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0.1. Some Backgrounds

1900 Max Planck found “quanta” sparking the “old quantum theory”
1925 Matrix mechanics by Heisenberg = uncertainty principle (1927)
1926 Wave mechanics by Schrodinger => probabilistic interpretation by Born
1932 J. von Neumann: “Mathematische Grundlagen der Quantenmechanik”

1933 A. Kolmogorov: “Grundbegriffe der Wahrscheinlichkeitsrechnung”

PRINCETON [ARSKARES
1N MATHERATICS

A germ of new probability theory — von Neumann
random variable X <= selfadjoint operator (observable) A
Lebesgue measure <= trace

density function f(x)dx <= density operator (state) p Mathematical
Foundations of
e Duantum Mechanics
E[X] = / zf(x)der <= Tr (pA)

But the quantum counterparts of probabilistic concepts such as random variable, noise,
stochastic process, conditional probability, independence, dependence, Markovianity,...

were not yet established.
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0.2. Some Achievements of Quantum Probability

LNM (1984)

L Accardi
W.von Waldenfels (Eds.)

— “Quantum Probability” appeared in the late 1970s.
— It is a generalization of probability theory in such a way that

Quantum Probability
and Applications Il

random variables are not assumed to commute.

— Developing quantum version of probabilistic concepts for R

applications to quantum theory and its probabilistic interpretation.

— An alternative name is non-commutative probability theory.

— Some researchers in the first generation: o
Accardi (1), Belavkin (Rus), Hudson (UK), Meyer (F), Parthasarathy (India),

von Waldenfels (D), ..., Gudder (US), Bozejko (P), Voiculescu (Rou),...
Quantum open system and quantum dissipation

Quantum stochastic approach to unitary dilation problem

Stochastic limit theory for micro-macro relations

Constructive models of quantum observation processes

Quantum stochastic filtering and feedback control theory

Quantum information

©00060600COC

Providing new mathematical aspects and methods (based on non-commutative
nature) for classical subjects
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0.3. Working Hypothesis or ...

yiﬁ FEEIRR - JF_EH?‘JJQ%Z
T (EGEREXTEEE)

et -
i i - g XA L. eI
\ﬁ P, Q,A+,A7,A°,

© Quantization: classical variables p, ¢ = non-commuting operators P, Q

@ Quantm stochastic calculus (Hudson-Parthasarathy, 1984)
quantum decomposition of Brownian B(t) = A(t) + A*(t)
the 1t formula (dB)? = dt is a consequence of CCR [dA,dA*] = dt.

@ Gassianization of probability distribution (Accardi-Bozejko, 1998)
quantum decomposition of a random variable X = AT + A° 4+ A

@ Quantum field and stochastic analysis: non-commutative + infinite dimension
© Quantum walks: classical randomwalk p4+qg=1=— P4+ Q =U
@ Spectra of graphs: adjacancy matrix, Laplacian matrix, ... quantum decomposition

@ Algebraic combinatorics: Association scheme, Terwillinger algebra, ...
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Plan

e Quantum Probability

© Quantum Probabilistic Approach to Spectral Graph Theory
© Graph Products and Concepts of Independence

@ Asymptotic Spectral Distributions of Growing Graphs

© Quantum White Noise Calculus

© Implementation Problems

BAA e (RIKRFEIER F IEFHREROBEDFEND ~ARY MLT 5 TEEH

ISM, July 6, 2015
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1. Quantum Probability
= Noncommutative Probability
= Algebraic Probability

o K. R. Parthasarathy: “An Introduction to Quantum Stochastic Calculus,”
Birkhauser, 1992,

o P.-A. Meyer: “Quantum Probability for Probabilists,”
Lect. Notes in Math. Vol. 1538, Springer, 1993.

@ L. Accardi, Y. G. Lu and |. Volovich: “Quantum Theory and Its Stochastic Limit,”
Springer, 2002.
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1.1. Let’s Start with Coin-toss

Traditional Model for Coin-toss
A random variable X on a probability space (€2, F, P) satisfying the property:

P(X=+1)=P(X=-1)=
More essential is the probability distribution of X:

1 1
= =4_ =4
nx 2 1—|—2 41

Moment sequence is one of the most fundamental characteristics
Moment sequence {M.,,} <= Probability distributions p

(up to determinate moment problem)

For a coin-toss we have

+oo 1, if miseven
Mo(ux) = [ @ ux(de) = { even
—oo 0, otherwise.
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1.1. Let’s Start with Coin-toss (cont)

o ot ol

@ It is straightforward to see that

m 1, if miseven foo
(€0, A™eo) = ’ . T b = Mo (pnx) :/ " ux (dx).
0, otherwise,

Q Set

—oo

@ In other words, we have another model of coin-toss by means of (A, ), where
A = x-algebra generated by A; ¢(a) = (eo,aeo), a € A,

@ We call A an algebraic realization of the random variable X.

Non-commutative structure emerges — quantum decomposition

. _Jo 1] e o] L. ._
(comtossX)_A_[O 0]4—[1 0:|_A + A,
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1.2. Axioms: Quantum Probability

Definition (Algebraic probability space)

An algebraic probability space is a pair (A, ¢), where A is a x-algebra over C with
multiplication unit 1.4, and a state p : A — C, i.e,,

(i) @ is linear; (i) p(a*a) > 0; (iii) ¢(14) = 1.

Each a € A is called an (algebraic) random variable.

Definition (Spectral distribution)

For a real random variable a = a™ € A there exists a probability measure p = pq on
R = (—o0, +00) such that

—+ oo
p(a™) = /_ " p(de) = Mm(p), m=1,2,....

oo

This p is called the spectral distribution of a (with respect to the state ¢).

o Existence of pu by Hamburger’s theorem using Hanckel determinants.

@ In general, p is not uniquely determined (indeterminate moment problem).

BAA e (R KRPIEREEHARE) IEFHREROBEDFEND ~ARY MLT 5 TEEH ISM, July 6, 2015 9 /52



1.3. Comparison with Classical Probability

Classical Probability

Quantum Probability

probability space
random variable

expectation

moments

distribution

independence

LLN

CLT

BAA B (R KRPIERBFEHARE)

(Q,F, P)
X:Q—>R
E[X] = | X(2) P(dw)
E[X™]
px ((—o0,a]) = P(X < a)

—+ oo
E[X™] = /_ " pux (dx)

oo

E[X™Y™"] = E[X™|E[Y"]

1 n
li —
Jim =D X

k=1
1 n
lim — X
n—oco \/ﬁ kzz:l

IEFHREROBEDFEND ~ARY MLT 5 TEH

(A, »)
a=a*cA
»(a)
p(a™)
NA

o) = [ amad)

— o0
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1.4. A Non-classical Independence: Monotone Independence

Definition (monotone independence)

Let (A, ) be an algebraic probability space and {.A,} a family of *-subalgebras. We
say that {.A.} is monotone independent if for a1 € Ayn,y...,am € A, we have

wlar:--am) = p(ai)p(ar--a;---am) (@; stands for omission)

holds when ;1 < m; and n; > m;41 happen for i € {1,2,...,m}.

lllustration: a1 € Az,a2 € Ai,a3 € Ag,...
6 6

»/f\»ﬁ

1

©(214343664435) = ©(2)(4)(4)p(66)¢p(133443)p(5)
= 2(2)p(4)p(4)p(66)p(44)(1333)¢(5)
= 2(2)p(4)p(4)(66)p(44)p(333)p(1)
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Monotone Central Limit Theorem (Muraki 2001)

Let (LA, @) be an algebraic probability space and let {a, }5>; be a sequence of
algebraic random variables satisfying the following conditions:

(i) an arereal, ie., an = ay;
(il) an are normalized, i.e., ¢(an) = 0, go(ai) =1;

(iii) an have uniformly bounded mixed moments, i.e., for each m > 1 there exists
Crn > 0 such that |[@(@ny - - . @n,,)| < Cwm for any choice of n1,. .., "m.

(iv) {an} are monotone independent.

Then,

N 2 vz
1 1 [t z™
lim ] a; :—/ — dx m=1,2,....
e (k) ) =2 L v ®

The probability measure in the right hand side is the normalized arcsine law.

Proof is to show

N 2m V3
1 2m)! 1 [t m
im o ({3 a _ CGm) 1 _z"
2mm!m/! TJ_vz 2 — a2
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Arcsine law vs normal (Gaussian) law

1 1

—x2/2
—_— e
/2 — 22 V27
0.5
1.0 0.4
0.3
0.5 0.2
0.1
V2 0 V2 4 3 2 0 | 2 3 4
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1.5. Comparing with Classical CLT

Classical CLT in moment form

If X1, Xa2,... are independent, identically distributed, normalized (mean zero, variance
one) random variables having moments of all orders, we have

N m
1 ™ —m2/2
<\/N E Xn) :| \/_/ de, m=1,2,....
n=1

» For the proof the factorization rule is essential:
E[X2X1X4X3X4X3X6X6X14X4X35X5]
= E[X1]E[X2|E[X3]E[X]E[Xs]E[X¢]
» Cf. monotone independence

(214343664435 = (2)0(4)2(4) 0 (66) 0 (44)0(333)o(1).

lim E

N —oco

333
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2. Quantum Probabilistic Approach to Spectral Graph Theory

Akihito Hora
Nobuaki Obata

Theoretical and Mathematical Physics
Quantum
Probability and

S?EctrarI]Analysis A. Hora and N. Obata:
otraphs Quantum Probability and Spectral Analysis of Graphs,

Springer, 2007.
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2.1. Adjacency Matrices and Adjacency Algebras

Definition (graph)

A (finite or infinite) graph is a pair G = (V, E), where V is the set of vertices and E
the set of edges. We write © ~ y (adjacent) if they are connected by an edge.

Definition (adjacency matrix)

1 ~
The adjacency matrix A = [Awy] is defined by Azy = { 0’ mth y-,
, otherwise.

Assumption (1) (connected) Any pair of distinct vertices are connected by a walk.
(2) (locally finite) degg () = (degree of &) < oo for all z € V.
Definition (adjacency algebra)

Let G = (V, E) be a graph. The *-algebra generated by the adjacency matrix A is
called the adjacency algebra of G and is denoted by A(G). In fact, A(G) is the set of
polynomials of A.

— Equipped with a state ¢, A becomes an algebraic probability space
— Quantum probabilistic spectral analysis of graphs
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2.2. States on A(G): Adjacency Algebras as Algebraic Probability Spaces

(i) Trace (when G is a finite graph)
1 1
adir = — Tr (a) = — 0z, a0

“+oo
* (A" = / ™ p(de) = pis the eigenvalue distribution of A.

oo

(ii) Vacuum state (at a fixed origin o € V)

(@)o = (b0, ado)

“+ oo
* (A™)o = (80, AT 86) = |{m-step walks from o to o}| = / ™ p(dx)

—oo

(iii) Deformed vacuum state by Q-matrix

<a>q = <Q507a60>7 Q= [qa(w’y)]’ -1<qg<1

» QJ, does not necessarily belong to £2(V),
but (a)q is well-defined since a is locally finite.

» Interesting to determine the domain of g € [—1, 1] for which (-)4 is positive
[see Bozejko (1989), Obata (2007, 2010)]
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2.3. Main Problem and Quantum Probabilistic Approaches

Main Problem

Given a graph G = (V, E) (resp. a growing graph) and a state (-) on A(G), find a
probability measure pt on R satisfying

(A™) :/_+°° ™ p(dx) <resp. (A™) z/jm mmu(d:c)), m=1,2,....

oo oo

p is called the (asymptotic) spectral distribution of A in the state (-).

Quantum Probabilistic Approaches — Use of Non-Commutativity
@ Use of various independence and associated CLTs

@ Quantum decomposition
closely related to orthogonal polynomials (= one-mode ingteracting Fock spaces)

A=AT4+A 4+ A° (non-commuting quantum components)

@ Partition statistics and moment-cumulant formulas (Various convolution products)

a1 ~ p1 and az ~ p2 are independent —> a1+ a2 ~ I p = @1 * p2
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3. Graph Products and Concepts of Independence
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3.1. Independence and Graph Structures (l) Cartesian product

Definition
Let G1 = (Va, E1) and G2 = (Vz, E2) be two graphs. For

(z,y), (z',y") € Vi X V2 we write (z,y) ~ (z’,y’) if one of the following conditions
is satisfied:

()z=x"andy ~vy’; (i)z~ax andy =1v'.

Then Vi X Va becomes a graph in such a way that (z,y), (z’,y’) € V1 X Va are
adjacent if (z,y) ~ (’,y’). This graph is called the Cartesian product or direct
product of G1 and G2, and is denoted by G1 X Ga.

Example (C4 X C3)

13)
4 3 3’ \
2 7 \/
L ,
1) 6.1
1 2 T b4
(L1) 1)
C'y Cy4x C3
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Theorem
Let G = G1 X G2 be the cartesian product of two graphs G1 and G2. Then the
adjacency matrix of G admits a decomposition:

A=A1QI:+1, R Az

as an operator acting on £2(V') = £2(Vi x Vo) = £2(V4) ® £2(V2). Moreover, the
right hand side is a sum of commutative independent random variables with respect to

the vacuum state.

» The asymptotic spectral distribution is the Gaussian distribution by applying the
commutative central limit theorem.

Example (Hamming graphs)

The Hamming graph is the Cartesian product of complete graphs:

H(d,N) 2 Ky X --- X Ky (d-fold cartesian power of complete graphs)

i—1 n—i

Agn=> TQ - -QIQBRIQ--- QI

=1

where B is the adjacency matrix of K.

» Hora (1998) obtained the limit distribution by a direct calculation of eigenvalues.
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3.2. Independence and Graph Structures (I1) Comb product

Definition
Let G1 = (Vi, E1) and G2 = (V2, E2) be two graphs. We fix a vertix o2 € Va. For
(z,y), (2',y") € Vi X V2 we write (z,y) ~ (z’,y’) if one of the following conditions
is satisfied:

(i)w:wl 3f7dy~y'; (//)CCNCBI andy:y’:o2,

Then Vi X V2 becomes a graph, denoted by G1 >0, G2, and is called the comb
product or the hierarchical product.

Example (C4 > Cg)

4 3 3 : N
L2)]. / \ ' /
@) G17)
1 2 1 2
1,1) 1)
C4 C3 C,=C 3
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Theorem
As an operator on Co(V1) ® Co(V2) the adjacency matrix of G1 >0, G2 is given by
A=A1QP.+1,RQ A2

where P : Co(V2) — Co(V2) is the projection onto the space spanned by 8o, and Iy
is the identity matrix acting on Co(V1).

Theorem (Accardi-Ben Ghobal-O. IDAQP(2004))

The adjacency matrix of the comb product g‘l) Do, 9(2) Dog *** Doy g‘") admits a
decomposition of the form:

AD® > A® S A™

i—1 n—i

— Z I(l) ® e ® I(i—l) ®A(1) ® P(i+1) ® e ® P("),
=1

where P the projection from £2(V (V) onto the one-dimensional subspace spanned by
do,. Moreover, the right-hand side is a sum of monotone independent random variables
with respect to 1) @ 8oy ® -« + @ do,,, where 1 is an arbitrary state on B(£2(VD)).
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3.3. Four Concepts of Independence and Beyond

independence commutative monotone Boolean free
CLM Gaussian arcsine Bernoulli Wigner
graph product cartesian comb star free
examples integer lattice comb graph star graph | homogeneous tree

@ Asymptotic spectral distribution of a graph product follows from QCLT.
G™ = GH#G# ... #G as n — oco.
@ The above four concepts of independence look fundamental (Speicher, Muraki,
Franz, ...) while many other notions have been proposed.

© Further generalization (graph products or graph compositions).

@ Digraphs and beyond.
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4. Asymptotic Spectral Distributions of Growing Graphs
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4.1. Quantum Decomposition of the Adjacency Matrix

Fix an origin o € V of G = (V, E).

Stratification (Distance Partition) Vel Dp+1
V= U Vn Vn Dy
n=0
Vn={z € V; d(0,z) = n} Vn-1 Dy
) 1(G)
Associated Hilbert space T'(G) C £2(V) . —_—
r'(G) =) ®C®, Vi ?,
n=0
b, = |Vn|_1/2 Z s Vo Dy

T EVn
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4.1. Quantum Decomposition of the Adjacency Matrix (cont)

(A+)yx :1 ” VVI+1

A A
A=AT4+A 4+ A°

I\ (AM)* =A™, (A°)* = A°

AR

Cases so far studied in detail

~
3

In general, T'(G) = Z @C®,, is not invariant under the actions of A€.
n=0

@ I'(G) is invariant under A — e.g., distance-regular graphs
@ I'(G) is asymptotically invariant under A€.
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4.2. When T'(G) is Invariant Under A€

For x € V,, we define
we(z) = {y € Vages; y ~x}|, e=+,—,0 Vati

Then, I'(G) is invariant under A€ if and only if
(*) we(x) is constant on each V,, .

VH
Typical examples: distance-regular graphs
(in this case the constant in () is independent
of the choice of 0 € V') e.g., homogeneous trees,

@4 (x)

o (x)

Hamming graphs, Johnson graphs, odd graphs, ... w_(x)

Theorem

IfT(G) is invariant under A, A=, A°, there exists a pair of sequences {cw, } and
{wn} such that

A+(I>n = VWn+1 <I>n+1, A_‘I)n = \/Wn (I)nfl, Ao‘I)n = an+1<1>n.

In other words, T'u,..},{an} = (T(G), {®n}, AT, A™, A°) is an interacting Fock
space associated with Jacobi parameters ({wn}, {an}).

v
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4.3. Computing the Spectral Distribution

© By the interacting Fock space structure (I'(G), AT, A=, A°):
A¢n - (A+ + A° + A_)'i)'n. - Wn41 q)'n.-i-l + an-}-lq)n + \V Wn D1,

@ Associated with a probability distribution g on R, the orthogonal polynomials
{Po(x) =1,...,Pa(x) = x™ + - - - } verify the three term recurrence relation:

mP’n: n+1+an+lpn+wnpnfla P0:17 PIZx_ala
where ({wn}, {an}) is called the Jacobi parameters of p.

@ Anisometry U : T'(G) — L?*(R, ) is defined by ®,, — || Py || ' Pn .
@ Then UAU™ = x (multiplication operator) and

oo
(Bo, A™Bo) = (Udo, UA™U*Udo) = (Po, ™ Po)y :/ 2™ u(dz).

oo

Theorem (Graph structure => ({wn}, {an}) = spectral distribution)

IfT(G) is invariant under AT, A=, A°, the vacuum spectral distribution . defined by
+ oo
(®o, Am@C) = / mmy’(dm)a m=12,...,

—oo

is a probability distribution on R that has the Jacobi parameters ({wn}, {an}).
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4.4. How to know p from the Jacobi Parameters ({wy,}, {an})

We need to find a probability distribution g for which the orthogonal polynomials satisfy

anZPn+1+an+1Pn+wnPn—1, P0=1, Plzw_aly

Cauchy-Stieltjes transform

Gu(z) = [ Bldn) 1 w1 w2 ws
H o0 R X Z—0] —2Z—02 —2Z—0O3 —2Z—0yg — "
. 1
= w1
zZ— 01 —
w2
zZ — 02 —
w3
zZ — g —
zZ — Og —

where the right-hand side is convergent in {Im z 7% 0} if the moment problem is
determinate, e.g., if w, = O((nlogmn)?) (Carleman’s test).
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4.4. How to know p from the Jacobi Parameters (cont)

» Cauchy-Stieltjes transform

“+ oo
G () :/ u(dz) _ 1 w1 wa w3

oo R X Z—01 —Z—02 —2Z— 03 —2Z— 04 —*""

Stieltjes inversion formula

The (right-continuous) distribution function F'(x) = p((—oo, x]) and the absolutely
continuous part of p is given by

SAF() + F(t = 0)} — J{F(s) + F(s — 0)}

t
-1 lim Im G, (x + iy)dz, s<t,

™ y—+0 s

1
e :
p(x) = en W iEon i)
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4.5. lllustration: Homogeneous tree T}, (xk > 2)

Stratification of T}

(1) Quantum decomposition: A = AT + A~

AT®y = VE®1, AT®,=\/k—1®,11 (n>1)
A8 =0, A ® =P, A P,=/k—18,1 (n>2)

(2) Jacobi parameters: {w1 = Kk, w2 =wz =+++ =k — 1}, {an = 0}
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(3) Cauchy-Stieltjes transform: (wy = Kk, w2 =wg =--- =k — 1)
e a—a e

_ (k—2)z — k22 —4(k—1)

2(k2 — 22)

oo
[ gyt m
z

— o0

(4) Spectral distribution: p(dx) = pi(x)dx

4k —1) — 22

K
pr(x) = 2 K2 — x2

lz] < 2vKk—1

Kesten Measures (1959)

(5) Wigner's semicircle law (free CLT)

1 .
lim \/Epn(\/zm) = — 4 —x2 s 2 0 ? 4 6
K— 00

2 P4 P8, P12
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4.6. Asymptotic Invariance: Example Z"Y as N — oo

@ Asymptotic invariance of T'(Z™) under A*:

AY®, = 2N /n+1 &,41 +0(1),

A™®, = /2N \/n ®,_1 + O(N~/?).
@ Normalized adjacency matrices: —
A€

€

L N
Ve(N) V2N

© The interacting Fock space in the limit

BYW, =\/n+1%,,,, T
B ®,=n%¥,_;, B°=0. Boson Fock space!

© The asymptotic spectral distribution is the standard Gaussian distribution:

1 /+°° m_—x2/2
= — x e dx.
V2T J oo
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4.7. Growing Regular Graphs

Here I'(Q) is not necessarily invariant but asymptotically invariant under A€.

Statistics of we(x) ®4()
1 Va+1
M(we|Vn) = Vil Z |we ()]
"l zev, g (x)
o
2 1 2V
S (el V) = 57 O {lwe(@)] — M(we|Va)}
Val &5
L(we|Vn) = max{|we(z)|; © € Vn}. Va1
Conditions for a growing regular graph G®) = (V<”), E(")) o_(x)

(Al) lim, deg(G™) = oo.
(A2) foreachn =1,2,...,

3 lian(w_|V,,5")) = wn < oo, 1im22(w_|V,,5")) =0, sup L(w_|V,EV)) < oo.
(A3) for eachn =0,1,2,...,

M v @) »2 v
HlimM Mzo, sup —¥ol¥n 1)

v Ve) K(v) v V@)
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Theorem (QCLT in a general form)

Let {G™ = (V) EM)} be a growing regular graph satisfying
(A1) lim, k(r) = oo, where k(v) = deg(G™).
(A2) foreachn =1,2,...,

3 lim M(w_|V,{”) = wn < oo, limB*(w_|V,{”) =0, supL(w_|V,{)) < co.
(A3) for eachn =0,1,2,...,
3 lim M (wo| V") 22 (wo| Vi) —0, sup L(wo|V,{) <
v k(@) w(v) v Jr()
Let (T, {®,}, BT, B~, B°) be the interacting Fock space associated with the Jacobi
parameters ({wn}, {an}). Then

lim i
v VE(V)

In particular, the asymptotic spectral distribution of the normalized A, in the vacuum

= ant1 < 0o, 11,51'1

= B® (stochastically)

state is a probability distribution determined by ({wn}, {an}).

A. Hora and N. Obata: Asymptotic spectral analysis of growing regular graphs,
Trans. Amer. Math. Soc. 360 (2008), 899-923.
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Some results: Asymptotic spectral distributions

’ graphs ‘ IFS ‘ vacuum state deformed vacuum state
Hamming graphs | wn, =n Gaussian (N/d — 0) Gaussian
H(d,N) (Boson) Poisson (N/d — A~ > 0) or Poisson
Johnson graphs Wy = n? exponential (2d/v — 1) ‘Poissonization’ of
J('U, d) geometric (2d/v — p € (0,1)) | exponential distribution
odd graphs w2n—1 = n | two-sided Rayleigh ?

()% Wan =N

homogeneous wp =1 Wigner semicircle free Poisson
trees Ty (free)

integer lattices Wn =N Gaussian Gaussian
N (Boson)

symmetric groups | wn, =N Gaussian Gaussian
S, (Coxeter) (Boson)

Coxeter groups wnp =1 Wigner semicircle free Poisson
(Fendler) (free)

Spidernets w1 =1 free Meixner law (free Meixner law)
S(a,b,c) wr=-:--=gq
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5. Quantum White Noise Calculus

e U. C. Ji and N. Obata: “Transforms in Quantum White Noise Calculus,”
a monograph to appear, World Scientific, 2015.

@ N. Obata: "White Noise Calculus and Fock Space,”
Lect. Notes in Math. Vol. 1544, Springer, 1994.
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5.1. Probability Theory Encountering Quantum Theory

Boson quantum field (canonical commutation relation, CCR)

{a(f),a*(g); f,g € H = L*(T,dt)} is called a Boson quantum field over T if

[a(f),a(g)] = [a"(£),a"(9)] =0,  [a(f),a"(9)] = (f,9)ul

Fock representation

oo

I'(H) = {¢ =(frn); fn € H®", llol? = Z n!|fn)? < oo}: Fock space
n=0
A(F): (0,...,0,6%™,0,...) — (0,...,0,n(f, £)¢®™"D 0,0,...)
A*(f):(0,...,0,¢%™,0,...) — (0,...,0,0,£%"®F,0,...)

A = t)a dt, A* = t I d
(1) = [ 1®a (1) = [ fai at
= {as,a; ; t € T} : quantum white noise (field over T')

[as,a:] = [a:’a:] =0, [as’a:] =d0(s—t)I
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5.1. Probability Theory Encountering Quantum Theory (cont)

Gaussian space (Epf, )

Er C Hr = L*(T,dt;R) C E: Gelfand triple
p: a probability measure on Eg uniquely specified by the characteristic function:

1 i(x
exp{-Jlelt} = [ Ouan), e

R

Wiener—It6-Segal isomorphism

I'(H) = L*(E", p)

¢ = (fn) ¢ P(@) = Y _ (:a®":, fn)

n=0

(0,140,¢,0,...) <> By = (z,1[0,4j) Brownian motion

Quantum decomposition and quantum Brownian motion

t t
Bt = A(]-[O,t]) + A*(]-[O,t]) = / as ds + / a: ds
0 o
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5.2. Quantum White Noise Calculus: A Standpoint

{ B } Quantum Brownian Motion

{ By } Brownian Motion { P; } Quantum Poisson Process

*
dB, = dA, + dA,

Ito Calculus (1940s) Hudson-Parthasarathy Calculus (1984)

SDE {dB;} QSDE  { dd;, dAf, dAt}
_ a3 g dd]
Lo G “T ar
white noise quantum white noise
W,=a,+a;
Hida Calculus (1975) »-| Quantum White Noise Calculus
Integral and Differential Calculus Integral and Differential Calculus
for white noise functions for white noise operators
FW, ;teT) E(ag, ar;s,teT)
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5.3. White Noise Distributions

T a topological space (time interal, space-time manifold, even a discrete space,...)

Gelfand (nuclear) triple for H = L2(T)

EC H=L*T)C E*, E =projlimE,, E*=indlimE_,,

p—roco p—>oo

where Ej, is a dense subspace of H and is a Hilbert space for itself.

Example: E = S(R) = projlim,_,  Sp(R)

The Boson Fock space over H = L2(T) is defined by

oo

T(H) = {¢ = (a); fn € H®", ||6]” = 3 nlifald < oo},

n=0

where | fn|o is the usual L?-norm of HE®™ — L2, (T™).

Gelfand (nuclear) triple for I'(H') [Kubo-Takenaka PJA 56A (1980)]

(E) CT(H) C (B)', () = projlimI(E,), (E)" = indlimT(E_p)

p—>o0

v
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5.4. White Noise Operators

Definition
A continuous operator from (E) into (E)* is called a white noise operator. The space of
white noise operators is denoted by L((E), (E)*) (bounded convergence topology).

The annihilation and creation operator at a point t € T

a::(0,...,0,6%™,0,...) = (0,...,0,nE(t)e®™ 1, 0,0,...)
a; :(0,...,0,6%",0,...) = (0,...,0,0,£%"R®4;,0,...)

The pair {a¢, a ; t € T} is called the quantum white noise on T

Theorem

at € L((E),(FE)) and a; € L((E)*, (E)™) for all t € R. Moreover, both maps
t— as € L((E),(F)) andt— a; € L((E)*, (E)*) are operator-valued test
functions, i.e., belongs to E ® L((E), (E)) and EQ L((E)*, (E)*), respectively.

Quantum White Noise Calclus provides a distribution-theoretic framework for Fock space
operators, which are expressible as E = E(as,af ; s,t, € T).
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5.5. Quantum White Noise Derivatives

Definition
For & € L(W, W*) and ¢ € E we define DFE € L(W, W*) by
DZ-: = [a(¢), E], DC_E —[a (C)’ El.

These are called the creation derivative and annihilation derivative of =, respectively

o th are rigorous realization of the idea: for E = E(as,a; ; s,t € T)

pie=25 pr=-2%&

, =
6a’t" das

@ For example, for E = / Kk(s)azds = Eo,1(K)
T

Dj/ k(s)aids = k()
Dj/Tn(s)a:dsz/Tn(t)g(t)dt: (K, ¢).
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5.6. Wick Derivations

Definition (Wick product)
For E1,22 € L(W, W) the Wick product 1 © Ez is uniquely specified by

0]

0]
[

a0 E =E0a; = Eay, a; ¢ oa; = a;E.

Moreover,

* * - % * =
(asl...aslatl...atm)o__asl...asl_atl...atm

Equipped with the Wick product, £(W, W?™) becomes a commutative algebra.

Definition (Wick derivation)
A continuous linear map D : L(W, W*) — L(W, W?) is called a Wick derivation if

D(El Lo Ez) = (DEl) (o2 Ez —+- El Lo (DEz)

Theorem (Ji-Obata: JMP 51 (2010))

The creation and annihilation derivatives Dgz are Wick derivations for any ¢ € E.
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6. Implementation Problems
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6.1. Quantum Aspect of Cameron—Martin Theorem

Find a function % (x) (Ranon—Nikodym density) satisfying

| ¢+ Dude) = [ o@)yp(@)u(da). &)
ER ER
Answer is known: ¥(x) = ¢5(x) = >~ (H/2 (Cameron-Martin theorem).
Define the translation operator and multiplication operator by
(Trd)(z) = p(xz — f),  (M[P]o)(x) = p(z)p(x)
Then, (1) is equivalent to
(MIT- ;] ¢o, po) = (M[D]\/3, /b))
On the other hand, for a unitary operator V' we have
(MIT_s¢]bo, po)) = (VMI[T_;p]V"V o, Vo)

Hence, if we could find a unitary intertwining operator V' such that

VMI[T_;¢] = M[¢]V, ¢ € L*(Ei,p), )

we obtain /) = Vd)g and the Girsanov transform p — i = () p.
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A quantum aspect of Cameron-Martin theorem
* V *
Lz(ERa .u) —_— LZ(EIR’ l"')
M[T-;¢] | | M)
L2(E]1¥a .u‘) —V.—_) Lz(Eﬁa H)

Q Sufficient to take ¢(z) = (x, &) and use M [{z, £)] = a(&) + a*(&).

@ More generally, add quadratic functions in quantum white noises

Implementation problem

Given (1,m2 € E, m1,(2 € E*, S1 € L(E,E), S: € L(E*,E") and
K € L((E)*, (E)™), find a white noise operator V' € L((E), (E)*) satisfying

(B) —— (B)*

a*(G1) + a(m) + A(Sy) | | a*(¢2) + a(m2) + A(S2) + K
(B) —— (B)"

v

BAA e (R KRPIEREEHARE) IEFHREROBEDFEND ~ARY MLT 5 TEEH ISM, July 6, 2015 48 / 52



6.2. Our Approach — An Application of Quantum White Noise Derivatives

B) Y (B)*

a*(G1) +a(m) + A1) | | a*(¢2) + a(m2) + A(S2) + K

(B) —— (B)°

© Reduced to the linear differential equation of Wick type for V':

DV =GoV,
G=a"({2—C) +am—m)+A(Sz2 — S1) + K,
D:LU(E),(E)") — L((E),(E)*) a Wick derivation,

where ¢ is the Wick (normal-ordered) product.

@ A solution is given in terms of Wick product:
V=Fowexp, where DY = G and DF =0

© Coming back to the operator product, verify VTquo = ¢o
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6.3. Quantum Girsanov Transform

Theorem (Ji-Obata (2015))

Consider the implementation problem:

V(a™(¢1) + a(m) + A(S1)) = (a™(¢2) + a(nz) + A(S2) + K)V,
K = AL (As) +e28™e® O Ag((S7')*BsS™ ) e ©e 26 Lk,
Under a set of relations for 1,m1, S1, ...,k (explicitly given), a solution is given by

V =Ce?c@ 2O p(5) et 2B ¢ .

Q In particular,
(V'Vol(a®(¢1) + a(m) + A(S1))™ ¢o))
= {(Vol|(a™(C2) + a(nz2) + A(S2) + K)" Vo)), m=0,1,2,...
@ Hence if VTquO = ¢o, distributions of
a”(¢1) + a(m) + A(S1) in o
coincides a*(¢2) + a(n2) + A(S2) + K in Vo

© Cameron—Martin Theorem is reproduced by {1 = 11, {2 = 12, S1 = S2 = 0,
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6.4. More Applications of Quantum White Noise Dervatives

» In a series of papers by U. C. Ji and N. Obata (2009- )
A white noise operator (Boson Fock space operator) : E = E(as,af ; s,t € T).
Apply quantum white noise derivatives:

8
~ da,

D

[

[I]

= + =
= D/ =

<

a;

@ Implementation problem of canonical commutation reletions (CCR)
—> new derivation of Bogoliubov transform.

(E) —— (B)* (E) —— (B)*
a(C)l la(SC)-i-a*(TC) a*(C)l la*(SC)-i-a(TC)
(B) —— (B)" (B) —— (B)"

@ Quantum stochastic integral representations of quantum martingales.

© Calculation normal-ordered forms

(an operator on Fock space) = Z (creation operators)(annihilation operators)

@ Quantum stochatic integrals as dual of quantum stochstic gradients
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oo. Finally,.... Are We Approaching Toward a New Paradigm?

yiﬁ FEEIRR - JF_EH?‘JJQ%Z
T (EGEREXTEEE)

et -
i i - g XA L. eI
\ﬁ P, Q,A+,A7,A°,

© Quantization: classical variables p, ¢ = non-commuting operators P, Q

@ Quantm stochastic calculus (Hudson-Parthasarathy, 1984)
quantum decomposition of Brownian B(t) = A(t) + A*(t)
the 1t formula (dB)? = dt is a consequence of CCR [dA,dA*] = dt.

@ Gassianization of probability distribution (Accardi-Bozejko, 1998)
quantum decomposition of a random variable X = AT + A° 4+ A

@ Quantum field and stochastic analysis: non-commutative + infinite dimension
© Quantum walks: classical randomwalk p4+qg=1=— P4+ Q =U
@ Spectra of graphs: adjacancy matrix, Laplacian matrix, ... quantum decomposition

@ Algebraic combinatorics: Association scheme, Terwillinger algebra, ...
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