
.

.

. ..

.

.

Convolution Operators in White Noise Calculus: Revisited

(joint work with H. Ouerdiane)

Nobuaki Obata

GSIS, Tohoku University

Levico, June 1, 2011

Nobuaki Obata (GSIS, Tohoku University) Convolution Operators in White Noise Calculus: Revisited Levico, June 1, 2011 1 / 35



Plan

[0]

.

. .
1 Backgrounds

.

. .
2 White Noise Distributions

Boson Fock Space

White Noise Triples

Construction of Underlying Gelfand Triple

Construction of White Noise Triples

.

. .

3 White Noise Operators

White Noise Operators

Integral Kernel Operators and Fock Expansion

.

. .

4 Convolution Operators

Translation Operators

Convolution Operators

Wick Multiplication Operator

Nobuaki Obata (GSIS, Tohoku University) Convolution Operators in White Noise Calculus: Revisited Levico, June 1, 2011 2 / 35



1. Backgrounds
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.

1) ∞-dimensional stochastic analysis (Kreé, Gross, Malliavin, Hida,... since 1970s)

.

.

.

. ..

.

.

(test functions) ȷ L2(Gaussian space) ȷ (distributions)

Applications to SDEs, quantum field theory, ...

— weighted Fock space approach (Cochran–Kuo–Sengupta)

vs1-dimensional holomorphic function approach (Ouerdiane et al.)

.

2) Wiener–Itô–Segal isomorphism

.

.

.

. ..

.

.

L2(E˜; —) ‰= Γ(L2(R)) =
n

ffi = (fn) ; fn 2 L2
sym(Rn);

1
X

n=0

n!jfnj2 <1
o

Bt  ! (0; 1[0;t]; 0; 0; : : : )

.

3) White noise (Hida) calculus : use of the time derivative of Brownian motion

.

.

.

. ..

.

.

dBt =
dBt

dt
dt = Wt dt () Bt =

Z t

0

Ws ds fWtg: white noise

Analysis of white noise functions (or distributions): Φ = Φ(Wt ; t 2 R)
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.

4) Annihilation and creation processes (unbounded in Γ(L2(R)))

.

.

.

. ..

.

.

At : (0; : : : ; 0; ‰˙n; 0; : : : ) 7! (0; : : : ; 0; nh1[0;t]; ‰i‰˙(n`1); 0; 0; : : : )

A˜
t : (0; : : : ; 0; ‰˙n; 0; : : : ) 7! (0; : : : ; 0; 0; ‰˙n

b˙1[0;t]; 0; : : : )

Hudson–Parthasarathy’s quantum stochastic calculus (with fΛtg)

.

5) Quantum white noise calculus

.

.

.

. ..

.

.

Bt = At +A˜
t =) Wt = at + a˜

t (quantum white noise)

A Boson Fock space operator Ξ is considered as a function of quantum white noise:

Ξ = Ξ(as; a
˜
t ; s; t 2 T )

1. N. Obata: “White Noise Calculus and Fock Space,” LNM Vol. 1577, Springer, 1994.

2. U. C. Ji and N. Obata: Quantum white noise calculus, in “Non-Commutativity,

Infinite-Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A.

Hora, Eds.),” 2002.

3. U. C. Ji and N. Obata: Annihilation-derivative, creation-derivative and representation of

quantum martingales, CMP 286 (2009).

4. U. C. Ji and N. Obata: Implementation problem for the canonical commutation relation in

terms of quantum white noise derivatives, JMP 51 (2010).
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2. White Noise Distributions
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2.1. Boson Fock Space

T : a ff-finite measure space,

time parameter space for stochastic analysis (R+, R, Z, . . . )

space-time parameter space for quantum (random) field theory (Rn, M , . . . )

.

The Boson Fock space over H = L2(T ) is defined by

.

.

.

. ..

.

.

Γ(H) =

(

ffi = (fn) ; fn 2 H
ˆ̇ n; kffik20 ”

1
X

n=0

n!jfnj20 <1
)

;

where H
ˆ̇ n is the symmetric tensor power of H and H

ˆ̇ 0 = C.

The creation and annihilation operators are essential, but unbounded in Γ(H)

.

A standard method to avoid unbounded operators is to employ a Gelfand triple:

.

.

.

. ..

.

.

W ȷ Γ(H) ȷ W˜;

whereW is a nuclear Fréchet space, densely and continuously embedded in Γ(H).

1. I. M. Gelfand and N. Ya. Vilenkin: “Generalized Functions, Vol.4,” 1964.

2. N. N. Bogolubov et al.: “Introduction to Axiomatic Quantum Field Theory,” 1975.
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2.2. White Noise Triples

W ȷ Γ(H) ȷ W˜;

Construction of a white noise triple consists of two steps:

.

.
.

1 constructing a underlying Gelfand triple (nuclear rigging):

´ ´ ´ ȷ Ep ȷ ´ ´ ´ ȷ H = L2(T ) ȷ ´ ´ ´ ȷ E`p ȷ ´ ´ ´

E = proj lim
p!1

Ep ȷ H ȷ ind lim
p!1

E`p = E˜

.

.

.

2 taking the second quantization

“Γ(E)” ȷ Γ(H) ȷ “Γ(E˜)”

.

Nuclearity is essential and yields fruitful structures

.

.

.

. ..

.

.

Realization of (quantum) white noise (ı justification of a delta function ‹t)

S-transform (Laplace transform) and its analytic characterization

— a fundamental tool for generalized white noise functions

Operator theory by means of nuclear kernel approach

— operator (or Wick) symbol, Fock expansion, quantum white noise derivative, ...
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2.3. Construction of Underlying Gelfand Triple

A: a positive selfadjoint operator in HR with Hilbert–Schmidt inverse

For p – 0 define

Ep;R = f‰ 2 HR ; j‰jp ” jAp‰j0 <1g;

E`p;R = completion of HR with respect to j‰j`p ” jA`p‰j0:

Then we have a Gelfand triple:

´ ´ ´ ȷ Ep ȷ ´ ´ ´ ȷH = L2(T ) ȷ ´ ´ ´ ȷ E`p ȷ ´ ´ ´

E = proj lim
p!1

Ep ȷH = L2(T ) ȷ ind lim
p!1

E`p = E˜

.

The minimum conditions for (quantum) white noise theory

.

.

.

. ..

.

.

(i) ȷ`1 ” inf Spec (A) > 1;

(ii) for each ‰ 2 E there exists a unique continuous function e‰ on T such that

‰(t) = e‰(t) for almost all t 2 T ;

(iii) for each t 2 T a linear functional ‹t : ‰ 7! e‰(t), ‰ 2 E, is continuous, i.e.,

‹t 2 E˜;

(iv) the map t 7! ‹t 2 E˜, t 2 T , is continuous.

The delta function ‹t is crucial for realization of quantum white noise.Nobuaki Obata (GSIS, Tohoku University) Convolution Operators in White Noise Calculus: Revisited Levico, June 1, 2011 9 / 35



.

Example

.

.

.

. ..

.

.

A prototype of the underlying Gelfand triple

S(R) ȷ L2(R) ȷ S0(R);

which is obtained by means of the operator:

A = 1 + t2 ` d2

dt2
:

In fact,

E = S(R) = proj lim
p!1

Sp(R)

Sp(R) = f‰ 2 L2(R) ; j‰jp ” jAp‰j0 <1g
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2.4. Construction of White Noise Triples

We have constructed a underlying Gelfand triple:

E = proj lim
p!1

Ep ȷ H ȷ E˜ = ind lim
p!1

E`p

We are going to apply the “second quantization” to get a white noise triple:

W ȷ Γ(H) ȷ W˜

In the recent studies there are two approaches:

(I) Weighted Fock spaces (CKS-spaces)

tracing back to Kubo–Takenaka (1980), Kondratiev–Streit, Cochran–Kuo–Sengupta,

Asai–Kuo–Kubo, Chung–Ji–Obata, Ji–Obata, ...

(II) Infinite dimensional holomorphic functions

Lee (1991), Gannoun–Hachaichi–Ouerdiane–Rezgui, Ben Chrouda–Ouerdiane, Da

Silva–Erraoui–Ouerdiane, Barhoumi,...
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(I) Weighted Fock spaces (CKS-spaces)

Having constructed a underlying Gelfand triple:

E ȷ ´ ´ ´ ȷ Ep ȷ ´ ´ ´ ȷ H = L2(T ) ȷ ´ ´ ´ ȷ E`p ȷ ´ ´ ´ ȷ ´ ´ ´ ȷ E˜;

define the weighted Fock space by

Γ¸(Ep) =

ȷ

ffi = (fn) ; fn 2 E
ˆ̇ n

p ; kffik2p;+ =
1
X

n=0

n!¸(n)jfnj2p <1
ff

where ¸ = f¸(n)g is a weight sequence satisfying certain convexity conditions (later),

and their limit spaces:

W = proj lim
p!1

Γ¸(Ep);

W˜ = ind lim
p!1

Γ¸(Ep)˜ = ind lim
p!1

Γ1=¸(E`p):

This is referred to as a standard CKS-space [Cochran–Kuo–Sengupta (1998)]

W = (E) when ¸(n) ” 1 [Kubo–Takenaka (1980)]

W = (E)˛ when ¸(n) = (n!)˛ with 0 » ˛ < 1 [Kondratiev–Streit (1993)]

The canonical bilinear form onW˜ ˆW is defined by

hhΦ; ffiii =
1
X

n=0

n!hFn; fni; Φ = (Fn); ffi = (fn):
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.

Conditions for the weight sequence α = {α(n)}

.

.

.

. ..

.

.

(A1) ¸(0) = 1 and there exists some ff – 1 such that inf
n–0

¸(n)ffn > 0;

(A2) lim
n!1

n¸(n)

n!

o1=n

= 0;

(A3) ¸ is equivalent to a positive sequence ‚ = f‚(n)g such that f‚(n)=n!g is

log-concave;

(A4) ¸ is equivalent to another positive sequence ‹ = f‹(n)g such that f(n!‹(n))`1g
is log-concave.

Here two sequences f¸(n)g; f‚(n)g of positive numbers are said to be equivalent if there exist

K1;K2;M1;M2 > 0 such that

K1M
n
1 ¸(n) » ‚(n) » K2M

n
2 ¸(n); n = 0; 1; 2; : : : :

A positive sequence ˛(n) is called log-concave if

˛(n)˛(n+ 2) » ˛(n+ 1)2; n = 0; 1; 2; : : : :

.

Remark

.

.

.

. ..

.

.

The above are almost mimimum requirements for the characterization theorem of

S-transform.
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.

Definition

.

.

.

. ..

.

.

For ‰ 2 E a coherent vector or an exponential vector is defined by

ffi‰ =

„

1; ‰;
‰˙2

2!
; : : : ;

‰˙n

n!
; : : :

«

:

(It is known that ffi‰ 2 W.)

.

Definition

.

.

.

. ..

.

.

The S-transform of Φ = (Fn) 2 W˜ is defined by

SΦ(‰) = hhΦ; ffi‰ii =

1
X

n=0

hFn; ‰
˙ni; ‰ 2 E:

.

Characterization Theorem

.

.

.

. ..

.

.

F : E ! C is the S-transform of Φ 2 W˜ if and only if

.

.

.

1 (holomorphy) z 7! F (‰ + z”) is entire holomorphic for any ‰; ” 2 E;

.

.

.

2 (growth condition) there are C;K; p – 0 such that jF (‰)j2 » CG¸(Kj‰j2p),

where G¸(s) =
P ¸(n)

n!
sn.

— ForW = (E) (¸(n) ” 1), G¸(s) = es [Potthoff–Streit (1991)]
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(II) ∞-Dim Holomorphic Functions

In this subsection we set N = E by notational convention.

„: a Young function,

i.e., it is a continuous, convex, and increasing function defined on [0;1) such that

„(0) = 0 and lim
x!1

„(x)

x
=1:

.

.

.

1 For each p 2 Z and m > 0 define a Banach space:

Exp(Np; „;m) =

(

f : Np ! C ;
entire holomorphic;

kfk„;p;m = supx2Np
jf(x)je`„(mjxjp) <1

)

.

.

.

2 We define

F„(N
˜) = proj lim

p!1; m!+0
Exp(N`p; „;m):

.

.

.

3 Define the Taylor map T : f 7! (fn) by Taylor expansion of f 2 F„(N
˜):

f(x) =

1
X

n=0

hx˙n; fni; x 2 N˜:
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.

Theorem (Ouerdiane et al. (2000))

.

.

.

. ..

.

.

Let F„(N) be the space of Taylor coefficients of f 2 F„(N
˜). Then

F„(N) =
\

p–0;m>0

F„;m(Np);

F„;m(Np) =

(

ffi = (fn) ; fn 2 N
b˙n

p ;
1
X

n=0

„`2
n m`njfnj2p <1

)

;

„n = inf
r>0

e„(r)

rn
: n = 0; 1; 2; : : : :

Moreover, equipped with the projective limit topology, F„(N) is a nuclear Fréchet space

and T : F„(N
˜)! F„(N) is a topological isomorphism.

The dual space of F„(N) is given by

G„(N
˜) =

[

p–0;m>0

G„;m(N`p);

G„;m(N`p) =

(

Φ = (Fn) ; Fn 2 N
b˙n

`p ;
1
X

n=0

(n!„n)2mnjFnj2`p <1
)

:

The canonical C-bilinear form on G„(N
˜)ˆ F„(N) is given by

hhΦ; ffiii =
X

n–0

n!hFn; fni; Φ = (Fn); ffi = (fn):
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In order to get a white noise triple,

.

Lemma

.

.

.

. ..

.

.

If lim
x!+1

„(x)

x2
<1, then we have

F„(N) ȷ Γ(H):

Thus, we have obtained a white noise triple:

F„(N) ȷ Γ(H) ȷ F„(N)˜ = G„(N
˜)

.

Remark

.

.

.

. ..

.

.

The condition in the above lemma is important to get a white noise triple, but many

properties on the duality between F„(N) and G„(N
˜) are derived without assuming

the above condition.
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Comparison

(I) Given ¸ = f¸(n)g we have

W ȷ Γ(H) ȷ W˜

Wick product — Wick calculus or symbol calculus (applications to QSDEs)

(II) Given „ we have

F„(N) ȷ Γ(H) ȷ F„(N)˜ = G„(N
˜)

Convolution calculus — convolution product, convolution operator, translation,

Laplacians, derivation, ....

.

Theorem (Asai–Kubo–Kuo (2001))

.

.

.

. ..

.

.

If G¸(s) = expf2„(
p
r)g, we have

W = F„(N)
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3. White Noise Operators
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3.1. Quantum White Noise

W ȷ Γ(H) ȷ W˜

.

Definition

.

.

.

. ..

.

.

A continuous operator fromW intoW˜ is called a white noise operator. The space of

white noise operators is denoted by L(W;W˜) (bounded convergence topology).

.

The annihilation and creation operator at a point t ∈ T

.

.

.

. ..

.

.

at : (0; : : : ; 0; ‰˙n; 0; : : : ) 7! (0; : : : ; 0; n‰(t)‰˙(n`1); 0; 0; : : : )

a˜
t : (0; : : : ; 0; ‰˙n; 0; : : : ) 7! (0; : : : ; 0; 0; ‰˙n

b˙‹t; 0; : : : )

The pair fat; a
˜
t ; t 2 Tg is called the quantum white noise on T .

.

Theorem

.

.

.

. ..

.

.

at 2 L(W;W) and a˜
t 2 L(W˜;W˜) for all t 2 R. Moreover, both maps

t 7! at 2 L(W;W) and t 7! a˜
t 2 L(W˜;W˜) are operator-valued rapidly

decreasing functions, i.e., belongs to E ˙ L(W;W) and E ˙ L(W˜;W˜),

respectively.
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3.2. White Noise Operators

.

For Ξ ∈ L(W, W∗) the symbol is defined by

.

.

.

. ..

.

.

bΞ(‰; ”) = hhΞ’‰; ’”ii ; ‰; ” 2 E;

where ’‰ =
“

1; ‰;
‰˙2

2!
; ´ ´ ´

”

is an exponential vector.

E = f’‰ ; ‰ 2 Eg ȷ W is linearly independent dense set

=) A linear operator Ξ is uniquely specified by the action on E

.

Characterization theorem for symbols [Obata (1993), Ji–Obata,...]

.

.

.

. ..

.

.

Let Θ be a C-valued function on E ˆ E. Then there exists a white noise operator

Ξ 2 L((E); (E)˜) such that Θ = bΞ if and only if

.

.

.

1 (holomorphy) for any ‰; ‰1; ”; ”1 2 E, the function Θ(z‰ + ‰1; w” + ”1) is an

entire holomorphic function of (z; w) 2 Cˆ C;

.

.

.

2 (growth condition) there exist constant numbers C – 0, K – 0 and p – 0 such

that
jΘ(‰; ”)j » C exp

˘

K(j‰j2p + j”j2p
´¯

; ‰; ” 2 E:

(We have similar conditions for Ξ 2 L(W;W˜).)
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3.3. Integral Kernel Operators and Fock Expansion

.

Definition (Integral kernel operator)

.

.

.

. ..

.

.

Given »l;m 2 (E˙(l+m))˜, l;m = 0; 1; 2; : : : ,

Ξl;m(»l;m) =

Z

T l+m

»l;m(s1; ´ ´ ´ ; sl; t1; ´ ´ ´ ; tm)

a˜
s1
´ ´ ´ a˜

sl
at1 ´ ´ ´ atmds1 ´ ´ ´ dsldt1 ´ ´ ´ dtm

is a well-defined white noise operator and is called an integral kernel operator.

.

Theorem (Haag, Berezin, Krée, O.(1993),...)

.

.

.

. ..

.

.

Every white noise operator Ξ 2 L(W;W˜) admits the Fock expansion:

Ξ =

1
X

l;m=0

Ξl;m(»l;m); »l;m 2 (E˙(l+m))˜;

where the right-hand side converges in L(W;W˜). If Ξ 2 L(W;W), then

»l;m 2 E˙l ˙ (E˙m)˜ and the series converges in L(W;W).
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4. Convolution Operators

N. Obata and H. Ouerdiane: A note on convolution operators in white noise calculus,

preprint, 2011.
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4.1. Translation Operators w.r.t. holomorphic realization

Let ffi = (fn) 2 W and consider the holomorphic realization

[Hffi](x) =

1
X

n=0

hx˙n; fni; x 2 E˜:

(Hffi 2 F„(N
˜).) With each y 2 E˜ we associate a translation operator ty defined by

(ty[Hffi])(x) = [Hffi](x` y); x 2 E˜:

.

Lemma

.

.

.

. ..

.

.

There exists  = Tyffi 2 W such that

ty[Hffi] = H :

Moreover, Ty 2 L(W;W).
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Proof. By definition we have

(ty[Hffi])(x) =
1
X

n=0

h(x ` y)˙n; fni

=
1
X

n=0

n
X

k=0

“n

k

”

(`1)khx˙(n`k) ˙ y˙k; fni

=
1
X

k=0

1
X

n=0

“n+ k

k

”

(`1)khx˙n ˙ y˙k; fn+ki

=
1
X

n=0

1
X

k=0

“n+ k

k

”

(`1)khx˙n; fn+k ˙k y
˙ki;

where ˙k is the contraction of tensor product. It is easily verified that

gn =
1
X

k=0

“n+ k

k

”

(`1)kfn+k ˙k y
˙k (1)

converges in E˙n,  = (gn) belongs to W and

ty[Hffi] = H :

Then by definition

 = Tyffi; ffi 2 W:

That Ty 2 L(W;W) is verified by straightforward estimates of norms.
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4.2. Convolution Operators

.

Lemma

.

.

.

. ..

.

.

Let Φ = (Fn) 2 W˜ and ffi = (fn) 2 W. Then there exists  = CΦffi 2 W such

that

[H ](x) = hhΦ; T`xffiii; x 2 E˜:

Moreover, CΦ 2 L(W;W).

.

Definition

.

.

.

. ..

.

.

CΦ is called the convolution operator associated with Φ 2 W˜.

Nobuaki Obata (GSIS, Tohoku University) Convolution Operators in White Noise Calculus: Revisited Levico, June 1, 2011 26 / 35



Proof. For x 2 E˜ we observe that

hhΦ; T`xffiii =

1
X

n=0

n!

fi

Fn;
1
X

k=0

 

n+ k

k

!

(`1)kfn+k ˙k (`x)˙k

fl

=

1
X

n=0

1
X

k=0

(n+ k)!

k!
hFn; fn+k ˙k x

˙ki

=

1
X

k=0

1
X

n=0

(n+ k)!

k!
hx˙k; Fn ˙n fn+ki:

This should coincide with H (x) so  = (hk). It is easily shown that

hk =
1
X

n=0

(n+ k)!

k!
Fn ˙n fn+k

converges in E
ˆ̇ k, hence  = (hk) belongs toW .
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.

Theorem (Fock expansion of convolution operator)

.

.

.

. ..

.

.

For Φ = (Fn) 2 W˜ we have

CΦ =

1
X

m=0

Ξ0;m(Fm): (2)

Proof. By definition we have

CΦffi = (hk); hk =
1
X

n=0

(n+ k)!

k!
Fn ˙n fn+k :

Taking an exponential vector ffi = ffi‰, ‰ 2 E, we see easily that CΦffi‰ = hhΦ; ffi‰iiffi‰. Hence

dCΦ(‰; ”) = hhCΦffi‰; ffi”ii = hhΦ; ffi‰iihhffi‰; ffi”ii =

1
X

m=0

hFm; ‰
˙mi eh‰;”i;

from which the Fock expansion (2) follows.

.

Example (the Gross Laplacian is a convolution operator)

.

.

.

. ..

.

.

Let fi 2 (E ˆ E)˜ be the trace, i.e., the integral kernel corresponding to the identity

operator. For fĩ = (0; 0; fi; 0; : : : ) we have

∆G = Ξ0;2(fi) = Cfĩ
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4.3. Wick Multiplication Operator

For two Φ1;Φ2 2 W˜ the Wick product Φ1 ˝ Φ2 2 W˜ is characterized by

S(Φ1 ˝ Φ2)(‰) = SΦ1(‰)SΦ2(‰); ‰ 2 E:

With each Φ 2 W˜ we associate the Wick multiplication operator M˝
Φ by

M˝
ΦΨ = Φ ˝Ψ; Ψ 2 W˜:

.

Theorem (Fock expansion of Wick multiplication operator)

.

.

.

. ..

.

.

For Φ = (Fn) 2 W˜ we have

M˝
Φ =

1
X

l=0

Ξl;0(Fl):

Proof. By definition of the Wick product we have

dM˝
Φ(‰; ”) = hhM˝

Φffi‰; ffi”ii = hhΦ ˝ ffi‰; ffi”ii = hhΦ; ffi”iihhffi‰; ffi”ii:

Hence

dM˝
Φ(‰; ”) = hhΦ; ffi”iieh‰;”i =

1
X

l=0

hFl; ”
˙lieh‰;”i;

from which the Fock expansion follows.

Nobuaki Obata (GSIS, Tohoku University) Convolution Operators in White Noise Calculus: Revisited Levico, June 1, 2011 29 / 35



.

Theorem

.

.

.

. ..

.

.

For Φ 2 W˜ we have

CΦ = (M˝
Φ)˜; M˝

Φ = (CΦ)˜:

Proof. By comparing the Fock expansions of the Wick multiplication and convolution operators.

.

Theorem (Characterization of convolution operators)

.

.

.

. ..

. .

For a white noise operator Ξ 2 L(W;W) the following conditions are equivalent:

(i) Ξ is a convolution operator, i.e., Ξ = CΦ for some Φ 2 W˜;

(ii) Ξ commutes with all annihilation operators a(y) = Ξ0;1(y), y 2 E˜;

(iii) Ξ commutes with all translations Ty, y 2 E˜;

(iv) Ξ is the adjoint operator of a Wick multiplication.
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Wick Product of White Noise Operators

For two white noise operators Ξ1;Ξ2 2 L(W;W˜) the Wick product, denoted by

Ξ ˝ Ξ2, is defined to be the unique white noise operator satisfying

hh(Ξ1 ˝ Ξ2)ffi‰; ffi”ii = hhΞ1ffi‰; ffi”iihhΞ2ffi‰; ffi”iie`h‰;”i; ‰; ” 2 E;

or equivalently in terms of symbols:

(Ξ1 ˝ Ξ2)b(‰; ”) = bΞ1(‰; ”)bΞ2(‰; ”)e
`h‰;”i; ‰; ” 2 E:

It is also known that L(W;W) is closed under the Wick product.

.

Theorem

.

.

.

. ..

.

.

The map Φ 7! CΦ gives rise to a continuous, injective homomorphism from (W˜; ˝)
into (L(W;W); ˝).

Proof. We need only to note that

CΦ1 ˝ CΦ2 = CΦ1CΦ2 = CΦ1˝Φ2 ; Φ1;Φ2 2 W˜:

The first relation is due to the fact that CΦ contains only annihilation operators (Theorem ??)

and the second term by Theorem ??. The rest is a routine work.
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Convolution Product in (II) = Wick Product in (I)

Within the framework (II) F„(N) ȷ Γ(H) ȷ F„(N)˜ = G„(N
˜)

the “convolution product” of two white noise distributions Φ;Ψ is defined by

hhΦ ?Ψ; ffiii = hhΨ; CΦffiii:

Using CΦ = (M˝
Φ)˜ we see that

hhΨ; CΦffiii = hhM˝
ΦΨ; ffiii = hhΦ ˝Ψ; ffiii

Therefore,

Φ ?Ψ = Φ ˝Ψ

.

Namely,

.

.

.

. ..

.

.

The “convolution product” in (II) coincides with the Wick product in (I).
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Kuo’s Convolution Operator (1992)

Start with standard definition: convolution of measures on the additive group E˜:

 ? ff(A) =

Z

E∗
(A` x)ff(dx); A ȷ E˜

This defines convolution of “density functions,” i.e., letting — the Gaussian measure,

 = Φ(x)—; ff = Ψ(x)—; =)  ? ff = (Φ ?Ψ)(x)—

By direct calculation we obtain
Z

E∗
1A(x)(Φ ?Ψ)(x)—(dx) =

Z

E∗

Z

E∗
1A(x+ y)Φ(x)Ψ(y)—(dx)—(dy)

Replacing 1A with an exponential vector ffi‰ we have

S(Φ ?Ψ)(‰) = SΦ(‰)SΨ(‰)eh‰;‰i=2

= SΦ(‰)SΨ(‰)Sg`2(‰)

= S(Φ ˝Ψ ˝ g`2)(‰)

The last expression is valid for any pair of Φ;Ψ 2 W˜.
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.

Definition (Kuo (1992))

.

.

.

. ..

.

.

For Φ;Ψ 2 W˜ their convolution is defined by

Φ ?Ψ = Φ ˝Ψ ˝ g`2

(Different from the convolution in (II) and from the Wick product (I).)

Kuo’s “convolution” operator is defined by

M?
ΦΨ = Φ ?Ψ

Then, M?
Φ 2 L(W˜;W˜) and

M? = M˝
ΦM

˝
g2

= (CΦ)˜e∆
∗
G=2

In particular,

(M?)˜ = e∆G=2 CΦ
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Summary

.

. . 1 We reviewed two methods of constructing a white noise triple.

(I) weighted Fock spaces (CKS-spaces)

(II)1-dim holomorphic functions

.

.

.

2 We obtained characterization of the convolution operators.

.

.

.

3 We showed the Wick product in (I) coincides with the convolution product in (II),

namely,

Wick calculus = convolution calculus

The main results are found in

N. Obata and H. Ouerdiane: A note on convolution operators in white noise

calculus, preprint, 2011.
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