Counting Walks: A Quantum Probabilistic Viewpoint

Nobuaki Obata

Graduate School of Information Sciences Tohoku University www.math.is.tohoku.ac.jp/~obata

International Conference on Applied Mathematical Models (ICAMM 2016), Coimbatore, 2016.01.05

1. Motivations

1.1. Spectral Analysis of Growing Graphs

Network Science \implies Mathematical Network Theory

- A.-L. Barabási and R. Albert: Emergence of scaling in random networks, Science 286 (1999), 509–512
- O. J. Watts and S. H. Strogatz: Collective dynamics of 'small-world' networks, Nature 393 (1998) 440–442.
- S. Durrett: Random Graph Dynamics, Cambridge UP, 2006.
- S. Chung and L. Lu: Complex Graphs and Networks, AMS, 2006.
- S L. Lovasz: Large Networks and Graph Limits, AMS, 2012.

1.2. Quantum Probability

	Classical Probability	Quantum Probability
probability space	(Ω, \mathcal{F}, P)	$(\mathcal{A},arphi)$
random variable	$X:\Omega ightarrow\mathbb{R}$	$a=a^{*}\in\mathcal{A}$
expectation	$\mathrm{E}[X] = \int_\Omega X(\omega) P(d\omega)$	arphi(a)
moments	$\mathrm{E}[X^m]$	$arphi(a^m)$
distribution	$\mu_X((-\infty,x]) = P(X \le x)$	NA
	$\mathrm{E}[X^m] = \int_{-\infty}^{+\infty} x^m \mu_X(dx)$	$arphi(a^m)=\int_{-\infty}^{+\infty}x^m\mu_a(dx)$
independence	$\mathrm{E}[X^mY^n] = \mathrm{E}[X^m]\mathrm{E}[Y^n]$	many notions
CLT	$\lim_{n o \infty} rac{1}{\sqrt{n}} \sum_{k=1}^n X_k \sim N(0,1)$	many limit distributions

• <u>Our approach</u>: The adjacency matrix A of a graph G is studied as a real random variable of the algebraic probability space $(\mathcal{A}(G), \langle \cdot \rangle)$.

2. Graph Spectra

2.1. Graphs and Adjacency Matrix

Definition (graph)

A graph is a pair G = (V, E), where V is the set of vertices and E the set of edges. We write $x \sim y$ (adjacent) if they are connected by an edge.

Definition (adjacency matrix)

The *adjacency matrix* of a graph G = (V, E) is defined by

$$A = [A_{xy}]_{x,y \in V}$$
 $A_{xy} = egin{cases} 1, & x \sim y, \ 0, & ext{otherwise.} \end{cases}$

► The adjacency matrix possesses all the information of a graph.

Nobuaki Obata (Graduate School of Information Scien Counting Walks: A Quantum Probabilistic Viewpoint

2.2. Spectra of Graphs

Definition (spectrum and spectral distribution)

Let G be a finite graph. The *spectrum (eigenvalues)* of G is the list of eigenvalues of the adjacency matrix A.

$$\mathrm{Spec}\left(G
ight)=egin{pmatrix}\cdots&\lambda_{i}&\cdots\\cdots\\\cdots&m_{i}&\cdots\end{pmatrix}$$

The spectral (eigenvalue) distribution of G is defined by

$$\mu_G = rac{1}{|V|} \sum_i m_i \delta_{\lambda_i}$$

- **9** Spec (G) is a fundamental invariant of finite graphs.
- (isospectral problem) Non-isomorphic graphs may have the same spectra.
- Section 2012 Adjacency matrix, Laplacian matrix, distance matrix, Q-matrix, ... etc.
- ▶ For algebraic graph theory or spectral graph theory see
 - N. Biggs: "Algebraic Graph Theory," Cambridge UP, 1993.
 - D. M. Cvetković, M. Doob and H. Sachs: "Spectra of Graphs," Academic Press, 1979.

Definition (Algebraic probability space)

An algebraic probability space is a pair (\mathcal{A}, φ) , where \mathcal{A} is a *-algebra over \mathbb{C} with multiplication unit $1_{\mathcal{A}}$, and a state $\varphi : \mathcal{A} \to \mathbb{C}$, i.e.,

(i) φ is linear; (ii) $\varphi(a^*a) \geq 0$; (iii) $\varphi(1_{\mathcal{A}}) = 1$.

Each $a \in \mathcal{A}$ is called an *(algebraic)* random variable.

Adjacency algebra with state

Let G = (V, E) be a locally finite graph, i.e., $\deg x < \infty$ for all $x \in V$. The adjacency algebra $\mathcal{A}(G)$ is the (commutative) *-algebra generated by the adjacency matrix A. Equipped with a state $\langle \cdot \rangle$, $\mathcal{A}(G)$ becomes an algebraic probability space, and A a real random variable.

- () normalized trace: $\langle a
 angle_{
 m tr} = |V|^{-1} \, {
 m Tr} \, a$
- ② vector state at $o \in V$ (often called vacuum state): $\langle a
 angle_o = \langle \delta_o, a \delta_o
 angle$
- ${f 0}$ deformed vacuum state: $\langle a
 angle_q=\langle Q\delta_o,a\delta_o
 angle$, where $Q=[q^{\partial(x,y)}]$.

2.4. Spectral distributions

Definition (Spectral distribution)

Let (\mathcal{A}, φ) be an algebraic probability space. For a real random variable $a = a^* \in \mathcal{A}$ there exists a probability measure μ on $\mathbb{R} = (-\infty, +\infty)$ such that

$$arphi(a^m) = \int_{-\infty}^{+\infty} x^m \mu(dx) \equiv M_m(\mu), \hspace{1em} m=1,2,\ldots.$$

This μ is called the *spectral distribution* of a (with respect to the state φ).

- Existence of μ by Hamburger's theorem using Hanckel determinants.
- In general, μ is not uniquely determined (indeterminate moment problem).

(I) Normalized trace \leftrightarrow the eigenvalue distribution of A:

$$\langle A^m
angle_{
m tr} = \int_{-\infty}^{+\infty} x^m \mu(dx) \quad \Longleftrightarrow \quad \mu = rac{1}{|V|} \sum m_i \delta_{\lambda_i}$$

(II) Vacuum state \leftrightarrow counting walks

$$\langle A^m
angle_o = \langle \delta_o\,, A^m \delta_o
angle = |\{m ext{-step walks from } o ext{ to } o\}| = \int_{-\infty}^{+\infty} x^m \mu(dx)$$

2.4. Main Questions

• Given a graph G = (V, E) and a state $\langle \cdot \rangle$ on $\mathcal{A}(G)$, find the spectral distribution of A in the state $\langle \cdot \rangle$, i.e., a probability distribution $\mu = \mu(G)$ on \mathbb{R} satisfying

$$\langle A^m
angle = \int_{-\infty}^{+\infty} x^m \mu(dx), \qquad m=1,2,\ldots.$$

• Given a growing graph $G^{(\nu)} = (V^{(\nu)}, E^{(\nu)})$ and a state $\langle \cdot \rangle_{\nu}$ on $\mathcal{A}(G^{(\nu)})$, find a probability measure μ on \mathbb{R} satisfying

$$\langle (A^{(\nu)})^m
angle_
u pprox \int_{-\infty}^{+\infty} x^m \mu(dx), \qquad m=1,2,\ldots.$$

 μ is called the *asymptotic spectral distribution* of $G^{(
u)}$ in the state $\langle \cdot
angle_{
u}$.

Assume that G = G₁#G₂ is a "product" of two graphs G₁ and G₂. Find the mechanism of getting the spectral distribution μ(G) in terms of μ(G₁) and μ(G₂). We expect a new convolution product μ(G) = μ(G₁)#μ(G₂).

3. Cartesian Product and Subgraphs

3.1. Cartesian Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. The *Cartesian product* or *direct product* of G_1 and G_2 , denoted by $G_1 \times G_2$, is a graph on $V = V_1 \times V_2$ with adjacency relation:

$$(x,y)\sim (x',y') \quad \Longleftrightarrow \quad \begin{cases} x=x' & \ y\sim y' & \ y=y'. \end{cases} ext{ or } \quad \begin{cases} x\sim x' \ y=y'. \end{cases}$$

Theorem

Let G_1, G_2 be two graphs. The adjacency matrix A of $G = G_1 \times G_2$ is regarded as an operator acting on $\ell^2(V) = \ell^2(V_1 \times V_2) \cong \ell^2(V_1) \otimes \ell^2(V_2)$. Then,

$$A = A_1 \otimes I_2 + I_1 \otimes A_2$$

Example (Hypercubes and Hamming graphs)

The *n*-dim hypercube is the *n*-fold Cartesian power of K_2 (•—•). More generally, the Hamming graph H(n, N) is the *n*-fold Cartesian power of the complete graph K_N :

$$H(n,N) \cong K_N \times \cdots \times K_N$$
 (*n*-times).

The adjacency matrix is given by

$$A = A_{n,N} = \sum_{i=1}^{n} \overbrace{I \otimes \cdots \otimes I}^{i-1} \otimes B \otimes \overbrace{I \otimes \cdots \otimes I}^{n-i}$$

where B is the adjacency matrix of K_N .

3.3. Limit Distributions — Commutative CLT

For growing graphs
$$G^{(n)} = G \times \cdots \times G$$
 (*n*-times) we have

$$A^{(n)} = \sum_{i=1}^{n} \overbrace{I \otimes \cdots \otimes I}^{i-1} \otimes B \otimes \overbrace{I \otimes \cdots \otimes I}^{n-i} \equiv \sum_{i=1}^{n} B_i,$$

where B is the adjacency matrix of G.

▶ Can check that B_1, \ldots, B_n are identically distributed, commutative independent random variables in the product vacuum state (as well as in the normalized trace).

Theorem (Commutative CLT)

Let (\mathcal{A}, φ) be an algebraic probability space. Let $a_n = a_n^* \in \mathcal{A}$ be a sequence of real random variables, normalized such as $\varphi(a_n) = 0$ and $\varphi(a_n^2) = 1$, and commutative independent. Then, we have

$$\lim_{n \to \infty} \varphi \left[\left(\frac{1}{\sqrt{n}} \sum_{k=1}^n a_k \right)^m \right] = \int_{-\infty}^{+\infty} x^m \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx, \quad m = 1, 2, \dots.$$

Applying the above general theorem, we obtain

$$rac{1}{\sqrt{n}} \, rac{A^{(n)}}{\sqrt{\deg_G(o)}} \stackrel{m}{\longrightarrow} g, \quad \deg_G(o) = \langle B_i^2
angle = \langle B^2
angle, \quad g \sim N(0,1).$$

3.4. Comb Product

Definition

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs. We fix a vertex $o_2 \in V_2$. For $(x, y), (x', y') \in V_1 \times V_2$ we write $(x, y) \sim (x', y')$ if one of the following conditions is satisfied:

(i)
$$x = x'$$
 and $y \sim y'$; (ii) $x \sim x'$ and $y = y' = o_2$.

Then $V_1 \times V_2$ becomes a graph, denoted by $G_1 \triangleright_{o_2} G_2$, and is called the *comb* product or the *hierarchical product*.

3.5. Limit Distribution — Monotone CLT

Theorem

Let G_1, G_2 be two graphs with $o_2 \in V_2$. The adjacency matrix A of $G_1 \triangleright_{o_2} G_2$ is regarded as an operator acting on $\ell^2(V) = \ell^2(V_1 \times V_2) \cong \ell^2(V_1) \otimes \ell^2(V_2)$. Then,

$$A = A_1 \otimes P_2 + I_1 \otimes A_2$$

where P_2 is the rank-one projection onto the space spanned by δ_{o_2} . Moreover, the right-hand side is the sum of monotone independent random variables.

Theorem (Accardi-Ben Ghobal-O. (2004))

For $G^{(n)} = G
ho_o G
ho_o \cdots
ho_o G$ (n-times) the adjacency matrix is given by

$$A^{(n)} = \sum_{i=1}^{n} \overbrace{I \otimes \cdots \otimes I}^{i-1} \otimes B \otimes \overbrace{P \otimes \cdots \otimes P}^{n-i},$$

where B is the adjacency matrix of G. Moreover,

$$\lim_{n\to\infty}\left\langle \left(\frac{A^{(n)}}{\sqrt{n}\sqrt{\deg(o)}}\right)^m\right\rangle = \int_{-\sqrt{2}}^{+\sqrt{2}} x^m \frac{dx}{\pi\sqrt{2-x^2}}\,,\quad m=1,2,\ldots.$$

3.6. Star Product

Definition

Let $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ be two graphs with distinguished vertices $o_1\in V_1$ and $o_2\in V_2$. Define a subset of $V_1\times V_2$ by

$$V_1 \star V_2 = \{(x,o_2)\,;\, x \in V_1\} \cup \{(o_1,y)\,;\, y \in V_2\}$$

The induced subgraph of $G_1 \times G_2$ spanned by $V_1 \star V_2$ is called the *star product* of G_1 and G_2 (with contact vertices o_1 and o_2), and is denoted by $G_1 \star G_2 = G_1 \circ_1 \star \circ_2 G_2$.

Theorem

Let G_1, G_2 be two graphs with $o_1 \in V_1$ and $o_2 \in V_2$. The adjacency matrix of $G_1 \star G_2$ is regarded as an operator acting on $\ell^2(V_1 \times V_2) \cong \ell^2(V_1) \otimes \ell^2(V_2)$. Then,

$$A = A_1 \otimes P_2 + P_1 \otimes A_2,$$

where P_i is the rank-one projection onto the space spanned by δ_{o_i} . Moreover, the right-hand side is the sum of Boolean independent random variables.

Theorem (O. (2004))

For $G^{(n)} = G \star G \star \cdots \star G$ (*n*-times) the adjacency matrix is given by

$$A^{(n)} = \sum_{i=1}^{n} \overbrace{P \otimes \cdots \otimes P}^{i-1} \otimes B \otimes \overbrace{P \otimes \cdots \otimes P}^{n-i}$$

where B is the adjacency matrix of G. Moreover,

$$\lim_{n
ightarrow\infty}\left\langle \left(rac{A^{(n)}}{\sqrt{n}\sqrt{\deg(o)}}
ight)^m
ight
angle = \int_{-\infty}^{+\infty}x^mrac{1}{2}(\delta_{-1}+\delta_{+1})(dx), \hspace{1em} m=1,2,\ldots$$

4. Distance-k Graphs

4.1 Distance-k Graphs

Definition (Distance-k graph)

Let G = (V, E) be a graph. For $k \geq 1$ the *distance-k graph* of G is a graph

$$G^{[k]}=(V,E^{[k]}), \hspace{1em} E^{[k]}=\{\{x,y\}\, ; \, x,y\in V, \, \partial_G(x,y)=k\},$$

where $\partial_G(x, y)$ is the graph distance.

▶ The adjacency matrix of $G^{[k]}$ coincides with the k-th distance matrix of G defined by

$$D_k = [(D_k)_{xy}]_{x,y \in V}$$
 $(D_k)_{xy} = egin{cases} 1, & \partial_G(x,y) = k, \ 0, & ext{otherwise.} \end{cases}$

4.2. Asymptotic Spectral Distribution of $G^{[N,k]}$ for k = 1

$$\begin{split} &G = (V,E): \text{ a finite graph with } |V| \geq 2, \quad D_l: \text{ the } l\text{-th distance matrix of } G \\ &G^N = G \times \cdots \times G: \ N\text{-fold direct power } (N \geq 1) \\ &G^{[N,k]}: \text{ the distance-} k \text{ graph of } G^N \ (1 \leq k \leq N) \\ &A^{[N,k]}: \text{ the adjacency matrix of } G^{[N,k]} \\ & \text{ regarded as a real random variable of } (\mathcal{A}(G^{[N,k]}), \varphi_{\mathrm{tr}}) \end{split}$$

For k = 1 we have $G^{[N,1]} = G^N$ (Cartesian product) and

$$A^{[N,1]} = \sum_{i=1}^N 1 \otimes \cdots \otimes D_1 \otimes \cdots \otimes 1$$
 (D_1 at *i*-th position),

where D_1 is the adjacency matrix (1st distance matrix) of G

Theorem (Commutative CLT)

$$rac{A^{[N,1]}}{N^{1/2}} \stackrel{m}{\longrightarrow} \left(rac{2|E|}{|V|}
ight)^{1/2} g, \qquad g \sim N(0,1).$$

We only need to note that

$$arphi_{
m tr}(D_1)=0, \qquad arphi_{
m tr}(D_1^2)=rac{2|E|}{|V|}=({
m mean degree of }G)$$

4.3. Asymptotic Spectral Distribution of $G^{[N,k]}$ for general k

$$\begin{split} &G = (V,E): \text{ a finite graph with } |V| \geq 2 \\ &G^N = G \times \cdots \times G: \ N\text{-fold direct power} \ (N \geq 1) \\ &G^{[N,k]}: \text{ the distance } k\text{-graph of } G^N \ (1 \leq k \leq N) \\ &A^{[N,k]}: \text{ the adjacency matrix of } G^{[N,k]} \\ & \text{ regarded as a real random variable of } (\mathcal{A}(G^{[N,k]}), \varphi_{\mathrm{tr}}) \end{split}$$

Theorem (Hibino-Lee-O. (2013)) For any $k \ge 1$ we have $\frac{A^{[N,k]}}{N^{k/2}} \xrightarrow{m} \left(\frac{2|E|}{|V|}\right)^{k/2} \frac{1}{k!} \tilde{H}_k(g),$

where g is a real algebraic random variable $\sim N(0,1)$, and $ar{H}_k(g) = g^k + \cdots$ is the Hermite polynomial.

- **()** The limit distribution does not depend on the detailed structure of G.
- ④ For k ≥ 3 the uniqueness of the limit distribution is not known. Probably uniqueness does not hold, cf. [Berg (Ann. Prob. 1988)].

4.4. Outline of the Proof

• Write
$$A^{[N,k]} = B^{[N,k]} + C(N,k)$$
, where
 $B^{[N,k]} = \sum 1 \otimes \cdots \otimes D_1 \otimes \cdots \otimes D_1 \otimes \cdots \otimes 1$ (D_1 appears k times)
• By the commutative CLT,

$$\left(rac{2|E|}{|V|}
ight)^{-1/2} rac{B^{[N,1]}}{N^{1/2}} \stackrel{m}{\longrightarrow} g = ilde{H}_1(g)$$

By induction

$$(k+1)! \left(rac{2|E|}{|V|}
ight)^{-(k+1)/2} rac{B^{[N,k+1]}}{N^{(k+1)/2}} \stackrel{m}{\longrightarrow} g ilde{H}_k(g) - k ilde{H}_{k-1}(g) = ilde{H}_{k+1}(g)$$

and hence

$$rac{B^{[N,k]}}{N^{k/2}} \stackrel{m}{\longrightarrow} \left(rac{2|E|}{|V|}
ight)^{k/2} rac{1}{k!} \, ilde{H}_k(g),$$

Show that

$$rac{C(N,k)}{N^{k/2}} \stackrel{m}{\longrightarrow} 0$$

Show that

$$A^{[N,k]}=B^{[N,k]}+C(N,k)\stackrel{m}{\longrightarrow}\left(rac{2|E|}{|V|}
ight)^{k/2}rac{1}{k!}\, ilde{H}_k(g),$$

Definition (Convergence in moments)

For $a_n = a_n^*$ in $(\mathcal{A}_n, \varphi_n)$ and $a = a^*$ in (\mathcal{A}, φ) we say that

$$a_n \xrightarrow{m} a \iff \lim_{n \to \infty} \varphi_n(a_n^m) = \varphi(a^m), \qquad m = 1, 2, \dots$$

For any polynomial p(x) we have

$$a_n \stackrel{m}{\longrightarrow} a \implies p(a_n) \stackrel{m}{\longrightarrow} p(a).$$

However, it does not hold in general that

$$a_n \stackrel{m}{\longrightarrow} a, \quad b_n \stackrel{m}{\longrightarrow} b \implies p(a_n, b_n) \stackrel{m}{\longrightarrow} p(a, b)$$

for a non-commutative polynomial p(x, y).

Lemma (Hibino-Lee-O. (2013))

Let $a_n = a_n^*, z_{1n} = z_{1n}^*, \dots, z_{kn} = z_{kn}^*$ be real random variables in $(\mathcal{A}_n, \varphi_n)$, $n = 1, 2, \dots$ Assume the following conditions are satisfied:

(i) There exist a real random variable $a=a^*\in\mathcal{A}$ and $\zeta_1,\ldots,\zeta_k\in\mathbb{R}$ such that

$$a_n \stackrel{m}{\longrightarrow} a, \qquad z_{in} \stackrel{m}{\longrightarrow} \zeta_i 1, \quad i=1,2,\ldots,k;$$

(ii) $\{a_n, z_{1n}, \ldots, z_{kn}\}$ have uniformly bounded mixed moments in the sense that

$$C_m = \sup_n \max \left\{ ert arphi(a_n^{lpha_1} z_{1n}^{eta_1} \cdots z_{kn}^{\gamma_1} \cdots a_n^{lpha_i} z_{1n}^{eta_i} \cdots z_{kn}^{\gamma_i} \cdots) ert;
ight.$$

 $lpha_i, eta_i, \gamma_i \ge 0 ext{ are integers}$
 $\sum_i (lpha_i + eta_i + \cdots + \gamma_i) = m
ight.
ight\} < \infty;$

(iii) φ_n is a tracial state for $n=1,2,\ldots$.

Then, for any non-commutative polynomial $p(x,y_1,\ldots,y_k)$ we have

$$p(a_n, z_{1n}, \ldots, z_{kn}) \xrightarrow{m} p(a, \zeta_1 1, \ldots, \zeta_k 1).$$

4.6. Relevant Results

▶ *q*-Deformation [Lee-Obata (2013)]

 $\textcircled{0} \text{ Meyer's bébé Fock space} \cong \textsf{weighted } G^{(N)} = K_2 \times \cdots \times K_2 \ (N \textsf{-dim hypercube})$

OLT for bébé Fock space [Biane (1997)]

$$rac{A^{[N,1]}}{N^{1/2}} \stackrel{m}{\longrightarrow} g_q \quad (q ext{-Gaussian})$$

Our claim:

$$\frac{A^{[N,k]}}{N^{k/2}} \stackrel{m}{\longrightarrow} \frac{1}{k!} \, \tilde{H}^q_k(g_q) \quad \text{for almost surely in } \epsilon.$$

- Distance k-graphs of another product graphs
 - [Arizmendi-Gaxiola (2015)] Distance-k graphs of G * G * ··· * G are again *-product. Hence

$$rac{A^{[N,k]}}{\sqrt{N}\sqrt{\deg(o)}} \stackrel{m}{\longrightarrow} rac{1}{2}(\delta_{-1}+\delta_{+1})$$

Other cases in progress.

5. Mellin Product

H.-H. Lee and N. Obata: Mellin product of graphs and counting walks, preprint, 2015

Definition (Mellin product)

Let $G_i = (V_i, E_i)$ be a graph with adjacency matrix $A^{(i)}$, i = 1, 2. The *Mellin* product $G_1 \times_M G_2$ is a graph on $V = V_1 \times V_2$ with the adjacency relation:

$$(x,y)\sim_M (x',y') \quad \Longleftrightarrow \quad x\sim x', y\sim y'.$$

In other words, the adjacency matrix A of $G_1 imes_M G_2$ is given by

$$A = A^{(1)} \otimes A^{(2)}.$$

- $G_1 \times_M G_2 \cong G_2 \times_M G_1$
- $(G_1 \times_M G_2) \times_M G_3 \cong G_1 \times_M (G_2 \times_M G_3)$
- **9** If $|V_1| \ge 2$ and $|V_2| \ge 2$, then $G_1 imes_M G_2$ has at most two connected components.
- Let $P_1 = K_1$ be the graph on a single vertex. Then for any graph G = (V, E) the Mellin product $P_1 \times_M G$ is a graph on V with no edges, i.e., an empty graph on V.
- G₁ ×_M G₂ is a subgraph (not necessarily induced subgraph) of the distance-2 graph of G₁ × G₂.

5.2. Examples

5.3. Spectral Distribution of Mellin Product Graphs

Theorem

For i = 1, 2 let $G_i = (V_i, E_i)$ be a graph with a distinguished vertex o_i . Let μ_i be the spectral distribution of the adjacency matrix A_i of G_i in the vector state at o_i . Assume that μ_i is symmetric, or equivalently that $M_{2m+1}(G_i, o_i) = 0$ for all $m = 0, 1, 2, \ldots$ and i = 1, 2. Then we have

$$M_m(G_1 imes_M G_2, (o_1, o_2)) = M_m(\mu_1 *_M \mu_2), \qquad m = 0, 1, 2, \dots.$$

In other words, the spectral distribution of the Mellin product $G_1 \times_M G_2$ in the vector state at (o_1, o_2) is the Mellin convolution $\mu_1 *_M \mu_2$.

Mellin convolution

.)

 $\textbf{ 9 For symmetric probability distributions } \mu,\nu \text{ on } \mathbb{R} \text{ we define }$

$$\int_{\mathbb{R}} h(x)\mu st_M
u(dx) = \int_{\mathbb{R}} \int_{\mathbb{R}} h(xy)\mu(dx)
u(dy), \qquad h \in C_{\mathrm{bdd}}(\mathbb{R}).$$

• If $\mu(dx) = f(x)dx$ and $\nu(dx) = g(x)dx$ with symmetric density functions, then $\mu *_M \nu$ admits a symmetric density function $2f \star g(x)$, where

$$f\star g(x)=\int_0^\infty f(y)g\Big(rac{x}{y}\Big)rac{dy}{y}=\int_0^\infty f\Big(rac{x}{y}\Big)g(y)rac{dy}{y}\,,\quad x>0.$$

5.4. Subgraphs of 2-Dimensional Lattice as Mellin products

 $\mathbb{Z} imes_M\mathbb{Z}$: a graph on $\mathbb{Z}^2=\{(u,v)\,;\,u,v\in\mathbb{Z}\}$ with adjacency relation:

$$(u,v)\sim_M (u',v') \iff u'=u\pm 1 \text{ and } v'=v\pm 1.$$

 $\mathbb{Z} \times_C \mathbb{Z}$ (2-d interger lattice): a graph on \mathbb{Z}^2 with adjacency relation:

$$(x,y)\sim (x',y') \quad \Longleftrightarrow \quad egin{cases} x'=x\pm 1, \ y'=y, \end{array} ext{ or } egin{array}{c} x'=x, \ y'=y\pm 1. \end{array}$$

- Image 2 ×_M Z has two connected components, each of which is isomorphic to Z ×_C Z.
- Q Let (ℤ ×_M ℤ)^O denote the connected component of ℤ ×_M ℤ containing
 O = (0, 0). Then

 $(\mathbb{Z} \times_M \mathbb{Z})^O \cong \mathbb{Z} \times_C \mathbb{Z}.$

5.5. Restricted Lattices

For a subset $D \subset \mathbb{Z}^2$ let L[D] denote the lattice restricted to D, i.e., the induced subgraph of $\mathbb{Z} \times_C \mathbb{Z}$ spanned by the vertices in D.

• $L\{(x,y) \in \mathbb{Z}^2; x \ge y \ge x - (n-1)\} \cong (P_n \times_M \mathbb{Z})^O$ for $n \ge 2$. • $L\{(x,y) \in \mathbb{Z}^2; x \ge y\} \cong (\mathbb{Z}_+ \times_M \mathbb{Z})^O$.

5.5. Restricted Lattices (cont)

$$\begin{array}{l} \bullet \ L \left\{ (x,y) \in \mathbb{Z}^2 \, ; \begin{array}{l} 0 \leq x+y \leq m-1, \\ 0 \leq x-y \leq n-1 \end{array} \right\} \\ \cong \left(P_m \times_M P_n \right)^O \ \text{for } m \geq 2 \ \text{and} \ n \geq 2. \end{array}$$

 ${ig 0} \ L\{(x,y)\in {\mathbb Z}^2\,;\,x\geq y\geq -x\}\cong ({\mathbb Z}_+ imes_M\,{\mathbb Z}_+)^O$,

5.6. Counting Walks

 $M_k(G,o) =$ the number of k-step walks in G from o to itself \blacksquare \mathbb{Z} .

$$M_{2m}(\mathbb{Z}_+,0)=C_m=rac{1}{m+1}inom{2m}{m}, \quad M_{2m+1}(\mathbb{Z}_+,0)=0,$$

where C_m is the renown Catalan number.

5.6. Counting Walks (cont)

Theorem

For
$$L = L\{(x,y) \in \mathbb{Z}^2 \, ; \, x \geq y\}$$
 we have $M_{2m+1}(L,(0,0)) = 0$ and

$$M_{2m}(L,(0,0)) = C_m {2m \choose m} = rac{1}{m+1} {2m \choose m}^2, \hspace{1em} m = 0,1,2,\ldots.$$

Proof. We know that $L \cong (\mathbb{Z}_+ \times_M \mathbb{Z})^O$. Therefore,

$$M_m(L,(0,0)) = M_m(\mathbb{Z}_+ imes_M \mathbb{Z},(0,0)) = M_m(\mathbb{Z}_+,0) M_m(\mathbb{Z},0).$$

Theorem

For
$$L=L\{(x,y)\in\mathbb{Z}^2\,;\,x\geq y\geq -x\}$$
 we have $M_{2m+1}(L,(0,0))=0$ and

$$M_{2m}(L,(0,0))=C_m^2=rac{1}{(m+1)^2}inom{2m}{m}^2, \hspace{1em} m=0,1,2,\ldots.$$

Proof. Similarly we apply the Mellin convolution to $L \cong (\mathbb{Z}_+ \times_M \mathbb{Z}_+)^O$.

5.7. Spectral Distributions

Theorem

For
$$m=0,1,2,\ldots$$
 we have

 $M_m(\mathbb{Z},0)=M_m(lpha), \qquad M_m(\mathbb{Z}_+,0)=M_m(w).$

Arcsine distribution.

$$lpha(x) = rac{1}{\pi \sqrt{4-x^2}} \, \mathbb{1}_{(-2,2)}(x), \qquad x \in \mathbb{R},$$

The moments of even orders are given by

$$M_{2m}(lpha)=\int_{-\infty}^{+\infty}x^{2m}lpha(x)\,dx=inom{2m}{m},\qquad m=0,1,2,\ldots.$$

Semi-circle distribution.

$$w(x) = rac{1}{2\pi} \sqrt{4-x^2} \, 1_{[-2,2]}(x), \qquad x \in \mathbb{R},$$

The moments of even orders are given by

$$M_{2m}(w) = \int_{-\infty}^{+\infty} x^{2m} w(x) \, dx = C_m = rac{1}{m+1} inom{2m}{m}, \qquad m=0,1,2,\ldots,$$

5.7. Spectral Distributions (cont)

Domain <i>D</i>	$M_{2m}(L[D],O)$	spectral distribution
Z	$\binom{2m}{m}$	α
\mathbb{Z}_+	C_m	w
\mathbb{Z}^2	$\binom{2m}{m}^2$	$\alpha \ast \alpha = \alpha \ast_M \alpha$
$\{x\geq y\}$	$C_m {2m \choose m}$	$w*_M\alpha$
$\{x\geq y\geq -x\}$	C_m^2	$w*_M w$
$\{x\geq 0,\ y\geq 0\}$	(A)	w * w
$\{x\geq y\geq x-(n-1)\}$	(B)	$\pi_n \ast_M \alpha$
$\left\{ egin{array}{l} 0\leq x+y\leq k-1,\ 0\leq x-y\leq l-1 \end{array} ight\}$	(C)	$\pi_k *_M \pi_l$

$$(A) = \sum_{k=0}^{m} {2m \choose 2k} C_k C_{m-k},$$
 $(B) = M_{2m}(P_n, 0) {2m \choose m}, \quad (C) = M_{2m}(P_k, 0) M_{2m}(P_l, 0).$

5.8. Calculating Density Functions

The density function of $w st_M lpha$ is given by

$$egin{aligned} 2w\starlpha(x)&=2\int_0^\infty w(y)lphaigg(rac{x}{y}igg)rac{dy}{y}&=rac{1}{\pi^2}\int_{x/2}^2\sqrt{rac{4-y^2}{4y^2-x^2}}\,dy\ &=rac{1}{\pi^2}\{K(\xi(x))-E(\xi(x))\},\qquad \xi(x)&=\sqrt{1-rac{x^2}{16}}\,. \end{aligned}$$

For $k^2 < 1$, the elliptic integrals are defined by

$$\begin{split} K(k) &= \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} = \int_0^1 \frac{dx}{\sqrt{(1 - x^2)(1 - k^2 x^2)}},\\ E(k) &= \int_0^{\pi/2} \sqrt{1 - k^2 \sin^2 \theta} \, d\theta = \int_0^1 \sqrt{\frac{1 - k^2 x^2}{1 - x^2}} \, dx, \end{split}$$

Similarly, the density function of $lpha st_M lpha = lpha st lpha$ is given by

$$rac{1}{2\pi^2}\,K(\xi(x)) 1_{[-4,4]}(x),\qquad x\in\mathbb{R},$$

and the density function of $w *_M w$ by

$$rac{2}{\pi^2} \left\{ \left(1 + rac{x^2}{16}
ight) K(\xi(x)) - 2E(\xi(x))
ight\} 1_{[-4,4]}(x), \qquad x \in \mathbb{R}.$$

5.9. An Example in 3-Dimension

 $\mathbb{Z} \times_M \mathbb{Z} \times_M \mathbb{Z}$ has 4 connected components, which are mutually isomorphic. The connected component containing O(0, 0, 0) looks like an octahedra honeycomb, built up by gluing octahedra or body-centered cubes.

We have

$$M_{2m}(\mathbb{Z} imes_M\mathbb{Z} imes_M\mathbb{Z},(0,0,0))=inom{2m}{m}^3,\qquad m=0,1,2,\ldots,$$

and the spectral distribution is given by $\mu = \alpha *_M \alpha *_M \alpha$.

Nobuaki Obata (Graduate School of Information Scier<mark> Counting Walks: A Quantum Probabilistic Viewpoint</mark>

Summary

 \bullet For the adjacency matrices $A^{(n)}$ of growing graphs $G^{(n)}$ we expect $A^{(n+1)}\cong A^{(n)}+B^{(n)}$

where $B^{(n)}$ has special relation to $A^{(n)}$, i.e., a kind of independence.

- **(a)** The asymptotic spectrum $A^{(n)}$ as $n \to \infty$ is formulated within quantum probability theory.
- The following cases are covered by our framework: Cartesian product, comb product, star product, distance-k graphs of Cartesian product, (free product, q-deformation, distance-k graphs of star product, ...)
- Asymptotic study of Mellin product is now in progress.