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Lattices vs Trees

additive group Zn free group Fn

commutative independence free independence

many cycles no cycles

binomial coefficients Catalan numbers

Normal distribution Wigner semi-circle law
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Spidernet = Tree + Large cycles

S(a, b, c)

a = deg(o)

b = deg(x) for x ̸= o

c = ω+(x) for x ̸= o

S(4, 6, 3)

Spectral analysis [Igarashi–O. Banach Center Publ. 73 (2006)]

Method: Stratification =⇒ Quantum decomposition of the adjacency matrix

=⇒ Orthogonal polynomials =⇒ Free Meixner law
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1. Random Walks
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1.0. Random Walks and Markov Chains

Random Walk on 1-dim Integer Lattice Transition Diagram

j

i

p
ij

.
Markov chain
..
...... Digraph + Weights on edges = Transition Matrix P = [pij]
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1.1. Recurrence of Markov Chains

{Xn}: a (time homogeneous) Markov chain on a state space S = {i, j, . . . }
p(i, j) = P (X1 = j|X0 = i): One-step transition probability

P = [p(i, j)]: transition matrix

Then the n-step transition probability is given by

pn(i, j) = P (Xn = j|X0 = i) = Pn(i, j)

.
Definition
..

......

A state i ∈ S is called recurrent if

P (Ti < ∞|X0 = i) = 1,

where Ti = inf{n ≥ 1 ; Xn = i} is the first hitting time of i.

.
Theorem (Standard)
..

......

A state i ∈ S is recurrent if and only if

∞∑
n=1

Pn(i, i) = +∞.
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1.2. Random Walks on a Half Line

{Xn}: random walk on Z+ = {0, 1, 2, . . . }

nnn

p pp p

q qq q q

P (right move) = p, q = 1 − p = P (left move), 0 < p < 1.

0 is a reflection barrier

Transition matrix:

P =



0 1

q 0 p

. . .
. . .

. . .

q 0 p

. . .
. . .

. . .


, Φj =



0
...

0

1

0
...


We have

pn(i, j) = Pn(i, j) = ⟨Φi, P
nΦj⟩
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1.3. Integral Representation of Transition Probability

{Xn}: random walk on Z+ = {0, 1, 2, . . . }
P (right move) = p, q = 1 − p = P (left move), 0 < p < 1.

0 is a reflection barrier
.
Theorem (Karlin-McGregor formula)
..

......

pn(i, j) = P (Xn = j|X0 = i) =
1

π(i)

∫ +∞

−∞
xnQi(x)Qj(x)µ(dx),

where

...1 µ is the Kesten distribution with parameters q, pq

...2 {Qn} be the polynomials associated with P t (transposed P ).

...3 π(0) = 1, π(n) =
pn−1

qn
for n = 1, 2, . . .

In particular,

pn(0, 0) =

∫ +∞

−∞
xnµ(dx), n = 0, 1, 2, . . . .
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1.4. Kesten Distribution

nnn

p pp p

q qq q q

=⇒ by standard method (one-mode interacting Fock spaces, Stieltjies transform, etc..)

=⇒ we obtain the explicit expression of the Kesten distribution with parameters q, pq:

µq(dx) =

ρq(x)dx, if 0 < q ≤ 1/2,

ρq(x)dx+
2q − 1

2q

(
δ−1 + δ+1

)
, if 1/2 < q < 1,

ρq(x) =


√

4q(1 − q) − x2

2πq(1 − x2)
, if |x| < 2

√
q(1 − q) ,

0, otherwise.
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1.5. Recurrence

For recurrence we need to check

∞∑
n=0

pn(0, 0) =
∞∑

n=0

p2n(0, 0) =
∞∑

n=0

∫ +∞

−∞
x2nµq(dx)

(Case I) 0 < q < 1/2. Since supp ρq ⊂ (−1, 1),

∞∑
n=0

p2n(0, 0) =

∞∑
n=0

∫ +∞

−∞
x2nµq(dx)

=

∞∑
n=0

∫ 2
√

q(1−q)

−2
√

q(1−q)

x2n

√
4q(1 − q) − x2

2πq(1 − x2)
dx

=

∫ 2
√

q(1−q)

−2
√

q(1−q)

√
4q(1 − q) − x2

2πq(1 − x2)2
dx < ∞.

Therefore, the origin 0 is not recurrent.

Nobuaki Obata (GSIS, Tohoku University) Random walks, Quantum Walks, and Free Meixner Laws ITB, October 22, 2012 12 / 43



(Case II) 1/2 < q < 1. Using the delta measure contained in µq(dx),

∞∑
n=0

p2n(0, 0) =
∞∑

n=0

∫ +∞

−∞
x2nµq(dx) ≥

∞∑
n=0

2q − 1

q
= +∞.

Therefore, 0 is recurrent.

(Case III) q = 1/2. We perform an explicit calculation. Note that

ρ1/2(x) =
1

π
√
1 − x2

, |x| < 1,

is reduced to the arcsine law. By means of the moment sequence of the arcsine law

(known) we have

∞∑
n=0

p2n(0, 0) =
∞∑

n=0

1

π

∫ +1

−1

x2n

√
1 − x2

dx =
∞∑

n=0

(
2n

n

)
1

4n

= lim
z→1/4−0

1√
1 − 4z

= +∞.

Therefore, the origin 0 is recurrent.
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2. One-Mode Interacting Fock Spaces

A Basic Concept of Quantum Probability

A. Hora and N.O.: Quantum Probability and Spectral Analysis of Graphs, Springer, 2007.
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2.1. One-Mode Interacting Fock Spaces (in a slightly generalized form)

n+n

c

a

b

c

a a

b b

n

n

c n+

a
n

n

bn

cn

T: The class of finite or infinite tridiagonal matrices of the form:

T =



b0 a0

c1 b1 a1

. . .
. . .

. . .

cn bn an

. . .
. . .

. . .


,

an, bn, cn ∈ R,
an ̸= 0, cn ̸= 0.

The associated interacting Fock space: ΓT = (Γ, {Φn}, B+, B−, B◦)

B+Φn = cn+1Φn+1 , B−Φn = an−1Φn−1 , B◦Φn = bnΦn

T = B+ +B− +B◦ (quantum decomposition)
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Remark: Jacobi Matrix

A tridiagonal matrix T ∈ T is called a Jacobi matrix if it is real, symmetric with positive

off-diagonal entries, i.e., it is of the form:

T =



α1

√
ω1√

ω1 α2

√
ω2√

ω2 α3

√
ω3

. . .
. . .

. . .√
ωn−1 αn

√
ωn

. . .
. . .

. . .


, ωn > 0, αn ∈ R.

In this case the pair of two sequences ({ωn}, {αn}) is called Jacobi parameters.

▶ ΓT = (Γ, {Φn}, B+, B−, B◦) associated with Jacobi parameters ({ωn}, {αn}) is

an interacting Fock space in an original sense (e.g., Accardi–Bożejko (1998)).

n+n

α n

n+n

n

n
ωω ω ω

α α α α
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2.2. Spectral Properties

n+n

c

a

b

c

a a

b b

n

n

c n+

a
n

n

bn

cn

▶ positivity condition:

ωn ≡ an−1cn > 0, αn ≡ bn−1 ∈ R, for n = 1, 2, . . .

=⇒ ∃ a probability distribution µ on R with Jacobi parameter ({ωn}, {αn}),
i.e., the orthogonal polynomials {Pn} associated with µ satisfy

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x)

P0(x) = 1, P−1(x) = 0.

.
Theorem
..

......

µ is the distribution of T in the vacuum state, i.e.,

(Tm)00 = ⟨Φ0, T
mΦ0⟩ = ⟨Φ0, (B

+ +B− +B◦)mΦ0⟩ =

∫ +∞

−∞
xmµ(dx)
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2.3. How to Obtain µ from ({ωn}, {αn})

({ωn}, {αn}) =⇒ µ up to the determinate moment problem

Stieltjes transform

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · · ,

where the right-hand side is convergent in {Im z ̸= 0} if the moment problem is

determinate, e.g., if ωn = O((n logn)2) (Carleman’s test).

Stieltjes inversion formula

1

2
{F (t) + F (t− 0)} − 1

2
{F (s) + F (s− 0)}

= − 1

π
lim

y→+0

∫ t

s

ImGµ(x+ iy)dx, s < t,

ρ(x) = − 1

π
lim

y→+0
ImGµ(x+ iy)

where F (x) = µ((−∞, x]) is the (right-continuous) distribution function of µ and

ρ(x) is the absolutely continuous part.
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2.4. Integral Representation of the Matrix elements of Tm

Let ΓT = (Γ, {Φn}, B+, B−, B◦), T ∈ T with positivity condition

(Tm)00 = ⟨Φ0, T
mΦ0⟩ = ⟨Φ0, (B

+ +B− +B◦)mΦ0⟩ =

∫ +∞

−∞
xmµ(dx)

where µ is the distribution of T in the vacuum state.

.
Theorem (essentially due to Karlin-McGregor (1959))
..

......

Let T ∈ T satisfy the positivity condition and µ a probability distribution on R with

Jacobi parameter ({ωn}, {αn}). Let ΓT = (H, {Φn}, B+, B−, B◦) the associated

interacting Fock space and {Qn(x)} the associated polynomials. It then holds that

(Tm)ij = ⟨Φi, T
mΦj⟩ =

a0a1 . . . aj−1

c1c2 . . . cj

∫ +∞

−∞
xmQi(x)Qj(x)µ(dx).

▶ Note: Here T is not necessarily a Jacobi matrix, but the proof of Karlin–McGregor

(1959) is valid to our case.

▶ Application: Computing the transition probability P (Xn = i|X0 = j) for a

nearest-neighbor random walk on {0, 1, 2, . . . }.
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where the polynomials associated with a tridiagonal matrix are defined as follows:

T =



b0 a0

c1 b1 a1

. . .
. . .

. . .

cn bn an

. . .
. . .

. . .


∈ T

we define a sequence of polynomials Q0(x), Q1(x), Q2(x), . . . by
xQn(x) = anQn+1(x) + bnQn(x) + cnQn−1(x)

Q0(x) = 1,

Q−1(x) = 0

or equivalently, x


Q0

Q1

Q2

...

 = T


Q0

Q1

Q2

...


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3. Free Meixner Laws
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3.1. Free Meixner Laws

The free Meixner law with parameter p > 0, q ≥ 0, a ∈ R is a probability distribution

µ = µp,q,a specified uniquely by∫ +∞

−∞

µ(dx)

z − x
=

1

z −
p

z − a−
q

z − a−
q

z − a−
q

z − a− · · ·

=
(2q − p)z + pa− p

√
(z − a)2 − 4q

2(q − p)z2 + 2paz + 2p2

µ(dx) = ρ(x)dx+ w1δc1 + w2δc2 ,

ρ(x) =
p

2π

√
4q − (x− a)2

(q − p)x2 + pax+ p2
, |x− a| ≤ 2

√
q,

c1, c2, w1, w2 are known explicitly, see e.g., [Hora-O. Book, 2007]

Special cases

...1 A free Meixner law with a = 0 is the Kesten measure with parameter p, q.

...2 A free Meixner law with a = 0 and p = q = 1 is the (normalized)

Wigner semicircle law.
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Free Meixner laws µ4,3,a(dx) = ρ4,3,a(x)dx+ w1δc1 + w2δc2

ρ
4,3,a

(x)

a 
a 
a a 

a 

a 
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3.2. Spectral Distributions of Spidernets

G = S(a, b, c)

a = deg(o)

b = deg(x) for x ̸= o

c = ω+(x) for x ̸= o

S(4, 6, 3)

A: adjacency matrix of G, i.e.,

(A)xy =

1, x ∼ y

0, otherwise

.
Theorem (Igarashi–O. (2006))
..

......

Let A be the adjacency matrix of a spidernet S(a, b, c). Then we have

⟨δo, Amδo⟩ =

∫ +∞

−∞
xmµa,c,b−1−c(dx), m = 1, 2, . . . ,

where µa,c,b−1−c is the free Meixner law with parameter a, c, b− 1 − c.
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4. Quantum Walks

N. Konno, N.O. and E. Segawa: Localization of the Grover walks on spidernets and free

Meixner laws, arXiv:1206.4422 (June 2012)
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4.1. Grover Walks on Graphs

G = (V,E): a graph

A(G) = {(u, v) ∈ V × V ; u ∼ v} (half-edge)

H(G) = ℓ2(A(G)): state space of Grover walk

{δ(u,v) ; (u, v) ∈ A(G)}: canonical basis of H(G)

...1 Coin flip operator C is defined by

Cδ(u,v) =
∑
w∼u

(H(u))vwδ(u,w),

where H(u) is the Grover matrix, i.e.,

(H(u))vw =
2

deg(u)
− δwv,

...2 Shift operator S is defined by

Sδ(u,v) = δ(v,u)

...3 the time evolution of the quantum walk is given by U = SC.

...4 {Φn = UnΦ0} is the Grover walk with initial state Φ0.

Nobuaki Obata (GSIS, Tohoku University) Random walks, Quantum Walks, and Free Meixner Laws ITB, October 22, 2012 26 / 43



P

C S

Nobuaki Obata (GSIS, Tohoku University) Random walks, Quantum Walks, and Free Meixner Laws ITB, October 22, 2012 27 / 43



4.2. Spidernets S(a, b, c)

U = SC: Grover walk on the spidernet G = S(a, b, c)

a = deg(o)

b = deg(x) for x ̸= o

c = ω+(x) for x ̸= o

S(4, 6, 3)

One-step transition probabilities at x ̸= o:

p =
c

b

q =
1

b

r =
b− c− 1

b

p > 0, q > 0, r ≥ 0,

p+ q + r = 1.

Stratification:

V =
∞∪

n=0

Vn , Vn = {u ∈ V ; ∂(u, o) = n}
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4.3. Reduction to (p, q)-Quantum walk on Z+

ψ
0

+

0 1 2 n

ψ +ψ

ψ

n

n

n

VV V
0 1 2 Vn

H(G) = H+
0 ⊕

∞∑
n=1

⊕(H+
n ⊕ H◦

n ⊕ H−
n )

↓

H(Z+) = Cψ+
0 ⊕

∞∑
n=1

⊕(Cψ+
n ⊕ Cψ◦

n ⊕ Cψ−
n )
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ψ+
n =

1√
acn

∑
u∈Vn

∑
v∈Vn+1

v∼u

δ(u,v) , n ≥ 0,

ψ◦
n =

1√
a(b− c− 1)cn−1

∑
u∈Vn

∑
v∈Vn
v∼u

δ(u,v) , n ≥ 1,

ψ−
n =

1√
acn−1

∑
u∈Vn

∑
v∈Vn−1

v∼u

δ(u,v) , n ≥ 1.

Cψ+
n =

ψ
+
0 , n = 0,

(2p− 1)ψ+
n + 2

√
pr ψ◦

n + 2
√
pq ψ−

n , n ≥ 1,

Cψ◦
n = 2

√
pr ψ+

n + (2r − 1)ψ◦
n + 2

√
qr ψ−

n , n ≥ 1,

Cψ−
n = 2

√
pq ψ+

n + 2
√
qr ψ◦

n + (2q − 1)ψ−
n , n ≥ 1.

Sψ+
n = ψ−

n+1 , n ≥ 0; Sψ◦
n = ψ◦

n , n ≥ 1; Sψ−
n = ψ+

n−1 , n ≥ 1.

H(Z+) = Cψ+
0 ⊕

∑∞
n=1 ⊕(Cψ+

n ⊕ Cψ◦
n ⊕ Cψ−

n ) is invariant under U = SC.

The unitary operator U = SC restricted to H(Z+) is called a (p, q)-quantum

walk on Z+.
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4.4. Main Problem

.
Probability amplitude (≈ quantum counterpart of transition probability)
..

......

Let U be the (p, q)-quantum walk U on Z+. We are interested in

⟨ψ+
0 , U

nψ+
0 ⟩, n = 0, 1, 2, . . . ,

and its asymptotics as n → ∞.

We employ “cutoff” of the (p, q)-quantum walk on Z+ thanks to the fact that

⟨ψ+
0 , U

nψ+
0 ⟩ = ⟨ψ+

0 , U
n
Nψ

+
0 ⟩, n < N. (4.1)

ψ
0

+

0 1 2 n

ψ +ψ

ψ

n

n

n

N

ψ
N

H(N) = Cψ+
0 ⊕

N−1∑
n=1

⊕(Cψ+
n ⊕ Cψ◦

n ⊕ Cψ−
n ) ⊕ Cψ−

N

UN = SNCN , where C = CN and S = SN as before except Cψ−
N = ψ−

N
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4.5. Spectral Analysis of UN

U = UN acts on H(N):

ψ
0

+

0 1 2 n

ψ +ψ

ψ

n

n

n

N

ψ
N

For further reduction we define

Ψ0 = ψ+
0 ,

Ψn =
√
pψ+

n +
√
r ψ◦

n +
√
q ψ−

n , 1 ≤ n ≤ N − 1,

ΨN = ψ−
N

Γ(N) =

N∑
n=0

CΨn ⊂ H(N)

Π : H(N) → Γ(N) orthogonal projection

T = ΠUΠ as an operator on Γ(N)

It is shown that TrU = (2r − 1)(N − 1).
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Matrix expression of T with respect to the orthnormal basis {Ψj ; 0 ≤ j ≤ N}:

T =



0
√
q

√
q r

√
pq

√
pq r

√
pq

. . .
. . .

. . .
√
pq r

√
pq

√
pq r

√
p

√
p 0


.

Notice: In what follows we asume that r > 0. The case of r = 0 is similar.

...1 Every eigenvalue of T is simple.

...2 Spec(T ) ⊂ [−1, 1].

...3 1 ∈ Spec(T ) and −1 ̸∈ Spec(T ).

Thus, the eigenvalues of T are arranged in such a way that

λ0 = 1 = cos θ0, λ1 = cos θ1 , λ2 = cos θ2 , . . . , λN = cos θN ,

0 = θ0 < θ1 < θ2 < · · · < θN < π.
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Let {Ωj ; 0 ≤ j ≤ N} be an orthonormal basis of Γ(N) such that TΩj = λjΩj .

...1 We have an orthogonal decomposition into U -invariant subspaces:

H(N) = L0 ⊕ L1 ⊕ · · · ⊕ LN ⊕ M,

L0 = CΩ0 , Lj = CΩj + CSΩj , 1 ≤ j ≤ N.

...2 U↾Lj with respect to the basis {Ωj, SΩj} is given by[
0 −1

1 2λj

]
,

of which the eigenvalues are

λj ± i
√

1 − λ2
j = e±iθj .

...3 By H(N) = L0 ⊕ L1 ⊕ · · · ⊕ LN ⊕ M we have

Tr (U) = 2Tr (T ) − 1 + Tr (U↾M) = 2r(N − 1) − 1 + Tr (U↾M).

...4 Since Tr (U) = (2r − 1)(N − 1), we have Tr (U↾M) = −(N − 2).

...5 Since dimM = (3N − 1) − (2N + 1) = N − 2, we see that U↾M= −I.
Therefore the multiplicity of the eigenvalue −1 coincides with dimM = N − 2.
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.
Theorem (Spectra of UN for r > 0)
..

......

(1) The eigenvalues of U = UN are

1, e±iθj (1 ≤ j ≤ N), −1.

(2) All the eigenvalues except −1 are multiplicity free and the multiplicity of the

eigenvalue −1 is N − 2.

(3) We set

Ω±
j =

1√
2 sin θj

(Ωj − e±iθjSΩj), 1 ≤ j ≤ N.

Then Ω±
j is a normalized eigenvector of U with eigenvalue e±iθj , i.e.,

Ω±
j ∈ Lj , ∥Ω±

j ∥ = 1, UΩ±
j = e±iθjΩ±

j .
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.
Theorem (Spectra of UN for r = 0)
..

......

(1) The eigenvalues of U are

1, e±iθj (1 ≤ j ≤ N − 1), −1.

(2) All the eigenvalues except −1 are multiplicity free and the multiplicity of the

eigenvalue −1 is N .

(3) We set

Ω±
j =

1√
2 sin θj

(Ωj − e±iθjSΩj), 1 ≤ j ≤ N − 1.

Then Ω±
j is a normalized eigenvector of U with eigenvalue e±iθj , i.e.,

Ω±
j ∈ Lj , ∥Ω±

j ∥ = 1, UΩ±
j = e±iθjΩ±

j .
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4.6. Integral Representation of Probability Amplitudes

.
Lemma
..

......

Let p > 0, q > 0, r = 1 − p− q ≥ 0 be constant numbers and U the

(p, q)-quantum walk on Z+. Then for n = 0, 1, 2, . . . it holds that

⟨ψ+
0 , U

nψ+
0 ⟩ =

N∑
j=0

|⟨Ψ0,Ωj⟩|2 cosnθj,

where N > n and Ωj is the eigenvector of TN with eigenvalue cos θj .

Proof By expansion in terms of eigenvectors.

⟨Ψ0, U
nΨ0⟩ = |⟨Ω0,Ψ0⟩|2 +

N∑
j=1

|⟨Ω+
j ,Ψ0⟩|2einθj +

N∑
j=1

|⟨Ω−
j ,Ψ0⟩|2e−inθj

= |⟨Ω0,Ψ0⟩|2 +

N∑
j=1

|⟨Ωj,Ψ0⟩|2
einθj + e−inθj

2

= |⟨Ω0,Ψ0⟩|2 +

N∑
j=1

|⟨Ωj,Ψ0⟩|2 cosnθj .

Noting that θ0 = 0 we come to the desired expression.
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.
Lemma
..

......

The probability distribution associated with the TN is given by

µN =

N∑
j=0

|⟨Ωj,Ψ0⟩|2δλj

Moreover, µN converges weakly to the free Meixner law with parameters q, pq, r.

Proof The first part is standard.

The second part is verified by observing

TN =



0
√
q

√
q r

√
pq

√
pq r

√
pq

. . .
. . .

. . .
√
pq r

√
pq

√
pq r

√
p

√
p 0


and the fact that convergence in moments + uniqueness of moment problem =⇒ weak

convergence.
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.
Theorem (Integral representation)
..

......

Let U be the (p, q)-quantum walk on Z+ (r > 0 but r = 0 also). We have

⟨ψ+
0 , U

nψ+
0 ⟩ =

∫ 1

−1

cosnθ µ(dλ), λ = cos θ,

where µ is the free Meixner distribution with parameters q, pq, r.

Proof

⟨ψ+
0 , U

nψ+
0 ⟩ =

N∑
j=0

|⟨Ψ0,Ωj⟩|2 cosnθj =

∫ 1

−1

cosnθµN(dλ),

where cos θ = λ. This holds whenever n < N . Then letting N → ∞, we obtain

⟨ψ+
0 , U

nψ+
0 ⟩ =

∫ 1

−1

cosnθ µ(dλ),

where µ is the free Meixner distribution with parameters q, pq, r.

.
Recall (Igarashi-O.): for a random walk we have
..

......
⟨δ0, Pnδ0⟩ =

∫ 1

−1

λn µ(dλ)
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µ(dx): free Meixner distribution with parameters q, pq, r

...1 For (p, q)-quantum walk on Z+ we have

⟨ψ+
0 , U

nψ+
0 ⟩ =

∫ 1

−1

cosnθ µ(dλ), λ = cos θ,

...2 For a lazy random walk we have

⟨δ0, Pnδ0⟩ =

∫ 1

−1

λn µ(dλ)

λ
θ

e
iθ

c

e
iθ

▶ For a spidernet S(a, b, c) we have µ(dx) = ρ(x)dx+ wδc
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Application: Initial Value Localization

The free Meixner law with parameters q, pq, r is of the form

µ(dx) = ρ(x)dx+ w1δc1 + w2δc2

(An explicit description is known.)

For the spider net S(a, b, c) it is sufficient to consider the case where

p+ q + r = 1, p > q > 0, r > 0.

In this case the free Meixner law is of the form:

µ(dx) = ρ(x)dx+ wδc ,

c = − q

1 − p
, w = max

{
(1 − p)2 − pq

(1 − p)(1 − p+ q)
, 0

}
Then, as n → ∞ we have

⟨ψ+
0 , U

nψ+
0 ⟩ =

∫ 1

−1

cosnθ µ(dλ) ∼ w cosnθ̃ cos θ̃ = − q

1 − p

Hence, the localization occurs ⇐⇒ w > 0 ⇐⇒ (1 − p)2 − pq > 0.
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Application: Initial Value Localization

.
Theorem (Konno-O.-Segawa (2012))
..

......

Let {Xn} be the “position process” of the Grover walk {UnΨ0} on the spidernet

S(κ, κ+ 2, κ− 1) with κ ≥ 2. Then we have

P (Xn = o) = |⟨ψ+
0 , U

nψ+
0 ⟩|2 ∼


0, for κ ≥ 10,(
10 − κ

12

)2

cos2(nθ̃) for 2 ≤ κ < 10,

where θ̃ = arccos(−1/3). Moreover, for 2 ≤ κ < 10 we have

q(∞)(o) = lim
N→∞

1

N

N−1∑
n=0

P (Xn = o) =
1

2

(
κ− 10

12

)2

> 0.

Namely, (initial point) localization occurs at position o.

[Chisaki et al. (2009) ] No localization for Grover walks on trees (the initial state = ψ+
0 )

large κ ⇐⇒ density of large cycles is low (close to a tree)

small κ ⇐⇒ density of large cycles is high =⇒ emergence of localization
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Example: Localization occurs for S(4, 6, 3)

625 630 635 640 645 650

0.05

0.10

0.15

0.20

0.25

P (Xn = o) ∼
(
10 − 4

12

)2

cos2(nθ̃), θ̃ = arccos(−1/3)

q(∞)(o) = lim
N→∞

1

N

N−1∑
n=0

P (Xn = o) =
1

2

(
4 − 10

12

)2

=
1

8
.

Note: We have a good estimate for P (Xn ∈ Vl) too.
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