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1. Motivations
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1.1. Spectral Analysis of Growing Graphs

Network Science = Mathematical Network Theory

© A.-L. Barabasi and R. Albert: Emergence of scaling in random networks, Science
286 (1999), 509-512

@ D. J. Watts and S. H. Strogatz: Collective dynamics of 'small-world" networks,
Nature 393 (1998) 440-442.

© R. Durrett: Random Graph Dynamics, Cambridge UP, 2006.

@ F. Chung and L. Lu: Complex Graphs and Networks, AMS, 2006.

@ L. Lovasz: Large Networks and Graph Limits, AMS, 2012.
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1.2. Quantum Probability

Classical Probability

Quantum Probability

probability space
random variable

expectation

moments

distribution

independence

CLT

(Q,F, P)
X:Q—>R
E[X] = | X(&) P(dw)
E[X™]
nx ((—o0ya]) = P(X < )

~+ oo
E[X™] = /_ 2™ pux (dix)
E[X™Y"] = E[X™|E[Y"]

Jim = X~ NO)

(A, »)
a=a*€ A
»(a)
p(a™)
NA
e@™ = [ :° 2" 1 (dix)

many notions

many limit distributions

» Our approach: The adjacency matrix A of a graph G is studied as a real random
variable of the algebraic probability space (A(G), {-)).
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2. Graph Spectra
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2.1. Graphs and Adjacency Matrix

Definition (graph)

A graph is a pair G = (V, E), where V is the set of vertices and E the set of edges.

We write  ~ y (adjacent) if they are connected by an edge.

complete graph K5 star graph 2-dim lattice homogeneous tree T4

Definition (adjacency matrix)

The adjacency matrix of a graph G = (V, E) is defined by

1, =~y
A = [Azylayev Agy = ’ ,
0, otherwise.

» The adjacency matrix possesses all the information of a graph.
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2.2. Spectra of Graphs

Definition (spectrum and spectral distribution)

Let G be a finite graph. The spectrum (eigenvalues) of G is the list of eigenvalues of the

adjacency matrix A.
Spec (G) = ( W )
RIS m’i R

The spectral (eigenvalue) distribution of G is defined by

1
BG = =57 ) Milx;
Vi 2

Q Spec (G) is a fundamental invariant of finite graphs.
@ (isospectral problem) Non-isomorphic graphs may have the same spectra.
© Adjacency matrix, Laplacian matrix, distance matrix, Q-matrix, ... etc.
» For algebraic graph theory or spectral graph theory see
@ N. Biggs: "Algebraic Graph Theory,” Cambridge UP, 1993.
@ D. M. Cvetkovi¢, M. Doob and H. Sachs: “Spectra of Graphs,” Academic Press, 1979.
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2.3. Quantum Probabilistic Approach

Definition (Algebraic probability space)

An algebraic probability space is a pair (A, o), where A is a x-algebra over C with
multiplication unit 1.4, and a state p : A — C, i.e.,

(i) p is linear; (i) p(a*a) > 0; (iii) ¢(14) = 1.

Each a € A is called an (algebraic) random variable.

Adjacency algebra with state

Let G = (V, E) be a locally finite graph, i.e., degx < oo for allz € V. The
adjacency algebra A(G) is the (commutative) *-algebra generated by the adjacency
matrix A. Equipped with a state (-), A(G) becomes an algebraic probability space, and
A a real random variable.

@ normalized trace: {a)tr = |V| ' Tra
@ vector state at o € V' (often called vacuum state): (a)o = (do, ado)

@ deformed vacuum state: (a)q = (Qdo, ado), where Q = [qa(m,y)]'
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2.4. Spectral distributions

Definition (Spectral distribution)

Let (A, ¢) be an algebraic probability space. For a real random variable a = a* € A
there exists a probability measure . on R = (—o0, +00) such that

+oco
p(a™) = /_ " p(de) = Mm(p), m=1,2,....

oo

This p is called the spectral distribution of a (with respect to the state ¢).

o Existence of p by Hamburger's theorem using Hanckel determinants.
@ In general, p is not uniquely determined (indeterminate moment problem).
(1) Normalized trace <+ the eigenvalue distribution of A:

+oo 1
(A™) e = / z"p(de) <= p= v Zmiéxi

oo
(I1) Vacuum state <+ counting walks

“+ oo
(A™)o = (80, A™80) = |{m-step walks from o to o}| = / ™ p(dx)

—oo
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2.4. Main Questions

@ Given a graph G = (V, E) and a state (-) on A(G), find the spectral distribution
of A in the state (), i.e., a probability distribution p = u(G) on R satisfying

—+oo
(A™) =/ " p(de), m=1,2,....

oo

@ Given a growing graph G = (V®) E®™) and a state (-), on A(G™), find a
probability measure p on R satisfying

“+ oo
(AD)™),, z/ " u(de),  m=1,2,....

w is called the asymptotic spectral distribution of G in the state o

© Assume that G = G1#G2 is a “product” of two graphs G1 and G2. Find the
mechanism of getting the spectral distribution u(G) in terms of u(G1) and
1(G2). We expect a new convolution product u(G) = pu(G1)#u1(G2).
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3. Cartesian Product and Subgraphs
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3.1. Cartesian Product

Definition
Let G1 = (V1, E1) and G2 = (Va, E2) be two graphs. The Cartesian product or

direct product of G1 and G2, denoted by G1 X G2, is a graph on V = V; X V5 with
adjacency relation:

— ’ ~ ’
(@y) ~(@y) = {° O o °7F
y~y y=y.
Example (C4 X C3)
1,3)
4 3 3
. 7\ \/
/ ,
ey 61)
1 2 T P4
1,1 1)
Cy Cs Cy%x C3
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3.2. Adjacency Matrix

Theorem

Let G1, G2 be two graphs. The adjacency matrix A of G = G1 X G2 is regarded as an
operator acting on £2(V') = £2(Vi X V2) = £2(V1) ® £2(V2). Then,

A=A1QL+1,Q A2

Example (Hypercubes and Hamming graphs)

The n-dim hypercube is the n-fold Cartesian power of K, ( &—# ). More generally,
the Hamming graph H(n, IN) is the n-fold Cartesian power of the complete graph Kn:

H(n,N) =2 Ky X - X Kn (n-times).

The adjacency matrix is given by
i—1 n—1i

A=Aun=) 1Q --QI®BRI® -1

=1

where B is the adjacency matrix of K.
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3.3. Limit Distributions — Commutative CLT

For growing graphs G™ = G x - -+ X G (n-times) we have

1—1 n—i
T —_— —_—— n
AN =3N"T®..-®I®BRI®---®1=) B,
=1 i=1

where B is the adjacency matrix of G.
» Can check that By, ..., B, are identically distributed, commutative independent

random variables in the product vacuum state (as well as in the normalized trace).

Theorem (Commutative CLT)

Let (A, @) be an algebraic probability space. Let an, = a;, € A be a sequence of real
random variables, normalized such as ¢(an) = 0 and ¢(a2) = 1, and commutative
independent. Then, we have

g 1 - ™ _ T m 1 —x2/2 _
nll’ngocp[(ﬁZak) ]_/_oo x Ee de, m=1,2,....

k=1

Applying the above general theorem, we obtain
1 A™ -

Vi Jdegg(@)
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3.4. Comb Product

Definition
Let G1 = (Va, E1) and G2 = (Vz, E2) be two graphs. We fix a vertex o2 € Va. For

(z,y), (z',y") € Vi X V2 we write (z,y) ~ (z’,y’) if one of the following conditions
is satisfied:

()x=x"andy ~y’; (i)xz~zx andy =y’ = o».

Then Vi X V2 becomes a graph, denoted by G1 >0, G2, and is called the comb
product or the hierarchical product.

Example (C4 >0, C3 with oo = 1')

L2)]. / \ ‘ /
@) G1)
1 2 iy 2
a1) 1)
C/l C3 C,=C 3
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3.5. Limit Distribution — Monotone CLT

Theorem

Let G1, G2 be two graphs with o2 € V2. The adjacency matrix A of G1 >o, G2 is
regarded as an operator acting on £2(V') = £2(Vi x Va2) = £2(V4) ® £2(V2). Then,

A=A1QP+1. R A2

where Ps is the rank-one projection onto the space spanned by 8., . Moreover, the
right-hand side is the sum of monotone independent random variables.

Theorem (Accardi-Ben Ghobal-O. (2004))

For G = G >y G >y + -+ >o G (n-times) the adjacency matrix is given by

i—1 n—1i

(n) -
A™M=3"TR---QIQRBRP®---® P,

=1

where B is the adjacency matrix of G. Moreover,

(n) e +v2
iy (A VYo [y
n—oo \ \ \/n+/deg(o) —Vz w2 — a2’ T
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3.6. Star Product
Definition

Let G1 = (Vh, E1) and G2 = (V2, E2) be two graphs with distinguished vertices
o1 € Vi and o2 € V5. Define a subset of V4 X V3 by

Vix Vo = {(x,02); € € Vi} U {(01,9); y € V2}

The induced subgraph of G1 X G2 spanned by Vi x V4 is called the star product of G1
and G2 (with contact vertices 01 and 02), and is denoted by G1 x G2 = G1 o0;%0, Ga.

Example (C4 x Cs)

3)
4 3 3’ =
12); .» .
@ G
1 2 1 2
1) 1)
C4 © 3 CixC 3
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3.7. Limit Distribution — Boolean CLT
Theorem

Let G1, G2 be two graphs with o1 € V1 and o2 € V2. The adjacency matrix of

G1 * G2 is regarded as an operator acting on £2(Vi x Va) = £2(V4) ® £2(V2). Then,

A=A QP+ P1 ® Aa,

where P; is the rank-one projection onto the space spanned by do, . Moreover, the
right-hand side is the sum of Boolean independent random variables.

Theorem (O. (2004))

For G™ = G x G % - - - x G (n-times) the adjacency matrix is given by

i—1 n—i

™ NP P Do P
A =ZP®---®P®B®P®---®P

1=1

where B is the adjacency matrix of G. Moreover,

n1LII;°<(\/H\‘;:;)gW>m> :/_—:oa:m%(é_l—i-é_,_l)(dm), m=1,2,....
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4. Distance-k Graphs
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4.1 Distance-k Graphs

Definition (Distance-k graph)
Let G = (V, E) be a graph. For k > 1 the distance-k graph of G is a graph

G* = (v,E™), E™ = ({z,y}; z,y € V, dc(z,y) = k},

where da(x, y) is the graph distance.

Ky x Ky x Ky (Kyx Ky x Ky) P!

» The adjacency matrix of GI*! coincides with the k-th distance matrix of G defined by

1, dc(xz,y) =k
Dk = [(Dk)aylewev  (Dr)ay =4 ( b ) ’
0, otherwise.
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4.2. Asymptotic Spectral Distribution of GI™*] for k = 1

G = (V, E): a finite graph with |V| > 2, Dj: the l-th distance matrix of G
GN = G x --- x G: N-fold direct power (N > 1)

Gk the distance-k graph of G (1 < k < N)

AIVEL the adjacency matrix of GV

regarded as a real random variable of (A(G™*), p4r)

For k = 1 we have GV = GV (Cartesian product) and
N
AN Z 1---D:1®---®1 (D1 at i-th position),
i=1
where D1 is the adjacency matrix (1st distance matrix) of G

Theorem (Commutative CLT)

AN <2|E|

1/2
NiZ m) g, g~ N(0,1).

We only need to note that

= 2Bl _ (mean degree of G)

(Ptr(Dl) =0, Qatl‘(Df) - |V| -
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4.3. Asymptotic Spectral Distribution of GI™'*! for general k

G = (V, E): a finite graph with |V| > 2

GN =G x -+ X G: N-fold direct power (N > 1)
Gk the distance k-graph of G (1 < k < N)
AR the adjacency matrix of GIN-¥]

regarded as a real random variable of (A(G™*), pr)

Theorem (Hibino-Lee-O. (2013))
For any k > 1 we have

AINKL (2|E|>’“/2 1

NFk/2 V| n

! I:Ik:(g)’

where g is a real algebraic random variable ~ N (0,1), and Hy(g) = g* + - - is the
Hermite polynomial.

@ The limit distribution does not depend on the detailed structure of G.

@ For k > 3 the uniqueness of the limit distribution is not known. Probably
uniqueness does not hold, cf. [Berg (Ann. Prob. 1988)].
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4.4. Outline of the Proof

Q Write ANFl = BIN:K L C(N, k), where
BIN:k] =Zl®---®D1®---®D1®"'®1 (D1 appears k times)
@ By the commutative CLT,

<2|E|)_1/2 BNl

V] Niz 0 9=Hig)

© By induction

2|E| —(k+1)/2 BIN:k+1] m -~ ~ ~
(k+1)! <m) NGz gHk(g) — kHk-1(9) = Hr+1(9)
and hence
BN 2B\ *? 1
e o (vp) e B
Show that
© Show tha C(N, k) o
Nk/2
© Show that

L r2lEIN*? 1
AWK = BINHM L O(N, k) T (%) 21 He(9),
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Nobuaki Obata (Gradu.

4.5. Algebraic Convergence Lemma — A Technical Tool

Definition (Convergence in moments)

For an = aj, in (An,pn) and a = a™ in (A, ¢) we say that

an =3 a <= lim p,(al) = p(a™), m=1,2,....
n— 00

» For any polynomial p(x) we have
m m
an —a = p(an) — p(a).
» However, it does not hold in general that
an =5 a, bp, =3b = p(an,bn) —> p(a,b)

for a non-commutative polynomial p(x, y).
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4.5. Algebraic Convergence Lemma — A Technical Tool (cont)

Lemma (Hibino-Lee-O. (2013))
Let an = @}y 21n = 2Ziny ..« Zkn = Zpy, be real random variables in (An, ©n),
n =1,2,.... Assume the following conditions are satisfied:

(i) There exist a real random variable a = a* € A and {1,...,Ck € R such that

m m .
an, — a, Zin —> (i1, ¢=1,2,...,k;

(i) {@nyZiny. .., 2kn} have uniformly bounded mixed moments in the sense that

O = supmax{ (@it -+ 57h -+ aftafh sl
n
ai, Bis~vi > 0 are integers } < oo;
Yilai+Bi+---+v)=m

(iii) n is a tracial state formn =1,2,....

Then, for any non-commutative polynomial p(x,y1,...,Yr) we have

P(@nyZiny -« -y Zkn) s p(a,(11,...,Ck1).

Nobuaki Obata (Graduate School of Information Scie!
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4.6. Relevant Results

» g-Deformation [Lee-Obata (2013)]

© Meyer's bébé Fock space ¢ weighted GN) = K3 X « -+ X Ko (IN-dim hypercube)

@ CLT for bébé Fock space [Biane (1997)]

—> gq (g-Gaussian)

@ Our claim:
ANK]

Nk/2

o = Hq(gq) for almost surely in e.

» Distance k-graphs of another product graphs

@ [Arizmendi-Gaxiola (2015)] Distance-k graphs of G * G % - - - x G are again
*-product. Hence

ANK] 1
5(6-1+041)

VN i) 2

@ other cases in progress.
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5. Mellin Product

H.-H. Lee and N. Obata:
Mellin product of graphs and counting walks, preprint, 2015
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5.1. Definition and Elementary Properties

Definition (Mellin product)

Let G; = (Vi, E;) be a graph with adjacency matrix A®) i = 1,2. The Mellin
product G1 X pm G2 is a graph on V. = V3 X V4 with the adjacency relation:

(:B, y) ~M (:B,, yl) — T~ a:lay ~ y,'
In other words, the adjacency matrix A of G1 X apr G2 is given by

A=AM R AP,

QO G1 Xnm G2 =2 G2 XM G

(G1 XM G2) XM Gz =2 G1 Xm (G2 X G3)

Q If [Vi| > 2 and |V2| > 2, then G1 X pr G2 has at most two connected
components.

©

Q@ Let P1 = K, be the graph on a single vertex. Then for any graph G = (V,, E) the
Mellin product P1 X as G is a graph on V' with no edges, i.e., an empty graph on V.

@ G1 Xnm Gz is a subgraph (not necessarily induced subgraph) of the distance-2
graph of G1 X Ga.
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5.2. Examples

Ps X Ps Py X Ps

Cs X Ps

‘i

LN, . . .M
By Sy Sy S8

Vavavivie!
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5.3. Spectral Distribution of Mellin Product Graphs

Theorem

Fori =1,2 let G; = (V;, E;) be a graph with a distinguished vertex o;. Let u; be the
spectral distribution of the adjacency matrix A; of G; in the vector state at 0;. Assume
that ps is symmetric, or equivalently that Mam+1(Gs,0:) = O for all

m=0,1,2,... andt = 1,2. Then we have

Mm(G1 X M Gz,(01,02)) =Mm(/,l,1 EI Vs [,I,z), m=0,1,2,....

In other words, the spectral distribution of the Mellin product G1 X ns G2 in the vector
state at (01, 02) is the Mellin convolution p1 *nr p2.

Mellin convolution

@ For symmetric probability distributions g, on R we define
[ r@usmvidn) = [ [ h@pudevdy), b e Chaal®).
R R JR

Q If u(dz) = f(x)dz and v(dx) = g(x)dx with symmetric density functions, then
p *pg v admits a symmetric density function 2f % g(x), where

fra@ = [ fwa(2) Y= [T1(2)aw . =>o0.
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5.4. Subgraphs of 2-Dimensional Lattice as Mellin products

Z X Z: a graph on Z? = {(u,v); u,v € Z} with adjacency relation:
(u,v) ~v (u'yv) <= Y =wu£1l and v =v£1.
7 X c 7 (2-d interger lattice): a graph on Z? with adjacency relation:

=xz+1 =
(@, y) ~ (z',y) = T oor ’
/7 ’
¥y =y, Yy =yl

@ 7 X nr Z has two connected components,
each of which is isomorphic to Z X ¢ Z.

@ Let (Z X ar 7)€ denote the connected
component of Z X pr Z containing
O = (0,0). Then

(Z xm2)° 27 xc Z.

<
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5.5. Restricted Lattices

For a subset D C Z2 let L[D] denote the lattice restricted to D, i.e., the induced
subgraph of Z X ¢ Z spanned by the vertices in D.

QO L{(z,y) €EZ%;2>y>x— (n—1)} =2 (Pn Xm Z)° forn > 2.
0 L{(z,y) € Z2%; & > y} = (Z4 xm Z)°.

(Ps xm 7)° (Z4 X 2)°
y v ¥ v
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5.5. Restricted Lattices (cont)

L 72 ;
o {(w,y)e  0<z_y<n_1

& (P Xar Pn)© form > 2 and n > 2.

0§m+y§m—1,}

0 L{(z,y) € 2% 2 >y > —a} = (Zy Xm Z4)°,

y N
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5.6. Counting Walks

M. (G, 0) = the number of k-step walks in G from o to itself
o Z.

o

2
M2m(Z, 0) = < 1::), M2m+1(Z, 0) = 0.

Q0 7y ={0,1,2,...}.

o

1 2m
Mzm(Z+,0) = Cm = — 1 (m >, Mzm41(Z+,0) =0,

where C,,, is the renown Catalan number.
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5.6. Counting Walks (cont)

Theorem

For L = L{(x,y) € Z*; > y} we have M2, 11(L, (0,0)) = 0 and
+

2
M2m (L, (0,0)) :Cm<2m> -1 <2m> , m=0,1,2,....

m m+1\m

Proof. We know that L & (Z4 X ar Z)©. Therefore,

Mo (L, (0,0)) = My (Zg X a1 Zy (0,0)) = My (Z, 0) Mo (Z, 0).
Theorem
For L = L{(x,y) € Z*; x > y > —x} we have Mas+1(L, (0,0)) = 0 and

2
1 2m
Mzm(La(O,O))=C72n=(m+1)2<m> , m=20,1,2,....

Proof. Similarly we apply the Mellin convolution to L & (Z4 X nr Z4)©.
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5.7. Spectral Distributions

Theorem

Form = 0,1,2,... we have

Mum(Z,0) = My (a),  Mm(Z4,0) = Mo (w).

@ Arcsine distribution.
1

A=z 2@

The moments of even orders are given by

+oo 2
Mzm(a)Z/ z®™a(x) de = (;:l), m=0,1,2,....

— o0

a(z) = T € R,

@ Semi-circle distribution.

1
w(x) = g\/4 —x21_3 2 (), xz € R,

The moments of even orders are given by

too 1 2m
Mzm(w):/ x? w(w)dm:Cm:m+1(m>, m=0,1,2,...,

—oo
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5.7. Spectral Distributions (cont)

Domain D Mz (L[D], O) | spectral distribution
z ) «
Zy Cm w
z? (27’:)2 ara=a*sya
{z > y} Cm(2;") W *pr
&>y > —a} cz, w *ar w
{z >0,y >0} (A) w ok w
{z>2y>z—(n-1)} (B) Tn ¥M &
Osztysk-—1, Q) Tk *M 0L
0<z—y<l-1

(C) = M2m (Px,0)Mzm (P, 0).

(A) = i:j ( )ckcm o
7)

(B) = Mzm (Pn, 0)(
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5.8. Calculating Density Functions

The density function of w *ar o is given by

2w*a(:z:)=2/0°ow(y)a(y)iy_ 1 \/ﬁdy
- LIKE@) - BE@)}, €@ = \/; .

For k2 < 1, the elliptic integrals are defined by

w/2 do 1 dx
KW= [ Vi—msin?o o /A—a?)(1-ke?)

/2 1 — k22
E(k) = V1 — k2 sin? dB_/ 1= k2

1— x2

Similarly, the density functlon of & *pr ¢ = o * a is given by

2 5z K(&(x))1[—4,q(2), z €R,

and the density function of w *as w by

{(1+%5) K@) - 2B€@) | 1), wem

T2
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5.9. An Example in 3-Dimension

Z X 7 X a7 has 4 connected components, which are mutually isomorphic. The

connected component containing O(0, 0, 0) looks like an octahedra honeycomb, built up
by gluing octahedra or body-centered cubes.

e (LLD)

We have

3
2m
Mzm(ZXMZXMZ,(0,0,0))=<m> , m=20,1,2,...,

and the spectral distribution is given by 4 = & % @ * 0 .
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Summary

@ For the adjacency matrices A(™ of growing graphs G(™ we expect
AT & p() +B(")

where B(™) has special relation to A, i.e., a kind of independence.
@ The asymptotic spectrum A(™ as n — oo is formulated within quantum
probability theory.
© The following cases are covered by our framework:
Cartesian product, comb product, star product, distance-k graphs of Cartesian
product, (free product, g-deformation, distance-k graphs of star product, ...)
© Asymptotic study of Mellin product is now in progress.
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