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I. Graph Spectrum

Definition. A graph is a pair G = (V,E), where V is the set of vertices and E the set of

edges. For x, y ∈ V we write x ∼ y (adjacent) if they are connected by an edge.

⋆ In this talk we focus on finite graphs with |V | = n < ∞ and their limit as n → ∞.

Definition. The adjacency matrix A = (Aij)i,j∈V is defined by Aij =

{
1, i ∼ j,

0, otherwise.
• The characteristic polynomial of G : φG(x) = det(xE − A)

• The spectrum of G: eigenvalues of A, say, λ1, . . . , λn

• The spectral distribution of G:

µG(dx) =
1

n

n∑
k=1

δ(x − λk)dx

• The moment sequence:

Mm(µG) =

∫ +∞

−∞
xmµG(dx) =

1

n

n∑
k=1

λm
k =

1

n
Tr Am

⋆ The graph spectrum is not enough to characterize a graph (up to isomorphisms), but

contains valuable information about graph geometry (cf. algebraic graph theory).
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II. Random Graphs

Let V = {0, 1, . . . , n − 1} be a fixed set of vertices (|V | = n).

G = {G ; G is a graph whose vertex set is V }, |G| = 2(n
2).

Given a probability measure P , (G, P ) is called a random graph.

• The adjacency matrix A = AG of G ∈ G =⇒ random matrix

• The spectral distribution µ = µG of G ∈ G =⇒ random distribution

Main objectives are:

• The mean spectral distribution of a random graph:

µ = E(µG) =
∑
G∈G

P ({G})µG

• The moment sequence:

Mm(µ) =

∫ +∞

−∞
xmµ(dx) =

1

n
E(Tr Am), m = 1, 2, . . . .

• The asymptotic behaviour as n → ∞ (with some scaling balance)
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A typical example: G(n, p) the Erdős–Rényi random graph

V = {0, 1, 2, . . . , n − 1}, 0 < p < 1

G = {G ; graph whose vertex set is V },

P ({G}) = p|E(G)|(1 − p)(
n
2)−|E(G)|, |E(G)| = #edges,

For example, G(3, p)

p p  p  p p  p  

The mean spectral distribution:

µ3,p = p3ν3 + 3p2(1 − p)ν2 + 3p(1 − p)2ν1 + (1 − p)3ν0
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III. Why Random Graphs?

Models of real world networks in our life (technological, social, biological, etc.)

Epoch-making papers:

[1] D. J. Watts and S. H. Strogatz: Collective dynamics of ‘small-world’ networks, Nature 393

(1998), 440–442. =⇒ small world model (short distance between vertices)

[2] A.-L. Barabási and R. Albert: Emergence of scaling in random networks, Science 286

(1999), 509–512. =⇒ scale-free model (power law of the degree distribution)

• Both models are suitable for computer simulation.

• But mathematical analysis remains open (seems very difficult).

• In particular, spectral analysis of real world networks is an interesting topic

• Also interesting for testing the recently developed techniques of quantum probability

=⇒ My challenging theme
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My Strategy:

1. Study Erdős–Rényi randoms (1960)

• Original purpose was to prove existence of a graph having certain properties.

• Referred to often as a first step toward real world networks, however, not realistic.

• The explicit form of the asymptotic spectral distribution is still unknown.

2. Modify the WS-model and BA-model with the idea of random graphs and derive mathe-

matically rigorous results.

3. Spectral analysis of the WS-model and BA-model and go further.

In this talk I will report preliminary consideration and some results:

(i) Propose a model based on WS-model and ER-random graphs

(ii) Combinatorial formula for the asymptotic spectral distributions
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IV. Our Model

Watts-Strogatz model

V = {0, 1, 2, . . . , n − 1}

i i

p

i

Γ (i)

Γ (i)
c

Γ (i)
c

Γ (i)
c

Γ (i)

Our model

{Xij ; i, j ∈ V, i ̸= j} : independent random variables with values in {0, 1}

A = (Aij) with Aij =
1

2
(Xij + Xji): adjacency matrix of a “weighted” graph (network)

i

j

X ij

i

j

ijA
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Moreover, “geometric location” is taken into account.

E.g., near vertices are connected at a large probability and remote ones at a small probability

Fix a subset R ⊂ {(i, j) ∈ V × V ; i ̸= j}
Let 0 < p < 1 and 0 < p′ < 1. Define a random variable Xij by

(i) If (i, j) ∈ R, set P (Xij = 1) = p and P (Xij = 0) = 1 − p.

(ii) If (i, j) ̸∈ R, set P (Xij = 1) = p′ and P (Xij = 0) = 1 − p′.

Then Aij =
1

2
(Xij + Xji) has 3 different distributions according to the location of i and j.

i

j

i

j

i

j

(i,j) ε R R t

(i,j) ε R R t
(i,j) ε R R

t
(i,j) ε R R

t

A ij ∼β γA ij ∼ α A ij ∼

Thus, our model G(n,R; p, p′) contains:

(i) grade of connection, i.e., Aij = 1 (tight), Aij = 1/2 (loose), Aij = 0 (none).

(ii) probability of connection depends on location of vertices, Aij ∼ α, β, γ.
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V. Some general results on G(n,R; p, p′)

We assume “symmetry” in order that all vertices i are “statistically equivalent.”

For any i0 ∈ V there exists a permutation σ on V such that σ(i0) = 0 and for all

i, j ∈ V , the distributions of Aij and Aσ(i)σ(j) coincide. (This is a condition on R.)

Mean degree of G(n,R; p, p′)

d̄(G(n,R; p, p′)) =
1

n

∑
i∈V

E(degG(i)) =
1

n

∑
i∈V

∑
j ̸=i

E(Aij)

=
∑
j ̸=0

E(A0j) = pR2 +
p + p′

2
R1 + p′R0,

where R0 + R1 + R2 = n − 1 and

R2 = |{j ∈ V ; (0, j) ∈ R ∩ Rt}|, R0 = |{j ∈ V ; j ̸= 0, (0, j) ̸∈ R ∪ Rt}|,
R1 = |{j ∈ V ; (0, j) ∈ R ∪ Rt but ̸∈ R ∩ Rt}|.

Sparse limit (Poisson limit): n → ∞ and d̄ → constant.

E.g., in case of R = {(i, i + 1) ; i ∈ V }, we take

n → ∞, p′ → 0, np′ → λ (constant)
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Mean spectral distribution of G(n,R; p, p′) is characterized by the moment sequence:

Mm =
∑

L∈Λm({α,β,γ})

|Aut (L)|−1u(L)t(L; n)
∏

e∈E(L)
ν(e)=α

ακ(e)

∏
e∈E(L)
ν(e)=β

βκ(e)

∏
e∈E(L)
ν(e)=γ

γκ(e),

where ακ, βκ, γκ are the κ-th moments of the distributions α, β, γ, respectively. Namely,

ακ = p2 +
2p(1 − p)

2κ
, βκ = pp′ +

p + p′ − 2pp′

2κ
, γκ = p′2 +

2p′(1 − p′)

2κ
.

Λm({α, β, γ}) ∋ L = (V , E , o, ν, κ) is a {α, β, γ}-labeled rooted graph of size m, i.e.,

(L1) a connected graph (V , E) with 2 ≤ |V| ≤ m;

(L2) a distinguished vertex o ∈ V which is called the root;

(L3) a map ν : E → {α, β, γ};
(L4) a map κ : E → {1, 2, . . . ,m} such that

∑
e∈E κ(e) = m.

u(L): the number of unicursal walks in L
t(L; n): the number of A-admissible embeddings, i.e., injections φ : V → {0, 1, . . . , n − 1}

such that φ(o) = 0 and for every {v, v′} ∈ E , ν({v, v′}) coincides with the distribution of

Aφ(v)φ(v′).
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Outline of proof:

(1) By definition and symmetry assumption,

Mm =
1

n
E(Tr Am) = E⟨δ0, A

mδ0⟩ =
∑

[i]∈W(V,m)

E(A0i1Ai1i2 · · ·Aim−10),

W(V,m) = {[i] : 0 ̸= i1 ̸= · · · ̸= im−1 ̸= 0, ik ∈ V }.

(2) Let G[i] be the underlying graph and for e = {j, j ′} ∈ E(G[i]) we define

ν(e) = the distribution of Ajj′ = Aj′j,

κ(e) = |{0 ≤ s ≤ m − 1 ; {is, is+1} = {j, j ′}}|.

(3) By independence of {Ajj′ ; 0 ≤ j < j ′ ≤ n − 1},

Mm =
∑
[i]

E

( ∏
j<j′

A
κ(j,j′)
jj′

)
=

∑
[i]

∏
j<j′

E(A
κ(j,j′)
jj′ ) =

∑
[i]∈W(V,m)

∏
e∈E(G[i])

Mκ(e)(ν(e))

(4) Setting L[i] = (G[i], 0, ν, κ),

Mm =
∑

L∈Λm({α,β,γ})

|{[i] ∈ W(V,m) ; L[i] ∼= L}|
∏

e∈E(L)

Mκ(e)(ν(e))

=
∑

L∈Λm({α,β,γ})

|Aut (L)|−1u(L)t(L; n)
∏

e∈E(L)
ν(e)=α

ακ(e)

∏
e∈E(L)
ν(e)=β

βκ(e)

∏
e∈E(L)
ν(e)=γ

γκ(e).
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VI. Model I: R = {(i, i + 1) ; i ∈ V }

• Note that the distribution α does not appear since R ∩ Rt = ∅. Hence,

Mm(n, p, p′) =
∑

L∈Λm({β,γ})

|Aut (L)|−1u(L)t(L; n)
∏

e∈E(L)
ν(e)=β

βκ(e)

∏
e∈E(L)
ν(e)=γ

γκ(e).

• By our definition, an β-edge corresponds to an edge {i, i ± 1} ∈ R ∪ Rt.

• If L = (V , E , o, ν, κ) ∈ Λm({β, γ}) contains a β-cycle or a β-branch, there is no A-

admissible embedding (for a large n).

β

γ

β
β

• The sum is taken over

Λ∗
m({β, γ}) =

{
L ∈ Λm({β, γ}) ;

(i) contains no β-cycles;

(ii) contains no β-branches

}
.

In other words, in L ∈ Λ∗
m({β, γ}) every β-edge appears only as a linear segment (β-segment).
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VII. Model I in the Sparse Limit (n → ∞, p′ → 0, np′ → λ)

Mean degree: lim d̄(GI(n, p, p′)) = lim{p + (n − 2)p′} = p + λ

Moments of β and γ: lim βκ =
p

2κ
, lim nγκ =

2λ

2κ
.

Our target:

lim Mm(n, p, p′) = lim
∑

L∈Λ∗
m({β,γ})

|Aut (L)|−1u(L)t(L; n)
∏

e∈E(L)
ν(e)=β

βκ(e)

∏
e∈E(L)
ν(e)=γ

γκ(e).

First a few moments:

lim M1(n, p, p′) = 0,

lim M2(n, p, p′) =
p

2
+

λ

2
,

lim M3(n, p, p′) = 0,

lim M4(n, p, p′) =
p

8
+

λ

8
+

p2

4
+ pλ +

λ2

2
.
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THEOREM 1. Let Mm = Mm(n, p, p′) be the m-th moment of the mean spectral distri-

bution of GI(n, p, p′). Then, in the sparse limit

lim Mm =


0, if m is odd,∑
L∈Λ∗∗

m ({β,γ})

|Aut (L)|−1u(L) 2|Eγ |+1−b(L)−m p|Eβ |(2λ)|Eγ |, if m is even.

Outline of Proof. (0) Start with

lim Mm(n, p, p′) = lim
∑

L∈Λ∗
m({β,γ})

|Aut (L)|−1u(L)t(L; n)
∏

e∈E(L)
ν(e)=β

βκ(e)

∏
e∈E(L)
ν(e)=γ

γκ(e).

(1) Let L̃ = (Ṽ , Ẽ) be a connected graph obtained from L by β-edge contraction.

(2) Let b(L) be the number of isolated vertices of (V , Eβ).

2|Ṽ|−b(L) (n − 2m2)|Ṽ|−1 ≤ |t(L; n)| ≤ 2|Ṽ|−b(L) n|Ṽ|−1.

(3) For any connected graph G = (V,E) we have |V | ≤ |E| + 1. Moreover, the equality

holds if and only if G is a tree.

(4) lim t(L; n)
∏

γκ(e) = 0 unless L belongs to

Λ∗∗
m ({β, γ}) =

{
L ∈ Λ∗

m({β, γ}) ; L̃ is a tree and |Ẽ | = |Eγ| (⇐⇒ L is a tree)
}

.
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VIII. Model II: R = {(i, i ± 1) ; i ∈ V }

Mean degree of GII(n, p, p′):

d̄(GI(n, p, p′)) = 2p + (n − 3)p′.

Moment sequence of GII(n, p, p′):

Mm(n, p, p′) =
∑

L∈Λ∗
m({α,γ})

|Aut (L)|−1u(L)t(L; n)
∏

e∈E(L)
ν(e)=α

ακ(e)

∏
e∈E(L)
ν(e)=γ

γκ(e).

In the sparse limit n → ∞, p′ → 0, np′ → λ:

lim d̄(GI(n, p, p′)) = 2p + λ, lim ακ = p2 +
2p(1 − p)

2κ
, lim nγκ =

2λ

2κ
.

THEOREM 2. Let Mm(n, p, p′) be the m-th moment of the mean spectral distribution of

GII(n, p, p′). Then, in the sparse limit

lim Mm =



0, if m is odd,∑
L∈Λ∗∗

m ({α,γ})

|Aut (L)|−1u(L) 2|Eγ |+1−b(L)−m (2λ)|Eγ |
∏

e∈E(L)
ν(e)=α

((2κ(e) − 2)p2 + 2p),

if m is even.
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IX. The Erdős–Rényi Random Graph

Definition. Let n ≥ 1, 0 < p < 1. Let G(n, p) be the set of all graphs with vertex set

V = {0, 1, 2, . . . , n − 1} with probability P ({G}) defined by

P ({G}) = p|E(G)|(1 − p)(
n
2)−|E(G)|, E(G) = {edges of G}.

Some statistics of G(n, p)

• The mean spectral distribution µn,p — rather complicated!

• The mean degree: d̄(G(n, p)) =
1

n

∑
i∈V

E(degG(i)) = (n − 1)p

• The mean number of edges: E(|E(G)|) =
n

2
M2 =

n(n − 1)

2
p

• The mean number of triangles: E(|△(G)|) =
n

6
M3 =

n(n − 1)(n − 2)

6
p3

Problem: Find lim µn,p in the sparse limit

n → ∞, p → 0, np → λ (constant).

• Cluster coefficient: E(|△(G)|)/|{all possible triangles}| = p3 → 0 (not realistic!)
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Moment sequence of µn,p (=mean spectral distribution of G(n, p))

Mm(µn,p) =
1

n
E(Tr Am) =

1

n

∑
i∈V

E((Am)ii) = E((Am)00)

=
∑
L∈Λm

|Aut (L)|−1u(L)(n − 1)(n − 2) · · · (n − (|V (L)| − 1)) p|E(L)|,

where Λm is the collection of all labeled graphs L = (V , E , o, κ), where

(i) (V , E) is a connected graph with 2 ≤ |V| ≤ m,

(ii) o ∈ V is a distinguished vertex,

(iii) κ : E → {1, 2, . . . } such that
∑

eE κ(e) = m.

First few moments of µn,p

M1(µn,p) = 0, M2(µn,p) = (n − 1)p, M3(µn,p) = (n − 1)(n − 2)p3

M4(µn,p) = (n − 1)p + 2(n − 1)(n − 2)p2 + (n − 1)(n − 2)(n − 3)p4

M5(µn,p) = 5(n − 1)(n − 2)p3 + 5(n − 1)(n − 2)(n − 3)p4 + (n − 1)(n − 2)(n − 3)(n − 4)p5

u u u u u u u
uu

u u
u

¢
¢
¢

A
A

A u u
u

¢
¢
¢

A
A

A u u u
uu u
©©©

HHH
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THEOREM 3.

Mm ≡ lim Mm(µn,p) =

0, m is odd,∑
L∈Λ∗∗

m
|Aut (L)|−1u(L) λ|E(L)|, m is even,

where Λ∗∗
m is the collection of all labeled graphs L = (V , E , o, κ), where

(i) (V , E) is a tree with 2 ≤ |V| ≤ m,

(ii) o ∈ V is a distinguished vertex,

(iii) κ : E → {1, 2, . . . } such that
∑

e∈E κ(e) = m.

Outline of Proof: (1)

Mm(µn,p) =
∑
L∈Λm

|Aut (L)|−1u(L)(n − 1)(n − 2) · · · (n − (|V (L)| − 1)) p|E(L)|

∼
∑
L∈Λm

|Aut (L)|−1u(L)n|V (L)|−1−|E(L)|(np)|E(L)|. (*)

(2) If L is not a tree, then |V (L)| ≤ |E(L)| and (*) vanishes.

(3) If L is a tree, then |V (L)| = |E(L)| + 1 and we get the result.

Cf. Bauer–Golinelli (2001), Dorogovtsev–Goltsev–Mendes–Samukhin (2003)
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Alternative expression of Mm

THEOREM 4. The sparse limit of the 2m-th moment of mean spectral distribution of the

Erdős–Rényi random graph G(n, p) is given by

M2m =
∑

ϑ∈PT(2m)

λ|ϑ|

Outline of Proof: (1)

M2m(µn,p) = E((A2m)00) =
∑

[i]∈W(V,2m)

E(A0i1Ai0i1 · · ·Ai2m−10) =
∑

[i]∈W(V,2m)

p|E(G[i])|.

(2) In the limit, we need only consider

[i] : 0 ≡ i0 ̸= i1 ̸= i2 ̸= · · · ̸= i2m−1 ̸= i2m ≡ 0, ik ∈ V,

such that G[i] is a tree (by Theorem 3).

(3) For a such [i] ∈ W(V, 2m) we associate a partition ϑ = ϑ[i] of {1, 2, . . . , 2m}. The set

of such partitions is denoted by PT(2m).

(4) For ϑ = ϑ[i] we have |E(G[i])| = |ϑ| and

M2m = lim
∑

ϑ∈PT(2m)

∑
[i]∈W(V,2m)

ϑ[i]=ϑ

p|ϑ| = lim
∑

ϑ∈PT(2m)

(n − 1)(n − 2) · · · (n − |ϑ|) p|ϑ|.
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What is PT(2m)?

• Every partition in PT(2m) is obtained from a non-crossing pair partition of {1, 2, . . . , 2m}.

Given ϑ ∈ PNCP(2m), (i) two or more blocks can be joined if their depth = 1; (ii)

two or more blocks can be joined if their depth are the same and the upper blocks are

already joined.

• Let PTNC(2m) be the set of all non-crossing partitions of {1, 2, . . . , 2m} such that each

block consists of even number of points. Then PTNC(2m) ⊂ PT(2m)

Non-crossing approximation

M2m =
∑

ϑ∈PT(2m)

λ|ϑ| ≥
∑

ϑ∈PTNC(2m)

λ|ϑ| = M2m(πλ/2 ¢ π∨
λ/2)

where πλ/2 be the free Poisson distribution with parameter λ/2 and π∨
λ/2 its reflection (Bożejko,

the free moment–cumulant calculus)

Asymptotics for large λ

M2m =
∑

ϑ∈PT(2m)

λ|ϑ| = |PNCP(2m)|λm + O(λm−1).

explaining the Erdős–Rényi random graphs behave like a tree.
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Summary

1. We proposed two models of real world complex networks.

Motivated by Erdős–Rényi random graph + Watts-Strogatz small world model.

2. We derived combinatorial formulas for the spectral distribution in the sparse limit.

3. We examined a similar question for the Erdős–Rényi random graph.

4. Analytic study of the limit distribution is left open (a challenging problem for quantum

probabilistic method).
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