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The Implementation Problem

a(ξ), a∗(η) : annihilation and creation operators on Boson Fock space Γ(H) satisfying

CCR: [a(ξ), a(η)] = [a∗(ξ), a∗(η)] = 0, [a(ξ), a∗(η)] = ⟨ξ, η⟩

Consider transformed annihilation and creation operators:

b(ζ) = a(Sζ) + a∗(Tζ), b∗(ζ) = a∗(Sζ) + a(Tζ).

.

The implementation problem [Berezin (1966), Ruijsenaars (1977), ...]

.

.

.

. ..

. .

is to find a (unitary) operator U on the Boson Fock space Γ(H) satisfying

Γ(H)
U−−−−→ Γ(H)

a(ζ)

y yb(ζ)

Γ(H) −−−−→
U

Γ(H)

Γ(H)
U−−−−→ Γ(H)

a∗(ζ)

y yb∗(ζ)

Γ(H) −−−−→
U

Γ(H)

Remarks: (1) [b(ζ), b(η)] = [b∗(ζ), b∗(η)] = 0 ⇐⇒ T ∗S = S∗T

(2) [b(ζ), b∗(η)] = ⟨ζ, η⟩ ⇐⇒ S∗S − T ∗T = I
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1. Quantum White Noise Calculus
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1.1. Background and Notation

.

The Boson Fock space over H = L2(T ) is defined by

.

.

.

. ..

.

.

Γ(H) =

{
ϕ = (fn) ; fn ∈ H⊗̂n , ∥ϕ∥2 =

∞∑
n=0

n!|fn|20 < ∞
}

,

where T is a topological space equipped with a σ-finite Borel measure dt, |fn|0 is the

usual L2-norm of H⊗̂n = L2
sym(Tn).

.

The annihilation and creation operator at a point t ∈ T

.

.

.

. ..

. .

at : (0, . . . , 0, ξ⊗n, 0, . . . ) 7→ (0, . . . , 0, nξ(t)ξ⊗(n−1), 0, 0, . . . )

a∗
t : (0, . . . , 0, ξ⊗n, 0, . . . ) 7→ (0, . . . , 0, 0, ξ⊗n⊗̂δt, 0, . . . )

A “general” Fock space operator takes the form:

∞∑
l,m=0

∫
T l+m

κl,m(s1, . . . , sl, t1, . . . , tm)a∗
s1 · · · a∗

slat1 · · · atmds1 · · · dsldt1 · · · dtm

Quantum field theory: e.g., Haag (1955), Berezin (1966), Krée (1988), etc.
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1.2. White Noise Operators

I) Gelfand triple for H = L2(T ):

E ⊂ H = L2(T ) ⊂ E∗, E = proj lim
p→∞

Ep , E∗ = ind lim
p→∞

E−p ,

where Ep is a dense subspace of H and is a Hilbert space for itself.

II) Gelfand triple for Γ(H) (e.g., Hida–Kubo–Takenaka space (1980)):

(E) ⊂ Γ(H) ⊂ (E)∗, (E) = proj lim
p→∞

Γ(Ep), (E)∗ = ind lim
p→∞

Γ(E−p),

Note: (1) Γ(H) ∼= L2(E∗, µ) (Wiener–Itô–Segal isomorphism)

(2) (E) is the space of test functions and (E)∗ the space of distributions.

.

Definition (White noise operator)

.

.

.

. ..

.

.

A continuous operator from (E) into (E)∗ is called a white noise operator . Let

L((E), (E)∗) denote the space of white noise operators, equipped with the topology of

bounded convergence.

Note: L((E), (E)), L((E)∗, (E)∗) and B(Γ(H)) are subspaces of L((E), (E)∗).
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1.3. Quantum White Noise

.

Theorem (Quantum white noise is very regular)

.

.

.

. ..

.

.

at ∈ L((E), (E)) and a∗
t ∈ L((E)∗, (E)∗) for all t ∈ R. Moreover, both maps

t 7→ at ∈ L((E), (E)) and t 7→ a∗
t ∈ L((E)∗, (E)∗) are operator-valued rapidly

decreasing functions, i.e., belongs to E ⊗ L((E), (E)) and E ⊗ L((E)∗, (E)∗),

respectively. (The pair {at, a
∗
t ; t ∈ T} is called the quantum white noise on T .)

.

Smeared operators

.

.

.

. ..

.

.

a(ζ) =

∫
ζ(t)at dt, a∗(ζ) =

∫
ζ(t)a∗

t dt

Traditional approach

.

.

.

1 ζ is a test function, e.g., ζ ∈ S(R).

.

.

.

2 a(ζ), a∗(ζ) are unbounded opereators in Γ(H).

White noise approach

.

.

.

1 ζ is a distribution, e.g., ζ ∈ S′(R).

.

.

.

2 a(ζ), a∗(ζ) are white noise operators, i.e., belong to L((E), (E)∗).

.

.

.

3 In fact, a(ζ) ∈ L((E), (E)) and a∗(ζ) ∈ L((E)∗, (E)∗).
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1.4. Integral Kernel Operators and Fock Expansion

.

Definition (Integral kernel operator)

.

.

.

. ..

.

.

Given κl,m ∈ (E⊗(l+m))∗, l,m = 0, 1, 2, . . . , the integral kernel operator

Ξl,m(κl,m)

=

∫
T l+m

κl,m(s1, · · · , sl, t1, · · · , tm)a∗
s1 · · · a∗

slat1 · · · atmds1 · · · dsldt1 · · · dtm

is defined and is a white noise operator, i.e., Ξl,m(κl,m) ∈ L((E), (E)∗).

.

Theorem (O.(1993), cf. Berezin (1966), Krée (1988))

.

.

.

. ..

.

.

Every white noise operator Ξ ∈ L((E), (E)∗) admits the infinite series expansion:

Ξ =

∞∑
l,m=0

Ξl,m(κl,m), κl,m ∈ (E⊗(l+m))∗,

where the right-hand side converges in L((E), (E)∗). If Ξ ∈ L((E), (E)), then

κl,m ∈ E⊗l ⊗ (E⊗m)∗ and the series converges in L((E), (E)).
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2. Quantum White Noise Derivatives
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2.1. Definition

For a Brownian (or white noise) function Φ stochastic derivatives (gradients) were

introduced by Malliavin, Hida, Gross, ...

∇Φ,
δΦ

δḂ(t)
, ∂tΦ, atΦ

.

A quantum counterpart

.

.

.

. ..

.

.

A white noise operator Ξ is considered as a function of quantum white noise:

Ξ = Ξ(as, a
∗
t ; s, t ∈ T ). We should like to define the derivatives with respect to as

and a∗
t :

δΞ

δas
and

δΞ

δa∗
t

Expected properties:

δ

δas

∫
f(t)atdt = f(s)I

δ

δas

∫
f(s, t)asatdsdt =

∫
f(s, t)at dt +

∫
f(t, s)at dt

δ

δa∗
t

∫
f(s, t)asa

∗
tdsdt =

∫
f(s, t)as ds
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2.1. Definition

.

Definition (Ji–Obata (2007))

.

.

.

. ..

.

.

For Ξ ∈ L((E), (E)∗) and ζ ∈ E we define D±
ζ Ξ ∈ L((E), (E)∗) by

D+
ζ Ξ = [a(ζ),Ξ], D−

ζ Ξ = −[a∗(ζ),Ξ].

These are called the creation derivative and annihilation derivative of Ξ, respectively.

Both together are called the quantum white noise derivatives.

Note: For ζ ∈ E, both

a(ζ) = Ξ0,1(ζ) =

∫
T

ζ(t)at dt, a∗(ζ) = Ξ1,0(ζ) =

∫
T

ζ(t)a∗
t dt,

belong to L((E), (E)) ∩ L((E)∗, (E)∗).

.

.

.

1 (D+
ζ Ξ)∗ = D−

ζ (Ξ∗) and (D−
ζ Ξ)∗ = D+

ζ (Ξ∗).

.

.

.

2 D±
ζ is a continuous linear map from L((E), (E)∗) into itself.

.

.

.

3 Moreover, (ζ,Ξ) 7→ D±
ζ Ξ is a continuous bilinear map from E × L((E), (E)∗)

into L((E), (E)∗).
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Remark: Pointwisely Defined QWN-Derivatives

.

.
.

1 Recall: The smeared annihilation and creation operators

a(f) =

∫
T

f(t)at dt, a∗(f) =

∫
T

f(t)a∗
t dt .

It is natural to introduce D±
t to have

D+
ζ =

∫
T

ζ(t)D+
t dt, D−

ζ =

∫
T

ζ(t)D−
t dt.

In fact, this expression is useful for computation.

.

.

.

2 However, it is not straightforward to define D±
t for each point t ∈ T because

D+
t Ξ = [at,Ξ] = atΞ − Ξat, D−

t Ξ = −[a∗
t ,Ξ] = −a∗

tΞ + Ξa∗
t

are not well-defined in general.

.

.

.

3 Nevertheless, the pointwisely defined quantum white noise derivatives D±
t are well

formulated for admissible white noise operators L(G,G∗) [Ji–Obata, 2009, to

appear].
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2.2. Examples

The canonical correspondence (kernel theorem) between S ∈ L(E,E∗) and

τ = τS ∈ (E ⊗ E)∗ is given by ⟨τS, η ⊗ ξ⟩ = ⟨Sξ, η⟩ for ξ, η ∈ E.

.

(1) The generalized Gross Laplacian associated with S is defined by

.

.

.

. ..

.

.

∆G(S) = Ξ0,2(τS) =

∫
T×T

τS(s, t)asat dsdt

Note that ∆G(S) ∈ L((E), (E)). Then,

D+
ζ ∆G(S) = 0, D−

ζ ∆G(S) = a(Sζ) + a(S∗ζ)

In fact, since

D−
t ∆G(S) =

∫
T

τS(s, t)as ds +

∫
T

τS(t, s)as ds

we have

D−
ζ ∆G(S) =

∫
T×T

τS(s, t)asζ(t) dsdt +

∫
T×T

τS(t, s)asζ(t) dsdt

=

∫
T

Sζ(s)as ds +

∫
T

S∗ζ(s)as ds = a(Sζ) + a(S∗ζ)
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2.2. Examples

.

(2) The adjoint of ∆G(S) ∈ L((E)∗, (E)∗) is given by

.

.

.

. ..

.

.

∆∗
G(S) = Ξ2,0(τS) =

∫
T×T

τS(s, t)a
∗
sa

∗
t dsdt

The quantum white noise derivatives are given by

D−
ζ ∆∗

G(S) = 0, D+
ζ ∆∗

G(S) = a∗(Sζ) + a∗(S∗ζ)

.

(3) The conservation operator associated with S is defined by

.

.

.

. ..

.

.

Λ(S) = Ξ1,1(τS) =

∫
T×T

τS(s, t)a
∗
sat dsdt

In general, Λ(S) ∈ L((E), (E)∗).

The quantum white noise derivatives are given by

D−
ζ Λ(S) = a∗(Sζ), D+

ζ Λ(S) = a(S∗ζ).
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2.3. Wick Product

The Wick product of white noise operators Ξ1,Ξ2 ∈ L((E), (E)∗), denoted by

Ξ1 ⋄ Ξ2, is characterized by

at ⋄ Ξ = Ξ ⋄ at = Ξat , a∗
t ⋄ Ξ = Ξ ⋄ a∗

t = a∗
tΞ.

Equipped with the Wick product, L((E), (E)∗) becomes a commutative algebra.

.

Definition (Wick product)

.

.

.

. ..

.

.

For Ξ1,Ξ2 ∈ L((E), (E)∗) the Wick (or normal-ordered) product Ξ1 ⋄ Ξ2 is defined

by

(Ξ1 ⋄ Ξ2)̂ (ξ, η) = Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ,η⟩, ξ, η ∈ E,

where Ξ̂(ξ, η) is the symbol of a white noise operator Ξ ∈ L((E), (E)∗) defined by

Ξ̂(ξ, η) = ⟨⟨Ξϕξ, ϕη⟩⟩, ξ, η ∈ E,

where ϕξ = (1, ξ, · · · , ξ⊗n/n!, · · · ) is an exponential vector. This is verified by the

characterization theorem for operator symbols (see O. LNM 1577 (1994)]
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2.4. Wick Derivations

(L((E), (E)∗), ⋄) is a commutative algebra.

.

Definition (Wick derivation)

.

.

.

. ..

.

.

A continuous linear map D : L((E), (E)∗) → L((E), (E)∗) is called a

Wick derivation if

D(Ξ1 ⋄ Ξ2) = (DΞ1) ⋄ Ξ2 + Ξ1 ⋄ (DΞ2)

for all Ξ1,Ξ2 ∈ L((E), (E)∗).

.

Theorem

.

.

.

. ..

.

.

The creation and annihilation derivatives D±
ζ are Wick derivations for any ζ ∈ E.

Note: It is proved that a general Wick derivation D is expressed in the form:

D =

∫
T

F (t) ⋄ D+
t dt +

∫
T

G(t) ⋄ D−
t dt,

where F,G ∈ E ⊗ L((E), (E)∗).
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.

Proof.

.

.

.

. ..

.

.

In general, for Ξ ∈ L((E), (E)∗) we have

(D
+
ζ Ξ)̂(ξ, η) = ⟨⟨(a(ζ)Ξ − Ξa(ζ))ϕξ, ϕη⟩⟩

= ⟨⟨Ξϕξ, a
∗(ζ)ϕη⟩⟩ − ⟨⟨Ξa(ζ)ϕξ, ϕη⟩⟩

=
d

dt

∣∣∣∣
t=0

⟨⟨Ξϕξ, ϕη+tζ⟩⟩ − ⟨ξ, ζ⟩⟨⟨Ξϕξ, ϕη⟩⟩

=
d

dt

∣∣∣∣
t=0

Ξ̂(ξ, η + tζ) − ⟨ξ, ζ⟩Ξ̂(ξ, η). (1)

Then for Ξ = Ξ1 ⋄ Ξ2 we have

(D
+
ζ Ξ)̂(ξ, η) =

d

dt

∣∣∣∣
t=0

Ξ̂1(ξ, tζ + η)Ξ̂2(ξ, tζ + η)e−⟨ξ, tζ+η⟩

− ⟨ξ, ζ⟩Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ, η⟩

=

(
d

dt

∣∣∣∣
t=0

Ξ̂1(ξ, tζ + η)

)
Ξ̂2(ξ, η)e

−⟨ξ, η⟩

+ Ξ̂1(ξ, η)

(
d

dt

∣∣∣∣
t=0

Ξ̂2(ξ, tζ + η)

)
e−⟨ξ, η⟩

− 2⟨ξ, ζ⟩Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ, η⟩.

Viewing (1) once again, we obtain

(D
+
ζ Ξ)̂(ξ, η) = ((D

+
ζ Ξ1) ⋄ Ξ2)

̂(ξ, η) + (Ξ1 ⋄ (D
+
ζ Ξ2))

̂(ξ, η).
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3. Differential Equations for White Noise Operators
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3.1. Differential Equations

.

A general form

.

.

.

. ..

.

.

D : L((E), (E)∗) → L((E), (E)∗) : a Wick derivation

f : L((E), (E)∗) → L((E), (E)∗) : a map

DΞ = f(Ξ)

Simple cases:

.

.

.

1 DΞ = 0 (“constant” with respect to D)

.

.

.

2 DΞ = G ⋄ Ξ with G ∈ L((E), (E)∗) (linear equation)

General cases: interesting for characterizing white noise operators (future problem)?
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3.2. Reproducing Irreducubility of CCR

.

Let us consider the (system of) differential equations:

.

.

.

. ..

.

.

D+
ζ Ξ = 0, ζ ∈ E. (2)

We expect easily that Ξ = Ξ(as, a
∗
t ; s, t ∈ T ) does not depend on the creation

operators. In fact, by Fock expansion we see that the solutions to (2) are given by

Ξ =

∞∑
m=0

Ξ0,m(κ0,m).

.

In a similar manner, the solutions to

.

.

.

. ..

.

.

D−
ζ Ξ = 0, ζ ∈ E, (3)

are given by

Ξ =

∞∑
l=0

Ξl,0(κl,0).

Consequently, a white noise operator satisfying both (2) and (3) are the scalar operators.

Thus, the irreducibility of the canonical commutation relation is reproduced .
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3.2. Linear Equations

.

Given a Wick derivation D and G ∈ L((E), (E)∗), consider

.

.

.

. ..

.

.

DΞ = G ⋄ Ξ (4)

The Wick exponential is defined by

wexp Y =

∞∑
n=0

1

n!
Y ⋄n, Y ∈ L((E), (E)∗),

whenever the series converges in L((E), (E)∗).

.

Theorem

.

.

.

. ..

.

.

Every solution to (4) is of the form:

Ξ = (wexp Y ) ⋄ F, (5)

where (i) Y ∈ L((E), (E)∗) is a solution to DY = G;

(ii) wexp Y should be defined in L((E), (E)∗);

(iii) F ∈ L((E), (E)∗) is arbitrary satisfying DF = 0.
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.

Proof.

.

.

.

. ..

.

.

It is straightforward to see that

Ξ = (wexp Y ) ⋄ F

is a solution to

DΞ = G ⋄ Ξ (6)

To prove the converse, let Ξ be an arbitrary solution to (6). Set

F = (wexp (−Y )) ⋄ Ξ.

Obviously, F ∈ L((E), (E)∗) and Ξ = (wexp Y ) ⋄ F . We only need to show that

DF = 0. In fact,

DF = −DY ⋄ (wexp (−Y )) ⋄ Ξ + (wexp (−Y )) ⋄ DΞ

= −G ⋄ (wexp (−Y )) ⋄ Ξ + (wexp (−Y )) ⋄ G ⋄ Ξ = 0.

This completes the proof.
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.

Example (1)

.

.

.

. ..

.

.

D−
ζ Ξ = 2a(ζ) ⋄ Ξ, ζ ∈ E. (7)

.

.
.

1 We need to find Y ∈ L((E), (E)∗) satisfying D−
ζ Y = 2a(ζ).

.

.

.

2 In fact,

Y = ∆G =

∫
a2
t dt

is a solution.

.

.

.

3 Moreover, it is easily verified that wexp ∆G is defined in L((E), (E)).

.

.

.

4 Then, a general solution to (7) is of the form:

Ξ = (wexp ∆G) ⋄ F, (8)

where D−
ζ F = 0 for all ζ ∈ E.
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.

Example (2)

.

.

.

. ..

.

.

D−
ζ Ξ = 2a(ζ) ⋄ Ξ, ζ ∈ E,

D+
ζ Ξ = 0.

(9)

.

.
.

1 By Example (1) the solution is of the form:

Ξ = (wexp ∆G) ⋄ F, D−
ζ F = 0 for all ζ ∈ E.

.

.

.

2 We need only to find additional conditions for F satisfying D+
ζ Ξ = 0.

.

.

.

3 Noting that D+
ζ ∆G = 0, we have

D+
ζ Ξ = (wexp ∆G) ⋄ D+

ζ F = 0.

Hence D+
ζ F = 0 for all ζ ∈ E. Consequently, F is a scalar operator (irreducubility

of CCR).

.

.

.

4 Finally, the solution to (9) is of the form:

Ξ = C wexp ∆G, C ∈ C.
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4. Implementation Problem for CCR
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4.1. The Implementation Problem

Let S, T ∈ L(E,E) and consider transformed annihilation and creation operators:

b(ζ) = a(Sζ) + a∗(Tζ), b∗(ζ) = a∗(Sζ) + a(Tζ),

where ζ ∈ E. We know that b(ζ), b∗(ζ) ∈ L((E), (E)) ∩ L((E)∗, (E)∗).

.

The implementation problem

.

.

.

. ..

.

.

is to find a white noise operator U ∈ L((E), (E)∗) satisfying

(E)
U−−−−→ (E)∗

a(ζ)

y yb(ζ)

(E) −−−−→
U

(E)∗

(E)
U−−−−→ (E)∗

a∗(ζ)

y yb∗(ζ)

(E) −−−−→
U

(E)∗

Remarks: (1) T ∗S = S∗T is equivalent to

[b(ζ), b(η)] = [b∗(ζ), b∗(η)] = 0, ζ, η ∈ E.

(2) S∗S − T ∗T = I is equivalent to

[b(ζ), b∗(η)] = ⟨ζ, η⟩, ζ, η ∈ E.
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4.2. Our Approach

Ua(ζ) = b(ζ)U

= (a(Sζ) + a∗(Tζ))U

= D+
SζU + Ua(Sζ) + a∗(Tζ)U,

D+
SζU = Ua(ζ) − Ua(Sζ) − a∗(Tζ)U

= Ua(ζ − Sζ) − a∗(Tζ)U

= [a(ζ − Sζ) − a∗(Tζ)] ⋄ U.

.

Thus,

.

.

.

. ..

.

.

Ua(ζ) = b(ζ)U ⇐⇒ D+
SζU = [a(ζ − Sζ) − a∗(Tζ)] ⋄ U.

.

Similarly,

.

.

.

. ..

.

.

Ua∗(ζ) = b∗(ζ)U ⇐⇒ (D−
ζ − D+

Tζ)U = [a∗(Sζ − ζ) + a(Tζ)] ⋄ U.
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4.3. Solution to the Implementation Problem (1)

.

Theorem

.

.

.

. ..

.

.

Assume that S is invertible and that T ∗S = S∗T . Then a white noise operator

U ∈ L((E), (E)∗) satisfies the intertwining property:

Ua(ζ) = b(ζ)U, ζ ∈ E,

if and only if U is of the form

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I)

}
⋄ F, (10)

where F ∈ L((E), (E)∗) fulfills D+
ζ F = 0 for all ζ ∈ E.

Remark:

wexp

{
−1

2
∆∗

G(TS−1)

}
= e− 1

2
∆∗

G(TS−1)

wexp
{
Λ((S−1)∗ − I)

}
= Γ((S−1)∗)

U = e− 1
2
∆∗

G(TS−1)Γ((S−1)∗)F (usual composition)
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.

Proof.

.

.

.

. ..

.

.

.

.
.

1 We only need to solve the differential equation

D+
SζU = [a(ζ − Sζ) − a∗(Tζ)] ⋄ U. (11)

.

.
.

2 We readily know that

D+
SζΛ((S−1)∗ − I) = a(ζ − Sζ), D+

Sζ∆
∗
G(TS−1) = 2a∗(Tζ).

.

.

.

3 Then by the general result a general form of the solutions to (11) is given by

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I)

}
⋄ F,

where F ∈ L((E), (E)∗) is an arbitrary white noise operator satisfying

D+
SζF = 0 for all ζ ∈ E.

.

.

.

4 Since S is invertible, the last condition for F is equivalent to that D+
ζ F = 0 for all

ζ ∈ E.
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Solution to the Implementation Problem (2)

.

Theorem

.

.

.

. ..

.

.

Assume the following conditions:

(i) S is invertible;

(ii) T ∗S = S∗T ;

(iii) S∗S − T ∗T = I;

(iv) ST ∗ = TS∗.

Then a white noise operator U ∈ L((E), (E)∗) satisfies the intertwining property:

Ua∗(ζ) = b∗(ζ)U, ζ ∈ E,

if and only if U is of the form:

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
⋄ G,

where G ∈ L((E), (E)∗) is an arbitrary white noise operator satisfying

(D−
ζ − D+

Tζ)G = 0 for all ζ ∈ E.
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.

Proof.

.

.

.

. ..

.

.

.

.

.

1 Our task is to solve the differential equation:

(D−
ζ − D+

Tζ)U = [a∗(Sζ − ζ) + a(Tζ)] ⋄ U.

.

. .
2 First we need to find a solution to the differential equation:

(D−
ζ − D+

Tζ)Y = a∗(Sζ − ζ) + a(Tζ). (12)

.

.

.

3 As is easily verified,

Y = ∆∗
G(K) + Λ(L) + ∆G(M), K = K∗, M = M∗,

satisfies (12) if and only if

2M − L∗T = T, L − 2KT = S − I.

Thanks to the conditions (i)–(iv) we may choose

K = −1

2
TS−1, L = (S−1)∗ − I, M =

1

2
S−1T.

.

.

.

4 Then the assertion follows immediately from our general theorem.
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Solution to the Implementation Problem (3)

.

Theorem

.

.

.

. ..

.

.

Assume the following conditions:

(i) S is invertible;

(ii) T ∗S = S∗T ⇐⇒ [b(ζ), b(η)] = [b∗(ζ), b∗(η)] = 0;

(iii) S∗S − T ∗T = I ⇐⇒ [b(ζ), b∗(η)] = ⟨ζ, η⟩;

(iv) ST ∗ = TS∗.

A white noise operator U ∈ L((E), (E)∗) satisfies the following intertwining properties:

Ua(ζ) = b(ζ)U, Ua∗(ζ) = b∗(ζ)U, ζ ∈ E,

if and only if U is of the form:

U = C wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
= C e− 1

2
∆∗

G(TS−1)Γ((S−1)∗) e
1
2
∆G(S−1T ),

where C ∈ C.
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.

Proof.

.

.

.

. ..

.

.

.

.

.

1 By the above two theorems, U is of the form

U = wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I)

}
⋄ F

= wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
⋄ G,

where F,G ∈ L((E), (E)∗) satisfy

D+
ζ F = 0, (D−

ζ − D+
Tζ)G = 0, for all ζ ∈ E.

.

.

.

2 We see from the above identity that

G = F ⋄ wexp

{
−1

2
∆G(S−1T )

}
.

.

.

.

3 Since the right hand side contains no creation operators, we have

D+
ζ G = 0, ζ ∈ E. (13)

.

.

.

4 Then,

0 = (D−
ζ − D+

Tζ)G = D−
ζ G, ζ ∈ E, (14)

so G is a scalar operator.
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Final Remarks (1)

.

.

.

1 We have derived a general form of U by means of a new type of a differential

equation for white noise operators:

U = C wexp

{
−1

2
∆∗

G(TS−1) + Λ((S−1)∗ − I) +
1

2
∆G(S−1T )

}
= C e− 1

2
∆∗

G(TS−1)Γ((S−1)∗) e
1
2
∆G(S−1T )

This is the normal-ordered exponential of a quadratic function of quantum white

noise (Bogoliubov Hamiltonian).

.

.

.

2 We can derive conditions for unitarity (e.g., by using complex white noise)

.

.

.

3 U is the composition of the generalized Fourier–Mehler and Fourier–Gauss

transforms. Unitarity conditions with respect to another inner product? (Some

results for GU,V , see [Ji–Obata (2006)]).

.

Definition (Chung–Ji (1997))

.

.

.

. ..

.

.

GU,V = Γ(V ) e∆G(U), U ∈ L(E,E∗), V ∈ L(E,E∗)

is called a generalized Fourier–Gauss transform and its adjoint operator G∗
U,V a

generalized Fourier–Mehler transform.
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Final Remarks (2)

.

We discussed

.

.

.

. ..

.

.

Quantum white noise derivatives and their applications to the implementation

problem for CCR.

U. C. Ji and N. Obata: A new approach to implementation problem in

terms of quantum white noise derivatives, preprint, 2009.

.

Another applications of quantum white noise derivatives

.

.

.

. ..

. .

.

.

.

1 Hitsuda-Skorohod quantum stochastic integrals — adjoint action of derivatives

U. C. Ji and N. Obata: Quantum stochastic integral representations of

Fock space operators, Stochastics 81 (2009), 367–384.

.

.

.

2 Representations of quantum martingales — a direct formula for the integrands

U. C. Ji and N. Obata: Annihilation-derivative, creation-derivative and

representation of quantum martingales, Commun. Math. Phys. 286

(2009), 751–775.
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