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1. Quantum White Noise Calculus
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1.1. Background

.

The Boson Fock space over H = L2(T ) is defined by

.

.

.

. ..

.

.

Γ(H) =

{
ϕ = (fn) ; fn ∈ H⊗̂n , ∥ϕ∥2 =

∞∑
n=0

n!|fn|20 <∞
}
,

where T is a topological space equipped with a σ-finite Borel measure dt, |fn|0 is the

usual L2-norm of H⊗̂n = L2
sym(Tn).

.

The annihilation and creation operator at a point t ∈ T

.

.

.

. ..

. .

at : (0, . . . , 0, ξ⊗n, 0, . . . ) 7→ (0, . . . , 0, nξ(t)ξ⊗(n−1), 0, 0, . . . )

a∗t : (0, . . . , 0, ξ⊗n, 0, . . . ) 7→ (0, . . . , 0, 0, ξ⊗n⊗̂δt, 0, . . . )

A “general” Fock space operator takes the form:

∞∑
l,m=0

∫
T l+m

κl,m(s1, . . . , sl, t1, . . . , tm)a∗s1 · · · a
∗
sl
at1 · · · atmds1 · · · dsldt1 · · · dtm

Quantum field theory: e.g., Haag (1955), Berezin (1966), Krée (1988), etc.
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1.2. White Noise Approach

I) Gelfand triple for H = L2(T ):

E ⊂ H = L2(T ) ⊂ E∗, E = proj lim
p→∞

Ep , E∗ = ind lim
p→∞

E−p ,

where Ep is a dense subspace of H and is a Hilbert space for itself.

II) Gelfand triple for Γ(H) (e.g., Hida–Kubo–Takenaka space):

(E) ⊂ Γ(H) ⊂ (E)∗, (E) = proj lim
p→∞

Γ(Ep), (E)∗ = ind lim
p→∞

Γ(E−p),

Notes: (1) Γ(H) ∼= L2(E∗, µ) (Wiener–Itô–Segal isomorphism)

(2) (E) is the space of test functions and (E)∗ the space of distributions.

.

Definition

.

.

.

. ..

.

.

A continuous operator from (E) into (E)∗ is called a white noise operator. Let

L((E), (E)∗) denote the space of white noise operators, equipped with the topology of

bounded convergence.

Note: L((E), (E)), L((E)∗, (E)∗) and B(Γ(H)) are subspaces of L((E), (E)∗).
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1.3. Integral Kernel Operators

.

Theorem

.

.

.

. ..

.

.

at ∈ L((E), (E)) and a∗t ∈ L((E)∗, (E)∗) for all t ∈ R. Moreover, both maps

t 7→ at ∈ L((E), (E)) and t 7→ a∗t ∈ L((E)∗, (E)∗) are operator-valued rapidly

decreasing functions, i.e., belongs to E ⊗ L((E), (E)) and E ⊗ L((E)∗, (E)∗),

respectively. (The pair {at, a∗t ; t ∈ T} is called the quantum white noise on T .)

.

Definition

.

.

.

. ..

.

.

Given κl,m ∈ (E⊗(l+m))∗, l,m = 0, 1, 2, . . . , the integral kernel operator

Ξl,m(κl,m) ∈ L((E), (E)∗) is defined by

⟨⟨Ξl,m(κl,m)φξ, φη⟩⟩ = ⟨κl,m, η⊗l ⊗ ξ⊗m⟩e⟨ξ, η⟩,

where φξ = (1, ξ, ξ⊗2/2!, · · · ) is the exponential vector. We write

Ξl,m(κl,m)

=

∫
T l+m

κl,m(s1, · · · , sl, t1, · · · , tm)a∗s1 · · · a
∗
sl
at1 · · · atmds1 · · · dsldt1 · · · dtm
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1.4. Fock Expansion

.

Theorem (Obata (1993))

.

.

.

. ..

.

.

Every white noise operator Ξ ∈ L((E), (E)∗) admits the infinite series expansion:

Ξ =

∞∑
l,m=0

Ξl,m(κl,m), κl,m ∈ (E⊗(l+m))∗,

where the right-hand side converges in L((E), (E)∗). If Ξ ∈ L((E), (E)), then

κl,m ∈ E⊗l ⊗ (E⊗m)∗ and the series converges in L((E), (E)).

Berezin (1966): for bounded operators in a weak sense

Krée (1988): introduced distribution theory for operators

.

Our Standpoint

.

.

.

. ..

.

.

A white noise operator Ξ as a function of quantum white noise:

Ξ = Ξ(as, a
∗
t ; s, t ∈ T )
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2. Quantum White Noise Derivatives
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2.1. Definition

White noise (Hida) derivative: for a white noise functional Φ = Φ(Ḃ(t) ; t ∈ T ),

δΦ

δḂ(t)
=⇒ ∂tΦ or atΦ

A quantum counterpart: for a white noise operator as a function of quantum white noise:

Ξ = Ξ(as, a
∗
t ; s, t ∈ T )

We should like to define the derivatives with respect to as and a∗t :

δΞ

δas
and

δΞ

δa∗t

Expected properties:

δ

δas

∫
f(t)atdt = f(s)I

δ

δas

∫
f(s, t)asatdsdt =

∫
f(s, t)at dt+

∫
f(t, s)at dt

δ

δa∗t

∫
f(s, t)asa

∗
tdsdt =

∫
f(s, t)as ds
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2.1. Definition

.

Definition (Ji–Obata (2007))

.

.

.

. ..

.

.

For Ξ ∈ L((E), (E)∗) and ζ ∈ E we define D±ζ Ξ ∈ L((E), (E)∗) by

D
+
ζ Ξ = [a(ζ),Ξ], D

−
ζ Ξ = −[a∗(ζ),Ξ].

These are called the creation derivative and annihilation derivative of Ξ, respectively.

Both together are called the quantum white noise derivatives.

Note: For ζ ∈ E, both

a(ζ) = Ξ0,1(ζ) =

∫
T

ζ(t)at dt, a∗(ζ) = Ξ1,0(ζ) =

∫
T

ζ(t)a∗t dt,

belong to L((E), (E)) ∩ L((E)∗, (E)∗).

Some properties:

.

.

.

1 (D+
ζ Ξ)∗ = D−ζ (Ξ∗) and (D−ζ Ξ)∗ = D+

ζ (Ξ∗).

.

.

.

2 D
±
ζ is a continuous linear map from L((E), (E)∗) into itself.

.

.

.

3 Moreover, (ζ,Ξ) 7→ D
±
ζ Ξ is a continuous bilinear map from E × L((E), (E)∗)

into L((E), (E)∗).
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Remark: Pointwisely Defined QWN-Derivatives

Recall: The annihilation and creation operators

a(f) =

∫
T

f(t)at dt, a∗(f) =

∫
T

f(t)a∗t dt .

It is natural to write

D
+
ζ =

∫
T

ζ(t)D+
t dt, D

−
ζ =

∫
T

ζ(t)D−t dt.

In fact, this expression is useful for computation.

However, it is not straightforward to define D±t for each point t ∈ T because

D
+
t Ξ = [at,Ξ] = atΞ− Ξat, D

−
t Ξ = −[a∗t ,Ξ] = −a∗tΞ + Ξa∗t

are not well-defined in general.

Nevertheless, the pointwisely defined quantum white noise derivatives D±t are well

formulated for admissible white noise operators (Ji–Obata, 2009, to appear).
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2.2. Examples

The canonical correspondence (kernel theorem) between S ∈ L(E,E∗) and

τ = τS ∈ (E ⊗ E)∗ is given by ⟨τS, η ⊗ ξ⟩ = ⟨Sξ, η⟩ for ξ, η ∈ E.

.

(1) The generalized Gross Laplacian associated with S is defined by

.

.

.

. ..

.

.

∆G(S) = Ξ0,2(τS) =

∫
T×T

τS(s, t)asat dsdt

Note that ∆G(S) ∈ L((E), (E)). Then,

D
+
ζ ∆G(S) = 0, D

−
ζ ∆G(S) = a(Sζ) + a(S∗ζ)

In fact, since

D
−
t ∆G(S) =

∫
T

τS(s, t)as ds+

∫
T

τS(t, s)as ds

we have

D
−
ζ ∆G(S) =

∫
T×T

τS(s, t)asζ(t) dsdt+

∫
T×T

τS(t, s)asζ(t) dsdt

=

∫
T

Sζ(s)as ds+

∫
T

S∗ζ(s)as ds = a(Sζ) + a(S∗ζ)
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2.2. Examples

.

(2) The adjoint of ∆G(S) ∈ L((E)∗, (E)∗) is given by

.

.

.

. ..

.

.

∆∗
G(S) = Ξ2,0(τS) =

∫
T×T

τS(s, t)a
∗
sa
∗
t dsdt

The quantum white noise derivatives are given by

D
−
ζ ∆∗

G(S) = 0, D
+
ζ ∆∗

G(S) = a∗(Sζ) + a∗(S∗ζ)

.

(3) The conservation operator associated with S is defined by

.

.

.

. ..

.

.

Λ(S) = Ξ1,1(τS) =

∫
T×T

τS(s, t)a
∗
sat dsdt

In general, Λ(S) ∈ L((E), (E)∗).

The quantum white noise derivatives are given by

D
−
ζ Λ(S) = a∗(Sζ), D

+
ζ Λ(S) = a(S∗ζ).
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2.3. Wick Products

.

Definition

.

.

.

. ..

.

.

For Ξ1,Ξ2 ∈ L((E), (E)∗) the Wick (or normal-ordered) product Ξ1 ⋄ Ξ2 is defined

by

(Ξ1 ⋄ Ξ2)̂ (ξ, η) = Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ,η⟩, ξ, η ∈ E,

where Ξ̂(ξ, η) is the symbol of a white noise operator Ξ ∈ L((E), (E)∗) defined by

Ξ̂(ξ, η) = ⟨⟨Ξϕξ, ϕη⟩⟩, ξ, η ∈ E,

where ϕξ = (1, ξ, · · · , ξ⊗n/n!, · · · ) is an exponential vector.

Some properties:

.

.

.

1 For any Ξ ∈ L((E), (E)∗) we have

at ⋄ Ξ = Ξ ⋄ at = Ξat , a∗t ⋄ Ξ = Ξ ⋄ a∗t = a∗tΞ.

.

.

.

2 Equipped with the Wick product, L((E), (E)∗) becomes a commutative algebra.
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2.4. Wick Derivations

.

Definition

.

.

.

. ..

.

.

A continuous linear map D : L((E), (E)∗)→ L((E), (E)∗) is called a Wick

derivation if

D(Ξ1 ⋄ Ξ2) = (DΞ1) ⋄ Ξ2 + Ξ1 ⋄ (DΞ2)

for all Ξ1,Ξ2 ∈ L((E), (E)∗).

.

Theorem

.

.

.

. ..

.

.

The creation and annihilation derivatives D±ζ are Wick derivations for any ζ ∈ E.

Moreover, it is proved that a general Wick derivation D is expressed in the form:

D =

∫
T

F (t) ⋄D+
t dt+

∫
T

G(t) ⋄D−t dt,

where F,G ∈ E ⊗ L((E), (E)∗).
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.

Proof.

.

.

.

. ..

.

.

In general, for Ξ ∈ L((E), (E)∗) we have

(D
+
ζ Ξ)̂(ξ, η) = ⟨⟨(a(ζ)Ξ− Ξa(ζ))ϕξ, ϕη⟩⟩

= ⟨⟨Ξϕξ, a∗(ζ)ϕη⟩⟩ − ⟨⟨Ξa(ζ)ϕξ, ϕη⟩⟩

=
d

dt

∣∣∣∣
t=0

⟨⟨Ξϕξ, ϕη+tζ⟩⟩ − ⟨ξ, ζ⟩⟨⟨Ξϕξ, ϕη⟩⟩

=
d

dt

∣∣∣∣
t=0

Ξ̂(ξ, η + tζ)− ⟨ξ, ζ⟩Ξ̂(ξ, η). (1)

Then for Ξ = Ξ1 ⋄ Ξ2 we have

(D
+
ζ Ξ)̂(ξ, η) =

d

dt

∣∣∣∣
t=0

Ξ̂1(ξ, tζ + η)Ξ̂2(ξ, tζ + η)e−⟨ξ, tζ+η⟩

− ⟨ξ, ζ⟩Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ, η⟩

=

(
d

dt

∣∣∣∣
t=0

Ξ̂1(ξ, tζ + η)

)
Ξ̂2(ξ, η)e

−⟨ξ, η⟩

+ Ξ̂1(ξ, η)

(
d

dt

∣∣∣∣
t=0

Ξ̂2(ξ, tζ + η)

)
e−⟨ξ, η⟩

− 2⟨ξ, ζ⟩Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ, η⟩.

Viewing (1) once again, we obtain

(D
+
ζ Ξ)̂(ξ, η) = ((D

+
ζ Ξ1) ⋄ Ξ2)

̂(ξ, η) + (Ξ1 ⋄ (D
+
ζ Ξ2))

̂(ξ, η).
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3. Differential Equations for White Noise Operators

Nobuaki Obata (GSIS, Tohoku University) Recent Developments in Quantum White Noise Calculus: Quantum White Noise Derivatives and Implementation Problem2009IDAT, June 22-24, 2009 17 / 33



3.1. A General Result

.

Given a Wick derivation D and a white noise operator G ∈ L((E), (E)∗),
consider

.

.

.

. ..

.

.

DΞ = G ⋄ Ξ (2)

The Wick exponential is defined by

wexp Y =

∞∑
n=0

1

n!
Y ⋄n, Y ∈ L((E), (E)∗),

whenever the series converges in L((E), (E)∗).
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.

Theorem

.

.

.

. ..

.

.

Assume that there exists an operator Y ∈ L((E), (E)∗) such that DY = G and

wexp Y is defined in L((E), (E)∗). Then every solution to

DΞ = G ⋄ Ξ (3)

is of the form:

Ξ = (wexp Y ) ⋄ F, (4)

where F ∈ L((E), (E)∗) satisfying DF = 0.

.

Proof.

.

.

.

. ..

.

.

It is straightforward to see that (4) is a solution to (3). To prove the converse, let Ξ be an

arbitrary solution to (3). Set

F = (wexp (−Y )) ⋄ Ξ.

Obviously, F ∈ L((E), (E)∗) and Ξ = (wexp Y ) ⋄ F . We only need to show that DF = 0.

In fact,

DF = −DY ⋄ (wexp (−Y )) ⋄ Ξ + (wexp (−Y )) ⋄ DΞ

= −G ⋄ (wexp (−Y )) ⋄ Ξ + (wexp (−Y )) ⋄G ⋄ Ξ = 0.

This completes the proof.
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3.2. Example (1)

.

Let us consider the (system of) differential equations:

.

.

.

. ..

.

.

D
+
ζ Ξ = 0, ζ ∈ E. (5)

We expect easily that Ξ = Ξ(as, a
∗
t ; s, t ∈ T ) does not depend on the creation

operators. In fact, by Fock expansion we see that the solutions to (5) are given by

Ξ =

∞∑
m=0

Ξ0,m(κ0,m).

.

In a similar manner, the solutions to

.

.

.

. ..

.

.

D
−
ζ Ξ = 0, ζ ∈ E, (6)

are given by

Ξ =

∞∑
l=0

Ξl,0(κl,0).

Consequently, a white noise operator satisfying both (5) and (6) are the scalar operators.

Thus, the irreducibility of the canonical commutation relation is reproduced.
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3.3. Example (2)

.

Let us consider the differential equation:

.

.

.

. ..

.

.

D
−
ζ Ξ = 2a(ζ) ⋄ Ξ, ζ ∈ E. (7)

We need to find Y ∈ L((E), (E)∗) satisfying D−ζ Y = 2a(ζ).

In fact, Y = ∆G is a solution.

Moreover, it is easily verified that wexp ∆G is defined in L((E), (E)).

Then, a general solution to (7) is of the form:

Ξ = (wexp ∆G) ⋄ F, (8)

where D−ζ F = 0 for all ζ ∈ E.
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3.3. Example (3)

.

Now we consider the differential equation:

.

.

.

. ..

.

.

D
+
ζ Ξ = 0,

D
−
ζ Ξ = 2a(ζ) ⋄ Ξ, ζ ∈ E.

(9)

By Example (2) the solution is of the form:

Ξ = (wexp ∆G) ⋄ F, D
−
ζ F = 0 for all ζ ∈ E.

We need only to find additional conditions for F satisfying D+
ζ Ξ = 0.

Noting that D+
ζ ∆G = 0, we have

D
+
ζ Ξ = (wexp ∆G) ⋄D+

ζ F = 0.

Hence D+
ζ F = 0 for all ζ ∈ E, so F is a scalar operator (Example (1)).

Consequently, the solution to (9) is of the form:

Ξ = C wexp ∆G, C ∈ C.
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4. Implementation Problem for CCR
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4.1. The Implementation Problem

Let S, T ∈ L(E,E) and consider transformed annihilation and creation operators:

b(ζ) = a(Sζ) + a∗(Tζ), b∗(ζ) = a∗(Sζ) + a(Tζ),

where ζ ∈ E. We know that b(ζ), b∗(ζ) ∈ L((E), (E)) ∩ L((E)∗, (E)∗).

.

The implementation problem

.

.

.

. ..

.

.

is to find a white noise operator U ∈ L((E), (E)∗) satisfying

(E)
U−−−−→ (E)∗

a(ζ)

y yb(ζ)
(E) −−−−→

U
(E)∗

(E)
U−−−−→ (E)∗

a∗(ζ)

y yb∗(ζ)

(E) −−−−→
U

(E)∗

Remarks: (1) T ∗S = S∗T is equivalent to

[b(ζ), b(η)] = [b∗(ζ), b∗(η)] = 0, ζ, η ∈ E.

(2) S∗S − T ∗T = I is equivalent to

[b(ζ), b∗(η)] = ⟨ζ, η⟩, ζ, η ∈ E.
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4.2. Our Approach

Ua(ζ) = b(ζ)U

= (a(Sζ) + a∗(Tζ))U

= D+
SζU + Ua(Sζ) + a∗(Tζ)U,

D
+
SζU = Ua(ζ)− Ua(Sζ)− a∗(Tζ)U

= Ua(ζ − Sζ)− a∗(Tζ)U

= [a(ζ − Sζ)− a∗(Tζ)] ⋄ U.

.

Thus,

.

.

.

. ..

.

.

Ua(ζ) = b(ζ)U ⇐⇒ D
+
SζU = [a(ζ − Sζ)− a∗(Tζ)] ⋄ U.

.

Similarly,

.

.

.

. ..

.

.

Ua∗(ζ) = b∗(ζ)U ⇐⇒ (D−ζ −D
+
Tζ)U = [a∗(Sζ − ζ) + a(Tζ)] ⋄ U.
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4.3. Solution to the Implementation Problem (1)

.

Theorem

.

.

.

. ..

.

.

Assume that S is invertible and that T ∗S = S∗T . Then a white noise operator

U ∈ L((E), (E)∗) satisfies the intertwining property:

Ua(ζ) = b(ζ)U, ζ ∈ E,

if and only if U is of the form

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I)
}
⋄ F, (10)

where F ∈ L((E), (E)∗) fulfills D+
ζ F = 0 for all ζ ∈ E.

Remark: Note that

wexp

{
−

1

2
∆∗G(TS−1)

}
= e−

1
2
∆∗

G(TS−1), wexp
{
Λ((S−1)∗ − I)

}
= Γ((S−1)∗),

where Γ((S−1)∗) is the second quantization of (S−1)∗. Hence, (10) becomes

U = e−
1
2
∆∗

G(TS−1) ⋄ Γ((S−1)∗) ⋄ F

= e−
1
2
∆∗

G(TS−1)Γ((S−1)∗)F.
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.

Proof.

.

.

.

. ..

.

.

(1) We only need to solve the differential equation

D
+
SζU = [a(ζ − Sζ)− a∗(Tζ)] ⋄ U. (11)

(2) We readily know that

D
+
SζΛ((S−1)∗ − I) = a(ζ − Sζ), D

+
Sζ∆

∗
G(TS−1) = 2a∗(Tζ).

(3) Then by the general result a general form of the solutions to (11) is given by

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I)
}
⋄ F,

where F ∈ L((E), (E)∗) is an arbitrary white noise operator satisfying D+
SζF = 0 for

all ζ ∈ E.

(4) Since S is invertible, the last condition for F is equivalent to that D+
ζ F = 0 for all

ζ ∈ E.
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Solution to the Implementation Problem (2)

.

Theorem

.

.

.

. ..

.

.

Assume the following conditions:

(i) S is invertible;

(ii) T ∗S = S∗T ;

(iii) S∗S − T ∗T = I;

(iv) ST ∗ = TS∗.

Then a white noise operator U ∈ L((E), (E)∗) satisfies the intertwining property:

Ua∗(ζ) = b∗(ζ)U, ζ ∈ E,

if and only if U is of the form:

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
⋄G,

where G ∈ L((E), (E)∗) is an arbitrary white noise operator satisfying

(D−ζ −D
+
Tζ)G = 0 for all ζ ∈ E.
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.

Proof.

.

.

.

. ..

.

.

(1) Our task is to solve the differential equation:

(D−ζ −D
+
Tζ)U = [a∗(Sζ − ζ) + a(Tζ)] ⋄ U.

(2) First we need to find a solution to the differential equation:

(D−ζ −D
+
Tζ)Y = a∗(Sζ − ζ) + a(Tζ). (12)

(3) As is easily verified,

Y = ∆∗
G(K) + Λ(L) + ∆G(M), K = K∗, M =M∗,

satisfies (12) if and only if

2M − L∗T = T, L− 2KT = S − I.

Thanks to the conditions (i)–(iv) we may choose

K = −1

2
TS−1, L = (S−1)∗ − I, M =

1

2
S−1T.

(4) Then the assertion follows immediately from our general theorem.
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Solution to the Implementation Problem (3)

.

Theorem

.

.

.

. ..

.

.

Assume the following conditions:

(i) S is invertible;

(ii) T ∗S = S∗T ⇐⇒ [b(ζ), b(η)] = [b∗(ζ), b∗(η)] = 0;

(iii) S∗S − T ∗T = I ⇐⇒ [b(ζ), b∗(η)] = ⟨ζ, η⟩;

(iv) ST ∗ = TS∗.

A white noise operator U ∈ L((E), (E)∗) satisfies the following intertwining properties:

Ua(ζ) = b(ζ)U, Ua∗(ζ) = b∗(ζ)U, ζ ∈ E,

if and only if U is of the form:

U = C wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
= C e−

1
2
∆∗

G(TS−1)Γ((S−1)∗) e
1
2
∆G(S−1T ),

where C ∈ C.

Nobuaki Obata (GSIS, Tohoku University) Recent Developments in Quantum White Noise Calculus: Quantum White Noise Derivatives and Implementation Problem2009IDAT, June 22-24, 2009 30 / 33



.

Proof.

.

.

.

. ..

.

.

By the above two theorems, U is of the form

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I)
}
⋄ F

= wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
⋄G,

where F,G ∈ L((E), (E)∗) satisfy

D
+
ζ F = 0, (D−ζ −D

+
Tζ)G = 0, for all ζ ∈ E.

We see from the above relation that

G = F ⋄ wexp

{
−1

2
∆G(S−1T )

}
.

Since the right hand side contains no creation operators, we have

D
+
ζ G = 0, ζ ∈ E. (13)

Then,

0 = (D−ζ −D
+
Tζ)G = D−ζ G, ζ ∈ E, (14)

so G is a scalar operator.
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Final Remarks

.

Definition (Chung–Ji (1997))

.

.

.

. ..

.

.

For U ∈ L(E,E∗) we have e∆G(U) ∈ L((E), (E)) and for V ∈ L(E,E∗) we have

Γ(V ) ∈ L((E), (E)∗). Then their composition

GU,V = Γ(V ) e∆G(U)

becomes a white noise operator. This is called a generalized Fourier–Gauss transform and

its adjoint operator G∗U,V a generalized Fourier–Mehler transform.

(1) The solution to the implementation problem:

U = C e−
1
2
∆∗

G(TS−1)Γ((S−1)∗) e
1
2
∆G(S−1T )

is the composition of the generalized Fourier–Mehler and Fourier–Gauss transforms.

=⇒ a new (white noise) approach to Bogoliubov transform

(2) Integral transform (lecture by H. S. Chung)∫
E∗
ϕ(ax+ by)µ(dx) = G(a2+b2−1)/2,bϕ(y)

A systematic study of the transformations will be presented by Un Cig Ji.
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