Quantum White Noise Derivatives and Implementation Problem
On the occasion of their 60th birthdays of Professors K. R. Ito and I. Ojima

Nobuaki Obata
GSIS, Tohoku University

Fukuoka, November 29, 2009
The Implementation Problem

\(a(\xi), a^*(\eta) \): annihilation and creation operators on Boson Fock space \(\Gamma(H) \) satisfying

\[
\text{CCR: } [a(\xi), a(\eta)] = [a^*(\xi), a^*(\eta)] = 0, \quad [a(\xi), a^*(\eta)] = \langle \xi, \eta \rangle
\]

Consider transformed annihilation and creation operators:

\[
b(\zeta) = a(S\zeta) + a^*(T\zeta), \quad b^*(\zeta) = a^*(S\zeta) + a(T\zeta).
\]

The implementation problem [Berezin (1966), Ruijsenaars (1977), ...] is to find a (unitary) operator \(U \) on the Boson Fock space \(\Gamma(H) \) satisfying

\[
\begin{align*}
\Gamma(H) & \xrightarrow{U} \Gamma(H) & \Gamma(H) & \xrightarrow{U} \Gamma(H) \\
\downarrow a(\zeta) & & \downarrow b(\zeta) & & \downarrow a^*(\zeta) & & \downarrow b^*(\zeta) \\
\Gamma(H) & \xrightarrow{U} \Gamma(H) & \Gamma(H) & \xrightarrow{U} \Gamma(H)
\end{align*}
\]

Remarks: (1) \([b(\zeta), b(\eta)] = [b^*(\zeta), b^*(\eta)] = 0 \iff T^* S = S^* T\)

(2) \([b(\zeta), b^*(\eta)] = \langle \zeta, \eta \rangle \iff S^* S - T^* T = I\)
1. Quantum White Noise Calculus
 - 1.1. Background and Notation
 - 1.2. White Noise Operators
 - 1.3. Quantum White Noise
 - 1.4. Integral Kernel Operators and Fock Expansion

2. Quantum White Noise Derivatives
 - 2.1. Definition
 - 2.2. Examples
 - 2.3. Wick Product
 - 2.4. Wick Derivations

3. Differential Equations for White Noise Operators
 - 3.1. Differential Equations
 - 3.2. Reproducing Irreducibility of CCR
 - 3.3. Linear Equations

4. Implementation Problem for CCR
 - 4.1. The Implementation Problem
 - 4.2. Our Approach
 - 4.3. Solution to the Implementation Problem
1. Quantum White Noise Calculus
1.1. Background and Notation

The Boson Fock space over \(H = L^2(T) \) is defined by

\[
\Gamma(H) = \left\{ \phi = (f_n); f_n \in H^\otimes n, \|\phi\|^2 = \sum_{n=0}^{\infty} n!|f_n|^2_0 < \infty \right\},
\]

where \(T \) is a topological space equipped with a \(\sigma \)-finite Borel measure \(dt \), \(|f_n|_0 \) is the usual \(L^2 \)-norm of \(H^\otimes n = L^2_{\text{sym}}(T^n) \).

The annihilation and creation operator at a point \(t \in T \)

\[
a_t : (0, \ldots, 0, \xi^\otimes n, 0, \ldots) \mapsto (0, \ldots, 0, n\xi(t)\xi^\otimes(n-1), 0, 0, \ldots)
\]
\[
a^*_t : (0, \ldots, 0, \xi^\otimes n, 0, \ldots) \mapsto (0, \ldots, 0, 0, \xi^\otimes n \otimes \delta_t, 0, \ldots)
\]

A “general” Fock space operator takes the form:

\[
\sum_{l,m=0}^{\infty} \int_{T^{l+m}} \kappa_{l,m}(s_1, \ldots, s_l, t_1, \ldots, t_m) a^*_{s_1} \cdots a^*_{s_l} a_{t_1} \cdots a_{t_m} ds_1 \cdots ds_l dt_1 \cdots dt_m
\]

Quantum field theory: e.g., Haag (1955), Berezin (1966), Krée (1988), etc.
1.2. White Noise Operators

I) Gelfand triple for $H = L^2(T)$:

$$E \subset H = L^2(T) \subset E^*,$$

$$E = \operatorname{proj lim}_{p \to \infty} E_p, \quad E^* = \operatorname{ind lim}_{p \to \infty} E_{-p},$$

where E_p is a dense subspace of H and is a Hilbert space for itself.

II) Gelfand triple for $\Gamma(H)$ (e.g., Hida–Kubo–Takenaka space (1980)):

$$(E) \subset \Gamma(H) \subset (E)^*, \quad (E) = \operatorname{proj lim}_{p \to \infty} \Gamma(E_p), \quad (E)^* = \operatorname{ind lim}_{p \to \infty} \Gamma(E_{-p}),$$

Note: (1) $\Gamma(H) \cong L^2(E^*, \mu)$ (Wiener–Itô–Segal isomorphism)

(2) (E) is the space of test functions and $(E)^*$ the space of distributions.

Definition (White noise operator)

A continuous operator from (E) into $(E)^*$ is called a white noise operator. Let $\mathcal{L}((E), (E)^*)$ denote the space of white noise operators, equipped with the topology of bounded convergence.

Note: $\mathcal{L}((E), (E))$, $\mathcal{L}((E)^*, (E)^*)$ and $\mathcal{B}(\Gamma(H))$ are subspaces of $\mathcal{L}((E), (E)^*)$.
1.3. Quantum White Noise

Theorem (Quantum white noise is very regular)

\[a_t \in \mathcal{L}(\langle E \rangle, \langle E \rangle) \text{ and } a_t^* \in \mathcal{L}(\langle E \rangle^*, \langle E \rangle^*) \text{ for all } t \in \mathbb{R}. \]
Moreover, both maps \(t \mapsto a_t \in \mathcal{L}(\langle E \rangle, \langle E \rangle) \) and \(t \mapsto a_t^* \in \mathcal{L}(\langle E \rangle^*, \langle E \rangle^*) \) are operator-valued rapidly decreasing functions, i.e., belongs to \(E \otimes \mathcal{L}(\langle E \rangle, \langle E \rangle) \) and \(E \otimes \mathcal{L}(\langle E \rangle^*, \langle E \rangle^*) \), respectively. (The pair \(\{a_t, a_t^*; t \in T\} \) is called the quantum white noise on \(T \).)

Smeared operators

\[a(\zeta) = \int \zeta(t)a_t \, dt, \quad a^*(\zeta) = \int \zeta(t)a_t^* \, dt \]

Traditional approach

1. \(\zeta \) is a test function, e.g., \(\zeta \in \mathcal{S}(\mathbb{R}) \).
2. \(a(\zeta), a^*(\zeta) \) are unbounded operators in \(\Gamma(H) \).

White noise approach

1. \(\zeta \) is a distribution, e.g., \(\zeta \in \mathcal{S}'(\mathbb{R}) \).
2. \(a(\zeta), a^*(\zeta) \) are white noise operators, i.e., belong to \(\mathcal{L}(\langle E \rangle, \langle E \rangle^*) \).
3. In fact, \(a(\zeta) \in \mathcal{L}(\langle E \rangle, \langle E \rangle) \) and \(a^*(\zeta) \in \mathcal{L}(\langle E \rangle^*, \langle E \rangle^*) \).
Definition (Integral kernel operator)

Given $\kappa_{l,m} \in (E \otimes (l+m))^*$, $l, m = 0, 1, 2, \ldots$, the integral kernel operator

$$\Xi_{l,m}(\kappa_{l,m}) = \int_{T^{l+m}} \kappa_{l,m}(s_1, \ldots, s_l, t_1, \ldots, t_m) a_{s_1}^* \cdots a_{s_l}^* a_{t_1} \cdots a_{t_m} ds_1 \cdots ds_l dt_1 \cdots dt_m$$

is defined and is a white noise operator, i.e., $\Xi_{l,m}(\kappa_{l,m}) \in \mathcal{L}((E), (E)^*)$.

Every white noise operator $\Xi \in \mathcal{L}((E), (E)^*)$ admits the infinite series expansion:

$$\Xi = \sum_{l,m=0}^{\infty} \Xi_{l,m}(\kappa_{l,m}), \quad \kappa_{l,m} \in (E \otimes (l+m))^*,$$

where the right-hand side converges in $\mathcal{L}((E), (E)^*)$. If $\Xi \in \mathcal{L}((E), (E))$, then $\kappa_{l,m} \in E^\otimes l \otimes (E^\otimes m)^*$ and the series converges in $\mathcal{L}((E), (E))$.
2. Quantum White Noise Derivatives
2.1. Definition

For a Brownian (or white noise) function Φ stochastic derivatives (gradients) were introduced by Malliavin, Hida, Gross, ...

\[\nabla \Phi, \quad \frac{\delta \Phi}{\delta \dot{B}(t)}, \quad \partial_t \Phi, \quad a_t \Phi \]

A quantum counterpart

A white noise operator Ξ is considered as a function of quantum white noise:

$\Xi = \Xi(a_s, a_t^*; s, t \in T)$. We should like to define the derivatives with respect to a_s and a_t^*:

\[\frac{\delta \Xi}{\delta a_s} \quad \text{and} \quad \frac{\delta \Xi}{\delta a_t^*} \]

Expected properties:

\[\frac{\delta}{\delta a_s} \int f(t)a_t dt = f(s)I \]
\[\frac{\delta}{\delta a_s} \int f(s, t)a_s a_t ds dt = \int f(s, t)a_t dt + \int f(t, s)a_t dt \]
\[\frac{\delta}{\delta a_t^*} \int f(s, t)a_s a_t^* ds dt = \int f(s, t)a_s ds \]
2.1. Definition

Definition (Ji–Obata (2007))

For $\Xi \in \mathcal{L}((E), (E)^*)$ and $\zeta \in E$ we define $D_{\zeta}^\pm \Xi \in \mathcal{L}((E), (E)^*)$ by

$$D_{\zeta}^+ \Xi = [a(\zeta), \Xi], \quad D_{\zeta}^- \Xi = -[a^*(\zeta), \Xi].$$

These are called the creation derivative and annihilation derivative of Ξ, respectively. Both together are called the quantum white noise derivatives.

Note: For $\zeta \in E$, both

$$a(\zeta) = \Xi_{0,1}(\zeta) = \int_T \zeta(t)a_t \ dt, \quad a^*(\zeta) = \Xi_{1,0}(\zeta) = \int_T \zeta(t)a_t^* \ dt,$$

belong to $\mathcal{L}((E), (E)) \cap \mathcal{L}((E)^*, (E)^*)$.

1. $(D_{\zeta}^+ \Xi)^* = D_{\zeta}^- (\Xi^*)$ and $(D_{\zeta}^- \Xi)^* = D_{\zeta}^+ (\Xi^*)$.

2. D_{ζ}^\pm is a continuous linear map from $\mathcal{L}((E), (E)^*)$ into itself.

3. Moreover, $(\zeta, \Xi) \mapsto D_{\zeta}^\pm \Xi$ is a continuous bilinear map from $E \times \mathcal{L}((E), (E)^*)$ into $\mathcal{L}((E), (E)^*)$.
Recall: The smeared annihilation and creation operators

\[a(f) = \int_T f(t) a_t \, dt, \quad a^*(f) = \int_T f(t) a_t^* \, dt. \]

It is natural to introduce \(D_t^\pm \) to have

\[D_t^+ \zeta = \int_T \zeta(t) D_t^+ \, dt, \quad D_t^- \zeta = \int_T \zeta(t) D_t^- \, dt. \]

In fact, this expression is useful for computation.

However, it is not straightforward to define \(D_t^\pm \) for each point \(t \in T \) because

\[D_t^+ \Xi = [a_t, \Xi] = a_t \Xi - \Xi a_t, \quad D_t^- \Xi = -[a_t^*, \Xi] = -a_t^* \Xi + \Xi a_t^* \]

are not well-defined in general.

Nevertheless, the pointwisely defined quantum white noise derivatives \(D_t^\pm \) are well formulated for admissible white noise operators \(\mathcal{L}(\mathcal{G}, \mathcal{G}^*) \) [Ji–Obata, 2009, to appear].
2.2. Examples

The canonical correspondence (kernel theorem) between $S \in \mathcal{L}(E, E^*)$ and $\tau = \tau_S \in (E \otimes E)^*$ is given by $\langle \tau_S, \eta \otimes \xi \rangle = \langle S\xi, \eta \rangle$ for $\xi, \eta \in E$.

(1) The \textit{generalized Gross Laplacian} associated with S is defined by

$$\Delta_G(S) = \Xi_{0,2}(\tau_S) = \int_{T \times T} \tau_S(s, t)a_s a_t \, ds dt$$

Note that $\Delta_G(S) \in \mathcal{L}((E), (E))$. Then,

$$D_\zeta^+ \Delta_G(S) = 0, \quad D_\zeta^- \Delta_G(S) = a(S\zeta) + a(S^*\zeta)$$

In fact, since

$$D_t^- \Delta_G(S) = \int_T \tau_S(s, t)a_s \, ds + \int_T \tau_S(t, s)a_s \, ds$$

we have

$$D_\zeta^- \Delta_G(S) = \int_{T \times T} \tau_S(s, t)a_s \zeta(t) \, ds dt + \int_{T \times T} \tau_S(t, s)a_s \zeta(t) \, ds dt$$

$$= \int_T S\zeta(s)a_s \, ds + \int_T S^*\zeta(s)a_s \, ds = a(S\zeta) + a(S^*\zeta)$$
(2) The adjoint of $\Delta_G(S) \in \mathcal{L}((E)^*, (E)^*)$ is given by

$$\Delta^*_G(S) = \Xi_{2,0}(\tau_S) = \int_{T \times T} \tau_S(s, t)a_s^*a_t^* \, dsdt$$

The quantum white noise derivatives are given by

$$D^-_\zeta \Delta^*_G(S) = 0, \quad D^+_\zeta \Delta^*_G(S) = a^*(S\zeta) + a^*(S^*\zeta)$$

(3) The *conservation operator* associated with S is defined by

$$\Lambda(S) = \Xi_{1,1}(\tau_S) = \int_{T \times T} \tau_S(s, t)a_s^*a_t \, dsdt$$

In general, $\Lambda(S) \in \mathcal{L}((E), (E)^*)$.

The quantum white noise derivatives are given by

$$D^-_\zeta \Lambda(S) = a^*(S\zeta), \quad D^+_\zeta \Lambda(S) = a(S^*\zeta).$$
2.3. Wick Product

The **Wick product** of white noise operators $\Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*)$, denoted by $\Xi_1 \diamond \Xi_2$, is characterized by

$$a_t \diamond \Xi = \Xi \diamond a_t = \Xi a_t, \quad a_t^* \diamond \Xi = \Xi \diamond a_t^* = a_t^* \Xi.$$

Equipped with the Wick product, $\mathcal{L}((E), (E)^*)$ becomes a commutative algebra.

Definition (Wick product)

For $\Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*)$ the Wick (or normal-ordered) product $\Xi_1 \diamond \Xi_2$ is defined by

$$(\Xi_1 \diamond \Xi_2)(\xi, \eta) = \hat{\Xi}_1(\xi, \eta)\hat{\Xi}_2(\xi, \eta)e^{-\langle \xi, \eta \rangle}, \quad \xi, \eta \in E,$$

where $\hat{\Xi}(\xi, \eta)$ is the symbol of a white noise operator $\Xi \in \mathcal{L}((E), (E)^*)$ defined by

$$\hat{\Xi}(\xi, \eta) = \langle \langle \Xi \phi_\xi, \phi_\eta \rangle \rangle, \quad \xi, \eta \in E,$$

where $\phi_\xi = (1, \xi, \cdots, \xi \otimes^n / n!, \cdots)$ is an exponential vector. This is verified by the characterization theorem for operator symbols (see O. LNM 1577 (1994))
2.4. Wick Derivations

\((\mathcal{L}((E), (E)^*), \diamond)\) is a commutative algebra.

Definition (Wick derivation)

A continuous linear map \(\mathcal{D} : \mathcal{L}((E), (E)^*) \rightarrow \mathcal{L}((E), (E)^*)\) is called a **Wick derivation** if

\[
\mathcal{D}(\Xi_1 \diamond \Xi_2) = (\mathcal{D}\Xi_1) \diamond \Xi_2 + \Xi_1 \diamond (\mathcal{D}\Xi_2)
\]

for all \(\Xi_1, \Xi_2 \in \mathcal{L}((E), (E)^*)\).

Theorem

The creation and annihilation derivatives \(D_{\zeta}^\pm\) *are Wick derivations for any* \(\zeta \in E\).

Note: It is proved that a general Wick derivation \(\mathcal{D}\) is expressed in the form:

\[
\mathcal{D} = \int_T F(t) \diamond D_t^+ dt + \int_T G(t) \diamond D_t^- dt,
\]

where \(F, G \in E \otimes \mathcal{L}((E), (E)^*)\).
Proof.

In general, for $\Xi \in \mathcal{L}((E), (E)^*)$ we have

$$
(D_\zeta^+ \Xi)(\xi, \eta) = \langle \langle a(\zeta)\Xi - \Xi a(\zeta) \rangle \phi_\xi, \phi_\eta \rangle
$$

$$
= \langle \langle \Xi \phi_\xi, a^*(\zeta) \phi_\eta \rangle - \langle \langle \Xi a(\zeta) \phi_\xi, \phi_\eta \rangle \rangle
$$

$$
= \left. \frac{d}{dt} \right|_{t=0} \langle \langle \Xi \phi_\xi, \phi_{\eta + t\zeta} \rangle - \langle \xi, \zeta \rangle \langle \langle \Xi \phi_\xi, \phi_\eta \rangle \rangle
$$

$$
= \left. \frac{d}{dt} \right|_{t=0} \Xi(\xi, \eta + t\zeta) - \langle \xi, \zeta \rangle \Xi(\xi, \eta).
$$

(1)

Then for $\Xi = \Xi_1 \diamond \Xi_2$ we have

$$
(D_\zeta^+ \Xi)(\xi, \eta) = \left. \frac{d}{dt} \right|_{t=0} \Xi_1(\xi, t\zeta + \eta) \Xi_2(\xi, t\zeta + \eta) e^{-\langle \xi, t\zeta + \eta \rangle}
$$

$$
- \langle \xi, \zeta \rangle \Xi_1(\xi, \eta) \Xi_2(\xi, \eta) e^{-\langle \xi, \eta \rangle}
$$

$$
= \left(\left. \frac{d}{dt} \right|_{t=0} \Xi_1(\xi, t\zeta + \eta) \right) \Xi_2(\xi, \eta) e^{-\langle \xi, \eta \rangle}
$$

$$
+ \Xi_1(\xi, \eta) \left(\left. \frac{d}{dt} \right|_{t=0} \Xi_2(\xi, t\zeta + \eta) \right) e^{-\langle \xi, \eta \rangle}
$$

$$
- 2 \langle \xi, \zeta \rangle \Xi_1(\xi, \eta) \Xi_2(\xi, \eta) e^{-\langle \xi, \eta \rangle}.
$$

Viewing (1) once again, we obtain

$$
(D_\zeta^+ \Xi)(\xi, \eta) = ((D_\zeta^+ \Xi_1) \diamond \Xi_2)(\xi, \eta) + (\Xi_1 \diamond (D_\zeta^+ \Xi_2))(\xi, \eta).
$$
3. Differential Equations for White Noise Operators
3.1. Differential Equations

A general form

\[\mathcal{D} : \mathcal{L}((E), (E)^*) \rightarrow \mathcal{L}((E), (E)^*) : \text{a Wick derivation} \]
\[f : \mathcal{L}((E), (E)^*) \rightarrow \mathcal{L}((E), (E)^*) : \text{a map} \]

\[\mathcal{D}\Xi = f(\Xi) \]

Simple cases:

1. \[\mathcal{D}\Xi = 0 \] ("constant" with respect to \(\mathcal{D} \))
2. \[\mathcal{D}\Xi = G \diamond \Xi \text{ with } G \in \mathcal{L}((E), (E)^*) \] (linear equation)

General cases: interesting for characterizing white noise operators (future problem)?
3.2. Reproducing Irreducibility of CCR

Let us consider the (system of) differential equations:

\[
D_\zeta^+ \Xi = 0, \quad \zeta \in E. \tag{2}
\]

We expect easily that \(\Xi = \Xi(a_s, a_t^*; s, t \in T) \) does not depend on the creation operators. In fact, by Fock expansion we see that the solutions to (2) are given by

\[
\Xi = \sum_{m=0}^{\infty} \Xi_{0,m}(\kappa_{0,m}).
\]

In a similar manner, the solutions to

\[
D_\zeta^- \Xi = 0, \quad \zeta \in E, \tag{3}
\]

are given by

\[
\Xi = \sum_{l=0}^{\infty} \Xi_{l,0}(\kappa_{l,0}).
\]

Consequently, a white noise operator satisfying both (2) and (3) are the scalar operators. Thus, \textit{the irreducibility of the canonical commutation relation is reproduced.}
Given a Wick derivation \mathcal{D} and $G \in \mathcal{L}((E), (E)^*)$, consider

$$\mathcal{D} \Xi = G \diamond \Xi$$

(4)

The **Wick exponential** is defined by

$$\text{wexp } Y = \sum_{n=0}^{\infty} \frac{1}{n!} Y \diamond^n, \quad Y \in \mathcal{L}((E), (E)^*),$$

whenever the series converges in $\mathcal{L}((E), (E)^*)$.

Theorem

Every solution to (4) is of the form:

$$\Xi = (\text{wexp } Y) \diamond F,$$

(5)

where (i) $Y \in \mathcal{L}((E), (E)^)$ is a solution to $\mathcal{D} Y = G$;*

(ii) $\text{wexp } Y$ should be defined in $\mathcal{L}((E), (E)^)$;*

(iii) $F \in \mathcal{L}((E), (E)^)$ is arbitrary satisfying $\mathcal{D} F = 0$.***
It is straightforward to see that

$$\Xi = (\text{wexp } Y) \diamond F$$

is a solution to

$$\mathcal{D}\Xi = G \diamond \Xi$$

To prove the converse, let Ξ be an arbitrary solution to (6). Set

$$F = (\text{wexp } (-Y)) \diamond \Xi.$$

Obviously, $F \in \mathcal{L}((E), (E)^*)$ and $\Xi = (\text{wexp } Y) \diamond F$. We only need to show that $\mathcal{D}F = 0$. In fact,

$$\mathcal{D}F = -\mathcal{D}Y \diamond (\text{wexp } (-Y)) \diamond \Xi + (\text{wexp } (-Y)) \diamond \mathcal{D}\Xi$$

$$= -G \diamond (\text{wexp } (-Y)) \diamond \Xi + (\text{wexp } (-Y)) \diamond G \diamond \Xi = 0.$$

This completes the proof. \qed
Example (1)

\[D_\zeta \Xi = 2a(\zeta) \diamond \Xi, \quad \zeta \in E. \quad (7) \]

1. We need to find \(Y \in \mathcal{L}((E), (E)^*) \) satisfying \(D_\zeta Y = 2a(\zeta). \)
2. In fact, \(Y = \Delta_G = \int a_t^2 \, dt \)

is a solution.
3. Moreover, it is easily verified that \(\text{weexp} \, \Delta_G \) is defined in \(\mathcal{L}((E), (E)). \)
4. Then, a general solution to (7) is of the form:

\[\Xi = (\text{weexp} \, \Delta_G) \diamond F, \quad (8) \]

where \(D_\zeta F = 0 \) for all \(\zeta \in E. \)
Example (2)

\[
\begin{cases}
D^-_\zeta \Xi = 2a(\zeta) \diamond \Xi, & \zeta \in E, \\
D^+_\zeta \Xi = 0.
\end{cases}
\] (9)

1. By Example (1) the solution is of the form:

\[\Xi = (\text{wexp } \Delta_G) \diamond F, \quad D^-_\zeta F = 0 \text{ for all } \zeta \in E.\]

2. We need only to find additional conditions for \(F\) satisfying \(D^+_\zeta \Xi = 0\).

3. Noting that \(D^+_\zeta \Delta_G = 0\), we have

\[D^+_\zeta \Xi = (\text{wexp } \Delta_G) \diamond D^+_\zeta F = 0.\]

Hence \(D^+_\zeta F = 0\) for all \(\zeta \in E\). Consequently, \(F\) is a scalar operator (irreducibility of CCR).

4. Finally, the solution to (9) is of the form:

\[\Xi = C \text{ wexp } \Delta_G, \quad C \in \mathbb{C}.\]
4. Implementation Problem for CCR
4.1. The Implementation Problem

Let $S, T \in \mathcal{L}(E, E)$ and consider transformed annihilation and creation operators:

$$
\begin{align*}
 b(\zeta) &= a(S\zeta) + a^*(T\zeta), \\
 b^*(\zeta) &= a^*(S\zeta) + a(T\zeta),
\end{align*}
$$

where $\zeta \in E$. We know that $b(\zeta), b^*(\zeta) \in \mathcal{L}((E), (E)) \cap \mathcal{L}((E)^*, (E)^*)$.

The implementation problem is to find a white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfying

$$
\begin{align*}
 (E) &\xrightarrow{U} (E)^* \\
 a(\zeta) &\downarrow \quad b(\zeta) \\
 (E) &\xrightarrow{U} (E)^*
\end{align*}
\quad
\begin{align*}
 (E) &\xrightarrow{U} (E)^* \\
 a^*(\zeta) &\downarrow \quad b^*(\zeta) \\
 (E) &\xrightarrow{U} (E)^*
\end{align*}
$$

Remarks: (1) $T^* S = S^* T$ is equivalent to

$$
[b(\zeta), b(\eta)] = [b^*(\zeta), b^*(\eta)] = 0, \quad \zeta, \eta \in E.
$$

(2) $S^* S - T^* T = I$ is equivalent to

$$
[b(\zeta), b^*(\eta)] = \langle \zeta, \eta \rangle, \quad \zeta, \eta \in E.
$$
4.2. Our Approach

\[U a(\zeta) = b(\zeta) U \]
\[= (a(S\zeta) + a^*(T\zeta)) U \]
\[= D_{S\zeta}^+ U + U a(S\zeta) + a^*(T\zeta) U, \]
\[D_{S\zeta}^+ U = U a(\zeta) - U a(S\zeta) - a^*(T\zeta) U \]
\[= U a(\zeta - S\zeta) - a^*(T\zeta) U \]
\[= [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U. \]

Thus,

\[U a(\zeta) = b(\zeta) U \iff D_{S\zeta}^+ U = [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U. \]

Similarly,

\[U a^*(\zeta) = b^*(\zeta) U \iff (D_{\zeta}^- - D_{T\zeta}^+) U = [a^*(S\zeta - \zeta) + a(T\zeta)] \diamond U. \]
4.3. Solution to the Implementation Problem (1)

Theorem

Assume that S is invertible and that $T^* S = S^* T$. Then a white noise operator $U \in \mathcal{L}((E), (E)^\ast)$ satisfies the intertwining property:

$$Ua(\zeta) = b(\zeta)U, \quad \zeta \in E,$$

if and only if U is of the form

$$U = \text{wexp} \left\{-\frac{1}{2} \Delta^*_G (TS^{-1}) + \Lambda((S^{-1})^\ast - I)\right\} \diamond F,$$

(10)

where $F \in \mathcal{L}((E), (E)^\ast)$ fulfills $D^+_\zeta F = 0$ for all $\zeta \in E$.

Remark:

$$\text{wexp} \left\{-\frac{1}{2} \Delta^*_G (TS^{-1})\right\} = e^{-\frac{1}{2} \Delta^*_G (TS^{-1})}$$

$$\text{wexp} \left\{\Lambda((S^{-1})^\ast - I)\right\} = \Gamma((S^{-1})^\ast)$$

$$U = e^{-\frac{1}{2} \Delta^*_G (TS^{-1})} \Gamma((S^{-1})^\ast)F \quad \text{(usual composition)}$$
Proof.

1. We only need to solve the differential equation

\[D_{S\zeta}^+ U = [a(\zeta - S\zeta) - a^*(T\zeta)] \diamond U. \] \hspace{1cm} (11)

2. We readily know that

\[D_{S\zeta}^+ \Lambda((S^{-1})^* - I) = a(\zeta - S\zeta), \quad D_{S\zeta}^+ \Delta^{*}_G(TS^{-1}) = 2a^*(T\zeta). \]

3. Then by the general result a general form of the solutions to (11) is given by

\[U = \text{wexp} \left\{ -\frac{1}{2} \Delta^{*}_G(TS^{-1}) + \Lambda((S^{-1})^* - I) \right\} \diamond F, \]

where \(F \in \mathcal{L}((E), (E)^*) \) is an arbitrary white noise operator satisfying \(D_{S\zeta}^+ F = 0 \) for all \(\zeta \in E \).

4. Since \(S \) is invertible, the last condition for \(F \) is equivalent to that \(D_{\zeta}^+ F = 0 \) for all \(\zeta \in E \).
Theorem

Assume the following conditions:

(i) \(S \) is invertible;
(ii) \(T^* S = S^* T \);
(iii) \(S^* S - T^* T = I \);
(iv) \(ST^* = TS^* \).

Then a white noise operator \(U \in \mathcal{L}((E), (E)^*) \) satisfies the intertwining property:

\[
Ua^*(\zeta) = b^*(\zeta)U, \quad \zeta \in E,
\]

if and only if \(U \) is of the form:

\[
U = \text{wexp} \left\{ -\frac{1}{2} \Delta_G^* (TS^{-1}) + \Lambda ((S^{-1})^* - I) + \frac{1}{2} \Delta_G (S^{-1} T) \right\} \odot G,
\]

where \(G \in \mathcal{L}((E), (E)^*) \) is an arbitrary white noise operator satisfying

\[
(D_{\zeta}^- - D_{T\zeta}^+) G = 0 \quad \text{for all} \ \zeta \in E.
\]
Our task is to solve the differential equation:

\[(D^- - D^+_T)U = [a^*(S\zeta - \zeta) + a(T\zeta)] \diamond U.\]

First we need to find a solution to the differential equation:

\[(D^- - D^+_T)Y = a^*(S\zeta - \zeta) + a(T\zeta).\] \hspace{1cm} (12)

As is easily verified,

\[Y = \Delta^*_G(K) + \Lambda(L) + \Delta_G(M), \quad K = K^*, \quad M = M^*,\]

satisfies (12) if and only if

\[2M - L^*T = T, \quad L - 2KT = S - I.\]

Thanks to the conditions (i)–(iv) we may choose

\[K = -\frac{1}{2} TS^{-1}, \quad L = (S^{-1})^* - I, \quad M = \frac{1}{2} S^{-1}T.\]

Then the assertion follows immediately from our general theorem.
Theorem

Assume the following conditions:

(i) S is invertible;

(ii) $T^* S = S^* T \iff [b(\zeta), b(\eta)] = [b^*(\zeta), b^*(\eta)] = 0$;

(iii) $S^* S - T^* T = I \iff [b(\zeta), b^*(\eta)] = \langle \zeta, \eta \rangle$;

(iv) $ST^* = TS^*$.

A white noise operator $U \in \mathcal{L}((E), (E)^*)$ satisfies the following intertwining properties:

$$U a(\zeta) = b(\zeta) U, \quad U a^*(\zeta) = b^*(\zeta) U, \quad \zeta \in E,$$

if and only if U is of the form:

$$U = C \ \text{wexp} \left\{ -\frac{1}{2} \Delta^*_G(TS^{-1}) + \Lambda((S^{-1})^* - I) + \frac{1}{2} \Delta_G(S^{-1}T) \right\}$$

$$= C e^{-\frac{1}{2} \Delta^*_G(TS^{-1})} \Gamma((S^{-1})^*) e^{\frac{1}{2} \Delta_G(S^{-1}T)},$$

where $C \in \mathbb{C}$.
Proof.

By the above two theorems, \(U \) is of the form

\[
U = \text{wexp} \left\{ -\frac{1}{2} \Delta^*_G (TS^{-1}) + \Lambda((S^{-1})^* - I) \right\} \diamond F
\]

\[
= \text{wexp} \left\{ -\frac{1}{2} \Delta^*_G (TS^{-1}) + \Lambda((S^{-1})^* - I) + \frac{1}{2} \Delta_G (S^{-1}T) \right\} \diamond G,
\]

where \(F, G \in \mathcal{L}((E), (E)^*) \) satisfy

\[
D^+_{\zeta} F = 0, \quad (D^-_{\zeta} - D^+_{T\zeta}) G = 0, \quad \text{for all } \zeta \in E.
\]

We see from the above identity that

\[
G = F \diamond \text{wexp} \left\{ -\frac{1}{2} \Delta_G (S^{-1}T) \right\}.
\]

Since the right hand side contains no creation operators, we have

\[
D^+_{\zeta} G = 0, \quad \zeta \in E.
\] (13)

Then,

\[
0 = (D^-_{\zeta} - D^+_{T\zeta}) G = D^-_{\zeta} G, \quad \zeta \in E,
\] (14)

so \(G \) is a scalar operator.
We have derived a general form of U by means of a new type of a differential equation for white noise operators:

$$U = C \text{ wexp } \left\{ -\frac{1}{2} \Delta^*_G(TS^{-1}) + \Lambda((S^{-1})^* - I) + \frac{1}{2} \Delta_G(S^{-1}T) \right\}$$

$$= C e^{-\frac{1}{2} \Delta^*_G(TS^{-1})} \Gamma((S^{-1})^*) e^{\frac{1}{2} \Delta_G(S^{-1}T)}$$

This is the normal-ordered exponential of a quadratic function of quantum white noise (Bogoliubov Hamiltonian).

We can derive conditions for unitarity (e.g., by using complex white noise).

U is the composition of the generalized Fourier–Mehler and Fourier–Gauss transforms. Unitarity conditions with respect to another inner product? (Some results for $G_{U,V}$, see [Ji–Obata (2006)]).

Definition (Chung–Ji (1997))

$$G_{U,V} = \Gamma(V) e^{\Delta_G(U)}, \quad U \in \mathcal{L}(E, E^*), \quad V \in \mathcal{L}(E, E^*)$$

is called a generalized Fourier–Gauss transform and its adjoint operator $G_{U,V}^*$ a generalized Fourier–Mehler transform.
Final Remarks (2)

We discussed

- Quantum white noise derivatives and their applications to the implementation problem for CCR.

Another applications of quantum white noise derivatives

1. Hitsuda-Skorohod quantum stochastic integrals — adjoint action of derivatives

2. Representations of quantum martingales — a direct formula for the integrands