) If L is a tree, then |V (L)| = |E(L)| + 1 and we get the result.
Cf. Bauer—Golinelli (2001), Dorogovtsev—Goltsev—Mendes—-Samukhin (2003)
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Alternative expression of M,

THEOREM 4. The sparse limit of the 2m-th moment of mean spectral distribution of the
Erdés—Rényi random graph G(n, p) is given by

Outline of Proof: (1)
Moy (pnp) = B(A"™)0) = > B(Aoy Aigiy - Apy, o) = > pPElL

(2) In the limit, we need only consider

] 0 =g # i1 #ia # -+ F# tom—1 7 f2m = 0, i€V,
such that Gi| is a tree (by Theorem 3).
(3) For a such [i] € W(V,2m) we associate a partition ¢ = ¥[i] of {1,2,...,2m}. The set
of such partitions is denoted by Pr(2m).
(4) For ¥ = 9[i] we have |E(G]i])| = || and

m = lim Z Z P!l = lim Z (n—1)(n—2)---(n—|9])p"

19€PT 2m) HGW VQTTL) 19€'PT(27TL)
V[i]|=1v
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What is Pr(2m)?
e Every partition in Pp(2m) is obtained from a non-crossing pair partition of {1,2,...,2m}.

Given ¥ € Pncp(2m), (i) two or more blocks can be joined if their depth = 1; (ii)
two or more blocks can be joined if their depth are the same and the upper blocks are

already joined.

o Let Prnc(2m) be the set of all non-crossing partitions of {1,2,...,2m} such that each
block consists of even number of points. Then Prnc(2m) C Pr(2m)

Non-crossing approximation
Z AL > Z Al — Moy () o B WX/2)
JePr(2m) vePrNc(2m)

where 7 /5 be the free Poisson distribution with parameter /2 and 7r>v\/2 its reflection (Bozejko,

the free moment—cumulant calculus)

Asymptotics for large A
Moy = Y A= Pycp2m)| A7 + O(X" ).

?9673’1‘(2771)

explaining the Erdos—Rényi random graphs behave like a tree.
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Summary

1. We proposed two models of real world complex networks.

Motivated by Erdos—Rényi random graph + Watts-Strogatz small world model.
2. We derived combinatorial formulas for the spectral distribution in the sparse limit.
3. We examined a similar question for the Erdos—Rényi random graph.

4. Analytic study of the limit distribution is left open (a challenging problem for quantum
probabilistic method).
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