Recent Developments in Quantum White Noise Calculus: Quantum White Noise Derivatives and Implementation Problem

Nobuaki Obata

GSIS, Tohoku University

2009IDAT, June 22-24, 2009

Plan

[0]

1. Quantum White Noise Calculus

- 1.1. Background
- 1.2. White Noise Approach
- 1.3. Integral Kernel Operators
- 1.4. Fock Expansion
- 2. Quantum White Noise Derivatives
 - 2.1. Definition
 - 2.2. Examples
 - 2.3. Wick Products
 - 2.4. Wick Derivations

3. Differential Equations for White Noise Operators

- 3.1. A General Result
- 3.2. Examples
- 4. Implementation Problem for CCR
 - 4.1. The Implementation Problem
 - 4.2. Our Approach
 - 4.3. Solution to the Implementation Problem

1. Quantum White Noise Calculus

1.1. Background

The Boson Fock space over $H = L^2(T)$ is defined by

$$\Gamma(H)=\left\{\phi=(f_n)\,;\,f_n\in H^{\widehat{\otimes}n}\,,\,\,\|\phi\|^2=\sum_{n=0}^\infty n!|f_n|_0^2<\infty
ight\},$$

where T is a topological space equipped with a σ -finite Borel measure dt, $|f_n|_0$ is the usual L^2 -norm of $H^{\widehat{\otimes}n} = L^2_{\mathrm{sym}}(T^n)$.

The annihilation and creation operator at a point $t \in T$

$$egin{aligned} a_t:(0,\ldots,0,m{\xi}^{\otimes n},0,\ldots)&\mapsto(0,\ldots,0,nm{\xi}(t)m{\xi}^{\otimes(n-1)},0,0,\ldots)\ a_t^*:(0,\ldots,0,m{\xi}^{\otimes n},0,\ldots)&\mapsto(0,\ldots,0,0,m{\xi}^{\otimes n}\widehat{\otimes}\delta_t,0,\ldots) \end{aligned}$$

A "general" Fock space operator takes the form:

$$\sum_{l,m=0}^{\infty}\int_{T^{l+m}} \kappa_{l,m}(s_1,\ldots,s_l,t_1,\ldots,t_m) a_{s_1}^*\cdots a_{s_l}^*a_{t_1}\cdots a_{t_m} ds_1\cdots ds_l dt_1\cdots dt_m$$

Quantum field theory: e.g., Haag (1955), Berezin (1966), Krée (1988), etc.

1.2. White Noise Approach

I) Gelfand triple for $H = L^2(T)$:

$$E \subset H = L^2(T) \subset E^*, \qquad E = \operatorname{proj}_{p o \infty} E_p \,, \quad E^* = \operatorname{ind}_{p o \infty} E_{-p} \,,$$

where E_p is a dense subspace of H and is a Hilbert space for itself.

II) Gelfand triple for $\Gamma(H)$ (e.g., Hida–Kubo–Takenaka space):

 $(E)\subset \Gamma(H)\subset (E)^*, \qquad (E)=\mathop{\mathrm{proj}}_{p
ightarrow\infty}\Gamma(E_p), \quad (E)^*=\mathop{\mathrm{ind}}_{p
ightarrow\infty}\Gamma(E_{-p}),$

Notes: (1) $\Gamma(H) \cong L^2(E^*, \mu)$ (Wiener–Itô–Segal isomorphism) (2) (*E*) is the space of test functions and (*E*)^{*} the space of distributions.

Definition

A continuous operator from (E) into $(E)^*$ is called a *white noise operator*. Let $\mathcal{L}((E), (E)^*)$ denote the space of white noise operators, equipped with the topology of bounded convergence.

Note: $\mathcal{L}((E), (E))$, $\mathcal{L}((E)^*, (E)^*)$ and $\mathcal{B}(\Gamma(H))$ are subspaces of $\mathcal{L}((E), (E)^*)$.

Theorem

 $a_t \in \mathcal{L}((E), (E))$ and $a_t^* \in \mathcal{L}((E)^*, (E)^*)$ for all $t \in \mathbb{R}$. Moreover, both maps $t \mapsto a_t \in \mathcal{L}((E), (E))$ and $t \mapsto a_t^* \in \mathcal{L}((E)^*, (E)^*)$ are operator-valued rapidly decreasing functions, i.e., belongs to $E \otimes \mathcal{L}((E), (E))$ and $E \otimes \mathcal{L}((E)^*, (E)^*)$, respectively. (The pair $\{a_t, a_t^*; t \in T\}$ is called the quantum white noise on T.)

Definition

Given $\kappa_{l,m} \in (E^{\otimes (l+m)})^*$, $l, m = 0, 1, 2, \ldots$, the integral kernel operator $\Xi_{l,m}(\kappa_{l,m}) \in \mathcal{L}((E), (E)^*)$ is defined by

$$\langle\!\langle \Xi_{l,m}(\kappa_{l,m}) arphi_{m{\xi}},\,arphi_{\eta}
angle
angle = \langle \kappa_{l,m},\,\eta^{\otimes l}\otimes m{\xi}^{\otimes m}
angle e^{\langlem{\xi},\,\eta
angle},$$

where $arphi_{m{\xi}}=(1,m{\xi},m{\xi}^{\otimes 2}/2!,\cdots)$ is the exponential vector. We write

$$egin{aligned} \Xi_{l,m}(\kappa_{l,m}) \ &= \int_{T^{l+m}} &\kappa_{l,m}(s_1,\cdots,s_l,t_1,\cdots,t_m) a^*_{s_1}\cdots a^*_{s_l}a_{t_1}\cdots a_{t_m}ds_1\cdots ds_l dt_1\cdots dt_m \end{aligned}$$

Theorem (Obata (1993))

Every white noise operator $\Xi \in \mathcal{L}((E), (E)^*)$ admits the infinite series expansion:

$$\Xi = \sum_{l,m=0}^\infty \Xi_{l,m}(\kappa_{l,m}), \qquad \kappa_{l,m} \in (E^{\otimes (l+m)})^*,$$

where the right-hand side converges in $\mathcal{L}((E), (E)^*)$. If $\Xi \in \mathcal{L}((E), (E))$, then $\kappa_{l,m} \in E^{\otimes l} \otimes (E^{\otimes m})^*$ and the series converges in $\mathcal{L}((E), (E))$.

Berezin (1966): for bounded operators in a weak sense Krée (1988): introduced distribution theory for operators

Our Standpoint

A white noise operator Ξ as a function of quantum white noise:

$$\Xi=\Xi(a_s,a_t^*;s,t\in T)$$

2. Quantum White Noise Derivatives

2.1. Definition

White noise (Hida) derivative: for a white noise functional $\Phi = \Phi(\dot{B}(t); t \in T)$,

$$rac{\delta \Phi}{\dot{bB}(t)} \;\; \Longrightarrow \;\; \partial_t \Phi \;\; {
m or} \;\; a_t \Phi$$

A quantum counterpart: for a white noise operator as a function of quantum white noise:

$$\Xi = \Xi(a_s, a_t^*; s, t \in T)$$

We should like to define the derivatives with respect to a_s and a_t^* :

$$rac{\delta \Xi}{\delta a_s}$$
 and $rac{\delta \Xi}{\delta a_t^*}$

Expected properties:

$$egin{aligned} &rac{\delta}{\delta a_s}\int f(t)a_tdt = f(s)I\ &rac{\delta}{\delta a_s}\int f(s,t)a_sa_tdsdt = \int f(s,t)a_t\,dt + \int f(t,s)a_t\,dt\ &rac{\delta}{\delta a_t^*}\int f(s,t)a_sa_t^*dsdt = \int f(s,t)a_s\,ds \end{aligned}$$

2.1. Definition

Definition (Ji–Obata (2007))

For $\Xi \in \mathcal{L}((E), (E)^*)$ and $\zeta \in E$ we define $D_{\zeta}^{\pm}\Xi \in \mathcal{L}((E), (E)^*)$ by

$$D^+_\zeta\Xi=[a(\zeta),\Xi], \qquad D^-_\zeta\Xi=-[a^*(\zeta),\Xi].$$

These are called the *creation derivative* and *annihilation derivative* of Ξ , respectively. Both together are called the *quantum white noise derivatives*.

<u>Note</u>: For $\zeta \in E$, both

$$a(\zeta) = \Xi_{0,1}(\zeta) = \int_T \zeta(t) a_t \, dt, \quad a^*(\zeta) = \Xi_{1,0}(\zeta) = \int_T \zeta(t) a_t^* \, dt,$$

belong to $\mathcal{L}((E),(E))\cap \mathcal{L}((E)^*,(E)^*).$ Some properties:

•
$$(D_{\zeta}^{+}\Xi)^{*} = D_{\zeta}^{-}(\Xi^{*})$$
 and $(D_{\zeta}^{-}\Xi)^{*} = D_{\zeta}^{+}(\Xi^{*}).$

2 D_{ζ}^{\pm} is a continuous linear map from $\mathcal{L}((E), (E)^*)$ into itself.

Moreover, (ζ,Ξ) → D[±]_ζΞ is a continuous bilinear map from E × L((E), (E)*) into L((E), (E)*).

Recall: The annihilation and creation operators

$$a(f)=\int_T f(t)a_t\,dt,\qquad a^*(f)=\int_T f(t)a_t^*\,dt\,.$$

It is natural to write

$$D_{\zeta}^+ = \int_T \zeta(t) D_t^+ dt, \qquad D_{\zeta}^- = \int_T \zeta(t) D_t^- dt.$$

In fact, this expression is useful for computation.

However, it is not straightforward to define D_t^{\pm} for each point $t \in T$ because

$$D_t^+\Xi=[a_t,\Xi]=a_t\Xi-\Xi a_t, \qquad D_t^-\Xi=-[a_t^*,\Xi]=-a_t^*\Xi+\Xi a_t^*$$

are not well-defined in general.

Nevertheless, the pointwisely defined quantum white noise derivatives D_t^{\pm} are well formulated for admissible white noise operators (Ji–Obata, 2009, to appear).

2.2. Examples

The canonical correspondence (kernel theorem) between $S \in \mathcal{L}(E, E^*)$ and $\tau = \tau_S \in (E \otimes E)^*$ is given by $\langle \tau_S, \eta \otimes \xi \rangle = \langle S\xi, \eta \rangle$ for $\xi, \eta \in E$.

(1) The generalized Gross Laplacian associated with S is defined by

$$\Delta_{\mathrm{G}}(S) = \Xi_{0,2}(au_S) = \int_{T imes T} au_S(s,t) a_s a_t \, ds dt$$

Note that $\Delta_{\mathrm{G}}(S) \in \mathcal{L}((E),(E))$. Then,

$$D^+_\zeta \Delta_{\mathrm{G}}(S) = 0, \qquad D^-_\zeta \Delta_{\mathrm{G}}(S) = a(S\zeta) + a(S^*\zeta)$$

In fact, since

$$D^-_t\Delta_{
m G}(S) = \int_T au_S(s,t) a_s\,ds + \int_T au_S(t,s) a_s\,ds$$

we have

$$egin{aligned} D_{\zeta}^{-}\Delta_{\mathrm{G}}(S) &= \int_{T imes T} au_{S}(s,t)a_{s}\zeta(t)\,dsdt + \int_{T imes T} au_{S}(t,s)a_{s}\zeta(t)\,dsdt \ &= \int_{T}S\zeta(s)a_{s}\,ds + \int_{T}S^{*}\zeta(s)a_{s}\,ds = a(S\zeta) + a(S^{*}\zeta) \end{aligned}$$

2.2. Examples

(2) The adjoint of $\Delta_{\mathbf{G}}(S) \in \mathcal{L}((E)^*, (E)^*)$ is given by

$$\Delta^*_{\mathrm{G}}(S) = \Xi_{2,0}(au_S) = \int_{T imes T} au_S(s,t) a^*_s a^*_t \, ds dt$$

The quantum white noise derivatives are given by

$$D_\zeta^-\Delta_{\mathrm{G}}^*(S)=0, \qquad D_\zeta^+\Delta_{\mathrm{G}}^*(S)=a^*(S\zeta)+a^*(S^*\zeta)$$

(3) The conservation operator associated with S is defined by

$$\Lambda(S) = \Xi_{1,1}(au_S) = \int_{T imes T} au_S(s,t) a_s^* a_t \, ds dt$$

In general, $\Lambda(S) \in \mathcal{L}((E), (E)^*)$.

The quantum white noise derivatives are given by

$$D_\zeta^-\Lambda(S)=a^*(S\zeta), \qquad D_\zeta^+\Lambda(S)=a(S^*\zeta).$$

13 / 33

Definition

For $\Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*)$ the Wick (or normal-ordered) product $\Xi_1 \diamond \Xi_2$ is defined by

$$(\Xi_1\diamond\Xi_2)^{\widehat{}}(\xi,\eta)=\widehat{\Xi}_1(\xi,\eta)\widehat{\Xi}_2(\xi,\eta)e^{-\langle\xi,\eta
angle},\qquad \xi,\eta\in E,$$

where $\widehat{\Xi}(\xi,\eta)$ is the symbol of a white noise operator $\Xi\in\mathcal{L}((E),(E)^*)$ defined by

$$\widehat{\Xi}(\xi,\eta) = \langle\!\langle \Xi \phi_{\xi}, \phi_{\eta}
angle\!
angle, \qquad \xi,\eta \in E,$$

where $\phi_{\boldsymbol{\xi}} = (1, \boldsymbol{\xi}, \cdots, \boldsymbol{\xi}^{\otimes n}/n!, \cdots)$ is an exponential vector.

Some properties:

 $\bullet \ \, {\rm For \ any} \ \Xi \in {\mathcal L}((E),(E)^*) \ {\rm we \ have}$

$$a_t \diamond \Xi = \Xi \diamond a_t = \Xi a_t \,, \qquad a_t^* \diamond \Xi = \Xi \diamond a_t^* = a_t^* \Xi.$$

2 Equipped with the Wick product, $\mathcal{L}((E), (E)^*)$ becomes a commutative algebra.

Definition

A continuous linear map $\mathcal{D}: \mathcal{L}((E), (E)^*) \to \mathcal{L}((E), (E)^*)$ is called a *Wick derivation* if

$$\mathcal{D}(\Xi_1 \diamond \Xi_2) = (\mathcal{D}\Xi_1) \diamond \Xi_2 + \Xi_1 \diamond (\mathcal{D}\Xi_2)$$

for all $\Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*)$.

Theorem

The creation and annihilation derivatives D_{ζ}^{\pm} are Wick derivations for any $\zeta \in E$.

Moreover, it is proved that a general Wick derivation ${\cal D}$ is expressed in the form:

$$\mathcal{D} = \int_T F(t) \diamond D_t^+ dt + \int_T G(t) \diamond D_t^- dt,$$

where $F,G \in E \otimes \mathcal{L}((E),(E)^*)$.

Proof.

In general, for $\Xi \in \mathcal{L}((E),(E)^*)$ we have

$$(D_{\zeta}^{+}\Xi)^{\widehat{}}(\xi,\eta) = \langle\!\langle (a(\zeta)\Xi - \Xi a(\zeta))\phi_{\xi},\phi_{\eta}\rangle\!\rangle$$

$$= \langle\!\langle \Xi\phi_{\xi},a^{*}(\zeta)\phi_{\eta}\rangle\!\rangle - \langle\!\langle \Xi a(\zeta)\phi_{\xi},\phi_{\eta}\rangle\!\rangle$$

$$= \left.\frac{d}{dt}\right|_{t=0} \langle\!\langle \Xi\phi_{\xi},\phi_{\eta+t\zeta}\rangle\!\rangle - \langle\xi,\zeta\rangle\langle\!\langle \Xi\phi_{\xi},\phi_{\eta}\rangle\!\rangle$$

$$= \left.\frac{d}{dt}\right|_{t=0} \widehat{\Xi}(\xi,\eta+t\zeta) - \langle\xi,\zeta\rangle\widehat{\Xi}(\xi,\eta).$$
(1)

Then for $\Xi=\Xi_1\diamond\Xi_2$ we have

$$\begin{split} (D_{\zeta}^{+}\Xi)^{\widehat{}}(\xi,\eta) &= \left. \frac{d}{dt} \right|_{t=0} \widehat{\Xi}_{1}(\xi,t\zeta+\eta) \widehat{\Xi}_{2}(\xi,t\zeta+\eta) e^{-\langle\xi,t\zeta+\eta\rangle} \\ &- \langle\xi,\zeta\rangle \widehat{\Xi}_{1}(\xi,\eta) \widehat{\Xi}_{2}(\xi,\eta) e^{-\langle\xi,\eta\rangle} \\ &= \left(\left. \frac{d}{dt} \right|_{t=0} \widehat{\Xi}_{1}(\xi,t\zeta+\eta) \right) \widehat{\Xi}_{2}(\xi,\eta) e^{-\langle\xi,\eta\rangle} \\ &+ \widehat{\Xi}_{1}(\xi,\eta) \left(\left. \frac{d}{dt} \right|_{t=0} \widehat{\Xi}_{2}(\xi,t\zeta+\eta) \right) e^{-\langle\xi,\eta\rangle} \\ &- 2\langle\xi,\zeta\rangle \widehat{\Xi}_{1}(\xi,\eta) \widehat{\Xi}_{2}(\xi,\eta) e^{-\langle\xi,\eta\rangle}. \end{split}$$

Viewing (1) once again, we obtain

$$(D_{\zeta}^+\Xi)^{\hat{}}(\xi,\eta)=((D_{\zeta}^+\Xi_1)\diamond\Xi_2)^{\hat{}}(\xi,\eta)+(\Xi_1\diamond(D_{\zeta}^+\Xi_2))^{\hat{}}(\xi,\eta).$$

3. Differential Equations for White Noise Operators

Given a Wick derivation ${\mathcal D}$ and a white noise operator $G\in {\mathcal L}((E),(E)^*),$ consider

$$\mathcal{D}\Xi = G \diamond \Xi$$

(2)

The Wick exponential is defined by

$$ext{wexp } Y = \sum_{n=0}^\infty rac{1}{n!} \, Y^{\diamond n}, \qquad Y \in \mathcal{L}((E), (E)^*),$$

whenever the series converges in $\mathcal{L}((E), (E)^*)$.

Theorem

Assume that there exists an operator $Y \in \mathcal{L}((E), (E)^*)$ such that $\mathcal{D}Y = G$ and wexp Y is defined in $\mathcal{L}((E), (E)^*)$. Then every solution to

$$\mathcal{D}\Xi = G \diamond \Xi \tag{3}$$

is of the form:

$$\Xi = (\text{wexp } Y) \diamond F, \tag{4}$$

where $F \in \mathcal{L}((E), (E)^*)$ satisfying $\mathcal{D}F = 0$.

Proof.

It is straightforward to see that (4) is a solution to (3). To prove the converse, let Ξ be an arbitrary solution to (3). Set

$$F = (\operatorname{wexp}(-Y)) \diamond \Xi.$$

Obviously, $F \in \mathcal{L}((E), (E)^*)$ and $\Xi = (\text{wexp } Y) \diamond F$. We only need to show that $\mathcal{D}F = 0$. In fact,

$$\begin{split} \mathcal{D}F &= -\mathcal{D}Y \diamond \left(\operatorname{wexp}\left(-Y \right) \right) \diamond \Xi + \left(\operatorname{wexp}\left(-Y \right) \right) \diamond \mathcal{D}\Xi \\ &= -G \diamond \left(\operatorname{wexp}\left(-Y \right) \right) \diamond \Xi + \left(\operatorname{wexp}\left(-Y \right) \right) \diamond G \diamond \Xi = 0 \end{split}$$

This completes the proof.

3.2. Example (1)

Let us consider the (system of) differential equations:

$$D^+_\zeta \Xi = 0, \qquad \zeta \in E.$$

We expect easily that $\Xi = \Xi(a_s, a_t^*; s, t \in T)$ does not depend on the creation operators. In fact, by Fock expansion we see that the solutions to (5) are given by

$$\Xi = \sum_{m=0}^\infty \Xi_{0,m}(\kappa_{0,m}).$$

In a similar manner, the solutions to

$$D_{\zeta}^{-}\Xi=0,\qquad \zeta\in E,$$

(6)

(5)

are given by

$$\Xi = \sum_{l=0}^\infty \Xi_{l,0}(\kappa_{l,0}).$$

Consequently, a white noise operator satisfying both (5) and (6) are the scalar operators. Thus, the irreducibility of the canonical commutation relation is reproduced.

Let us consider the differential equation:

$$D_\zeta^-\Xi=2a(\zeta)\diamond\Xi,\qquad \zeta\in E.$$

We need to find $Y \in \mathcal{L}((E), (E)^*)$ satisfying $D_{\zeta}^- Y = 2a(\zeta)$.

In fact, $Y = \Delta_G$ is a solution.

Moreover, it is easily verified that wexp $\Delta_{\mathbf{G}}$ is defined in $\mathcal{L}((E), (E))$.

Then, a general solution to (7) is of the form:

$$\Xi = (\text{wexp } \Delta_{\mathbf{G}}) \diamond F, \tag{8}$$

where $D_{\zeta}^{-}F = 0$ for all $\zeta \in E$.

3.3. Example (3)

Now we consider the differential equation:

$$egin{aligned} D_\zeta^+ \Xi &= 0, \ D_\zeta^- \Xi &= 2a(\zeta) \diamond \Xi, \qquad \zeta \in E. \end{aligned}$$

(9)

By Example (2) the solution is of the form:

$$\Xi = (ext{wexp } \Delta_{ ext{G}}) \diamond F, \qquad D_{\zeta}^- F = 0 ext{ for all } \zeta \in E.$$

We need only to find additional conditions for F satisfying $D_\zeta^+ \Xi = 0$. Noting that $D_\zeta^+ \Delta_G = 0$, we have

$$D^+_\zeta \Xi = (ext{wexp} \; \Delta_{ ext{G}}) \diamond D^+_\zeta F = 0.$$

Hence $D_{\zeta}^{+}F = 0$ for all $\zeta \in E$, so F is a scalar operator (Example (1)). Consequently, the solution to (9) is of the form:

$$\Xi = C ext{ wexp } \Delta_{\mathrm{G}}, \qquad C \in \mathbb{C}.$$

4. Implementation Problem for CCR

4.1. The Implementation Problem

Let $S, T \in \mathcal{L}(E, E)$ and consider transformed annihilation and creation operators:

$$b(\zeta)=a(S\zeta)+a^*(T\zeta), \ \ b^*(\zeta)=a^*(S\zeta)+a(T\zeta),$$

where $\zeta \in E$. We know that $b(\zeta), b^*(\zeta) \in \mathcal{L}((E), (E)) \cap \mathcal{L}((E)^*, (E)^*)$.

The implementation problem

is to find a white noise operator $U \in \mathcal{L}((E),(E)^*)$ satisfying

$$(E) \xrightarrow{U} (E)^{*} \qquad (E) \xrightarrow{U} (E)^{*}$$
$$a(\zeta) \downarrow \qquad \qquad \downarrow b(\zeta) \qquad \qquad a^{*}(\zeta) \downarrow \qquad \qquad \downarrow b^{*}(\zeta)$$
$$(E) \xrightarrow{U} (E)^{*} \qquad (E) \xrightarrow{U} (E)^{*}$$

<u>Remarks</u>: (1) $T^*S = S^*T$ is equivalent to

$$[b(\zeta),b(\eta)]=[b^*(\zeta),b^*(\eta)]=0,\qquad \zeta,\eta\in E.$$

(2) $S^*S - T^*T = I$ is equivalent to

$$[b(\zeta),b^*(\eta)]=\langle \zeta,\eta
angle,\qquad \zeta,\eta\in E.$$

4.2. Our Approach

$$egin{aligned} Ua(\zeta) &= b(\zeta)U \ &= (a(S\zeta) + a^*(T\zeta))\,U \ &= D^+_{S\zeta}U + Ua(S\zeta) + a^*(T\zeta)U, \ D^+_{S\zeta}U &= Ua(\zeta) - Ua(S\zeta) - a^*(T\zeta)U \ &= Ua(\zeta - S\zeta) - a^*(T\zeta)U \ &= [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U. \end{aligned}$$

Thus,

$$Ua(\zeta)=b(\zeta)U \quad \Longleftrightarrow \quad D^+_{S\zeta}U=[a(\zeta-S\zeta)-a^*(T\zeta)]\diamond U.$$

Similarly,

$$Ua^*(\zeta) = b^*(\zeta)U \quad \Longleftrightarrow \quad (D_\zeta^- - D_{T\zeta}^+)U = [a^*(S\zeta - \zeta) + a(T\zeta)] \diamond U.$$

Theorem

Assume that S is invertible and that $T^*S = S^*T$. Then a white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfies the intertwining property:

$$Ua(\zeta)=b(\zeta)U,\qquad \zeta\in E,$$

if and only if \boldsymbol{U} is of the form

$$U = \text{wexp} \left\{ -\frac{1}{2} \Delta_{\rm G}^*(TS^{-1}) + \Lambda((S^{-1})^* - I) \right\} \diamond F,$$
(10)

where $F \in \mathcal{L}((E), (E)^*)$ fulfills $D_{\zeta}^+ F = 0$ for all $\zeta \in E$.

Remark: Note that

$$\begin{split} & \operatorname{wexp}\left\{-\frac{1}{2}\Delta_{\mathrm{G}}^{*}(TS^{-1})\right\} = e^{-\frac{1}{2}\Delta_{\mathrm{G}}^{*}(TS^{-1})}, \quad \operatorname{wexp}\left\{\Lambda((S^{-1})^{*} - I)\right\} = \Gamma((S^{-1})^{*}),\\ & \operatorname{where}\Gamma((S^{-1})^{*}) \text{ is the second quantization of } (S^{-1})^{*}. \text{ Hence, } (10) \text{ becomes}\\ & U = e^{-\frac{1}{2}\Delta_{\mathrm{G}}^{*}(TS^{-1})} \diamond \Gamma((S^{-1})^{*}) \diamond F \end{split}$$

$$= e^{-\frac{1}{2}\Delta_{\rm G}^*(TS^{-1})} \Gamma((S^{-1})^*) F.$$

Proof.

(1) We only need to solve the differential equation

$$D^+_{S\zeta}U = [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U.$$
⁽¹¹⁾

(2) We readily know that

$$D^+_{S\zeta}\Lambda((S^{-1})^*-I) = a(\zeta-S\zeta), \qquad D^+_{S\zeta}\Delta^*_{
m G}(TS^{-1}) = 2a^*(T\zeta).$$

(3) Then by the general result a general form of the solutions to (11) is given by

$$U = ext{wexp} \left\{ -rac{1}{2} \Delta_{ ext{G}}^*(TS^{-1}) + \Lambda((S^{-1})^* - I)
ight\} \diamond F,$$

where $F \in \mathcal{L}((E), (E)^*)$ is an arbitrary white noise operator satisfying $D^+_{S\zeta}F = 0$ for all $\zeta \in E$.

(4) Since S is invertible, the last condition for F is equivalent to that $D_{\zeta}^+F = 0$ for all $\zeta \in E$.

Solution to the Implementation Problem (2)

Theorem

Assume the following conditions:

- (i) S is invertible;
- (ii) $T^*S = S^*T;$
- (iii) $S^*S T^*T = I;$
- (iv) $ST^* = TS^*$.

Then a white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfies the intertwining property:

$$Ua^*(\zeta)=b^*(\zeta)U,\qquad \zeta\in E,$$

if and only if U is of the form:

$$U = ext{wexp} \, \left\{ -rac{1}{2} \Delta_{ ext{G}}^*(TS^{-1}) + \Lambda((S^{-1})^* - I) + rac{1}{2} \Delta_{ ext{G}}(S^{-1}T)
ight\} \diamond G,$$

where $G \in \mathcal{L}((E),(E)^*)$ is an arbitrary white noise operator satisfying

$$(D_\zeta^- - D_{T\zeta}^+)G = 0 \quad \textit{for all } \zeta \in E.$$

Proof.

(1) Our task is to solve the differential equation:

$$(D_\zeta^- - D_{T\zeta}^+)U = [a^*(S\zeta-\zeta) + a(T\zeta)] \diamond U.$$

(2) First we need to find a solution to the differential equation:

$$(D_{\zeta}^{-} - D_{T\zeta}^{+})Y = a^{*}(S\zeta - \zeta) + a(T\zeta).$$
(12)

(3) As is easily verified,

$$Y = \Delta^*_{\mathrm{G}}(K) + \Lambda(L) + \Delta_{\mathrm{G}}(M), \qquad K = K^*, \quad M = M^*,$$

satisfies (12) if and only if

$$2M - L^*T = T, \qquad L - 2KT = S - I.$$

Thanks to the conditions (i)-(iv) we may choose

$$K = -rac{1}{2} T S^{-1}, \quad L = (S^{-1})^* - I, \quad M = rac{1}{2} S^{-1} T.$$

(4) Then the assertion follows immediately from our general theorem.

Theorem

Assume the following conditions:

- (i) S is invertible;
- (ii) $T^*S = S^*T \iff [b(\zeta), b(\eta)] = [b^*(\zeta), b^*(\eta)] = 0;$
- (iii) $S^*S T^*T = I \iff [b(\zeta), b^*(\eta)] = \langle \zeta, \eta \rangle;$
- (iv) $ST^* = TS^*$.

A white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfies the following intertwining properties:

$$Ua(\zeta)=b(\zeta)U, \qquad Ua^*(\zeta)=b^*(\zeta)U, \qquad \zeta\in E,$$

if and only if U is of the form:

$$\begin{split} U &= C \, \exp \, \left\{ -\frac{1}{2} \Delta_{\mathrm{G}}^*(TS^{-1}) + \Lambda((S^{-1})^* - I) + \frac{1}{2} \Delta_{\mathrm{G}}(S^{-1}T) \right\} \\ &= C \, e^{-\frac{1}{2} \Delta_{\mathrm{G}}^*(TS^{-1})} \Gamma((S^{-1})^*) \, e^{\frac{1}{2} \Delta_{\mathrm{G}}(S^{-1}T)}, \end{split}$$

where $C \in \mathbb{C}$.

Proof.

By the above two theorems, $oldsymbol{U}$ is of the form

$$egin{aligned} U &= ext{wexp} \, \left\{ -rac{1}{2} \Delta_{ ext{G}}^*(TS^{-1}) + \Lambda((S^{-1})^* - I)
ight\} \diamond F \ &= ext{wexp} \, \left\{ -rac{1}{2} \Delta_{ ext{G}}^*(TS^{-1}) + \Lambda((S^{-1})^* - I) + rac{1}{2} \Delta_{ ext{G}}(S^{-1}T)
ight\} \diamond G, \end{aligned}$$

where $F,G\in\mathcal{L}((E),(E)^*)$ satisfy

$$D_\zeta^+F=0, \quad (D_\zeta^--D_{T\zeta}^+)G=0, \quad ext{for all } \zeta\in E.$$

We see from the above relation that

$$G=F\diamond ext{wexp}\,\left\{-rac{1}{2}\Delta_{ ext{G}}(S^{-1}T)
ight\}.$$

Since the right hand side contains no creation operators, we have

$$D_{\zeta}^{+}G = 0, \qquad \zeta \in E.$$
⁽¹³⁾

Then,

$$0 = (D_{\zeta}^{-} - D_{T\zeta}^{+})G = D_{\zeta}^{-}G, \qquad \zeta \in E,$$
(14)

so G is a scalar operator.

Nobuaki Obata (GSIS, Tohoku University) Recent Developments in Quantum White Noise Calcul

Final Remarks

Definition (Chung-Ji (1997))

For $U \in \mathcal{L}(E, E^*)$ we have $e^{\Delta_G(U)} \in \mathcal{L}((E), (E))$ and for $V \in \mathcal{L}(E, E^*)$ we have $\Gamma(V) \in \mathcal{L}((E), (E)^*)$. Then their composition

$$\mathcal{G}_{U,V} = \Gamma(V) e^{\Delta_{\mathrm{G}}(U)}$$

becomes a white noise operator. This is called a *generalized Fourier–Gauss transform* and its adjoint operator $\mathcal{G}_{U,V}^*$ a *generalized Fourier–Mehler transform*.

(1) The solution to the implementation problem:

$$U = C \, e^{-\frac{1}{2} \Delta_{\rm G}^* (TS^{-1})} \Gamma((S^{-1})^*) \, e^{\frac{1}{2} \Delta_{\rm G} (S^{-1}T)}$$

is the composition of the generalized Fourier-Mehler and Fourier-Gauss transforms.

 \implies a new (white noise) approach to Bogoliubov transform

(2) Integral transform (lecture by H. S. Chung)

$$\int_{E^*}\phi(ax+by)\mu(dx)={\mathcal G}_{(a^2+b^2-1)/2,b}\phi(y)$$

A systematic study of the transformations will be presented by Un Cig Ji.

References

- **9** U. C. Ji and N. Obata: *Quantum white noise calculus*, in "Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora, Eds.)," pp. 143–191, World Scientific, 2002.
- U. C. Ji and N. Obata: Generalized white noise operators fields and quantum white noise derivatives, Sem. Congr. Soc. Math. France 16 (2007), 17-33.
- I. C. Ji and N. Obata: Annihilation-derivative. creation-derivative and representation of quantum martingales, Commun. Math. Phys. 286 (2009), 751-775.
- U. C. Ji and N. Obata: Quantum stochastic integral representations of Fock space operators, to appear in Stochastics.
- **9** U. C. Ji and N. Obata: *Quantum stochastic gradients*, to appear in Interdiscip. Inform Sci
- O U. C. Ji and N. Obata: Quantum white noise derivatives and associated differential equations for white noise operators, to appear.
- **O** U. C. Ji and N. Obata: A new approach to implementation problem in terms of quantum white noise derivatives, in preparation.