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Introducing myself...

SendaiTianjin

1 Tohoku University

— The 3rd oldest national University of Japan, founded in 1907.

2 Graduate School of Information Sciences (GSIS)

— One of the 17 Graduate Schools, founded in 1993.

3 Nobuaki Obata — Serving as Professor since 2001.

Before then I was a member of Department of Mathematics in Nagoya University.

4 Research interests — Quantum probability, Quantum white noise analysis, Spectral

analysis of graphs, Random graphs, and any topics related to network science.
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My Motivations and Backgrounds

(1) Statistics in large scale discrete systems

1 A. M. Vershik’s asymptotic combinatorics (1970s–)

[1] Asymptotic combinatorics and algebraic analysis (ICM 1994)

... the study of asymptotic problems in combinatorics is stimulated

enormously by taking into account the various approaches from different

branches of mathematics. ... The main question in this context is: What

kind of limit behavior can have a combinatorial object when it “grows” ?

[2] Between “very large” and “infinite” (Bedlewo 2012)

[3] Takagi lecture of Mathematical Society of Japan (Tohoku University 2015)

[4] see also A. Hora: The limit shape problem for emsembles of Young diagrams,

Springer 2017.

2 Complex networks — modelling real world large networks

[1] A.-L. Barabási and R. Albert (1999) — scale free networks

[2] D. J. Watts and S. H. Strogatz (1998) — small world networks

[3] F. Chung and L. Lu (2006), R. Durrett (2007), L. Lovasz (2012).
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My Motivations and Backgrounds

(2) Quantum probability = Noncommutative Probability = Algebraic Probability

1 J. von Neumann: Mathematische Grundlagen der Quantenmechanik (1932)

Mathematical theory for the probabilistic interpretation in quantum

mechanics in terms of operators on Hilbert spaces.

2 The term quantum probability was introduced by L. Accardi (Roma) around 1978.

3 R. Hudson and K. R. Parthasarathy (1984) initiated quantum Ito calculus.

4 P.-A. Meyer: Quantum Probability for Probabilists, LNM 1538 (1993).

5 N. Obata: Quantum probability + graph theory and network science since 1998.

⇓ ⇓

A paradigm of non-commutative analysis
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Main Theme: Asymptotic Spectral Analysis of Growing Graphs

▶ Spectral analysis of graphs

A =   Axy[     ]

G =  V, E(       ) m dx  =  f  x  dx(    )       (  )

▶ Growing graphs
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A Motivating Example: Pn as n → ∞

s
1
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3

p p p p p p p p p p s
n− 1

s
n

Adjacency matrix:

A =



0 1

1 0 1

1 0 1

. . .
. . .

. . .

1 0 1

1 0


Spectrum:

Spec (Pn) =

{
2 cos

kπ

n+ 1
; 1 ≤ k ≤ n

}
▶ We are interested in n → ∞.
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A Motivating Example: Pn as n → ∞

Spec (Pn) =

{
2 cos

kπ

n+ 1
; 1 ≤ k ≤ n

}

just eigenvalues
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A Motivating Example: Pn as n → ∞

Spec (Pn) =

{
2 cos

kπ

n+ 1
; 1 ≤ k ≤ n

}

-2 20

just eigenvalues

with multiplicities

histogram

showing “distribution”
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A Motivating Example: Pn as n → ∞

Spectral distribution (= eigenvalue distribution):

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

⇐ Spec (Pn) =

{
2 cos

kπ

n+ 1
; 1 ≤ k ≤ n

}
where δa stands for the point mass at a:∫ +∞

−∞
f(x)δa(dx) = f(a), f ∈ Cb(R).
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A Motivating Example: Pn as n → ∞

-2 20

Spectral distribution of Pn:

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

For f ∈ Cb(R) we have∫ +∞

−∞
f(x)µn(dx)

=
1

n

n∑
k=1

f
(
2 cos

kπ

n+ 1

)

→
∫ 1

0

f(2 cosπt)dt

=

∫ +2

−2

f(x)
dx

π
√

4 − x2
.

This is the limit distribution (arcsine law).
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A Motivating Example: Pn as n → ∞
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Spectral distribution of Pn:

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

For f ∈ Cb(R) we have∫ +∞

−∞
f(x)µn(dx)

=
1

n

n∑
k=1

f
(
2 cos

kπ

n+ 1

)

→
∫ 1

0

f(2 cosπt)dt

=

∫ +2

−2

f(x)
dx

π
√
4 − x2

.

This is the limit distribution (arcsine law).
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Plan

1 Basic Concepts of Quantum Probability

2 Interacting Fock Space and Quantum Decomposition

3 Spectral Distributions of Graphs

4 Quantum Walks on Spidernets

5 Asymptotic Spectral Distributions of Regular Graphs

6 Graph Products and Concepts of Independence

7 Counting Walks

8 Bivariate Extension: An Example
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▶ Main References

[1] A. Hora and N. Obata: Quantum Probability and Spectral Analysis of Graphs,

Springer, 2007.

[2] N. Obata: Spectral Analysis of Growing Graphs. A Quantum Probability Point of

View, Springer, 2017.
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Basic Concepts of Quantum Probability

1. Basic Concepts of Quantum Probability
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Basic Concepts of Quantum Probability

1.1. Algebraic Probability Spaces

Definition

A pair (A, φ) is called an algebraic probability space if A is a unital ∗-algebra over C
and φ a state on it, i.e.,

(i) φ : A → C is a linear function;

(ii) positive, i.e., φ(a∗a) ≥ 0;

(iii) normalized, i.e., φ(1A) = 1.

Definition

Each a ∈ A is called an (algebraic) random variable. It is called real if a = a∗.

▶ (Ω,F , P ): classical (Kolmogorovian) probability space

A = L∞−(Ω,F , P ) =
∩

1≤p<∞

Lp(Ω,F , P )

= {X : Ω → C ; E[|X|m] < ∞ for all m ≥ 1}

φ(X) = E[X], X ∈ A.
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Basic Concepts of Quantum Probability

1.2. Statistics of Algebraic Random Variables

Definition

(1) For a random variable a in (A, φ) the mixed moments are defined by

φ(aϵm · · · aϵ2aϵ1), ϵ1, ϵ2 . . . , ϵm ∈ {1, ∗}.

(2) For a real random variable a = a∗ ∈ A the mixed moments are reduced to the

moment sequence:

φ(am), m = 1, 2, . . . .

Definition

(1) Two algebraic random variables a in (A, φ) and b in (B, ψ) are called

stochastically equivalent a
m
= b if their all mixed moments coincide:

φ(aϵm · · · aϵ2aϵ1) = ψ(bϵm · · · bϵ2bϵ1).

(2) For two real random variables a = a∗ in (A, φ) and b = b∗ in (B, ψ),

a
m
= b ⇐⇒ φ(am) = ψ(bm) for all m = 1, 2, . . . .
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Basic Concepts of Quantum Probability

1.3. Spectral Distributions

Theorem (spectral distribution)

For a real random variable a = a∗ ∈ A there exists a probability measure µ on

R = (−∞,+∞) such that

φ(am) =

∫ +∞

−∞
xmµ(dx) ≡ Mm(µ), m = 1, 2, . . . .

This µ is called the spectral distribution of a in the state φ.

1 Existence proof is by Hamburger’s theorem using Hanckel determinants.

2 µ is not uniquely determined in general (determinate moment problem).

3 µ is unique, for example, if

∞∑
m=1

M
− 1

2m
2m = +∞ (Carleman’s moment test)
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Basic Concepts of Quantum Probability

1.4. Classical Probability vs Quantum Probability

Classical Probability Quantum Probability

probability space (Ω,F , P ) (A, φ)

random variable X : Ω → R a = a∗ ∈ A

expectation E[X] =

∫
Ω

X(ω)P (dω) φ(a)

moments E[Xm] φ(am)

distribution µX((−∞, x]) = P (X ≤ x) NA

E[Xm] =

∫ +∞

−∞
xmµX(dx) φ(am) =

∫ +∞

−∞
xmµa(dx)

independence E[XmY n] = E[Xm]E[Y n] many variants

LLN lim
n→∞

1

n

n∑
k=1

Xk many variants

CLT lim
n→∞

1√
n

n∑
k=1

Xk many variants
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Basic Concepts of Quantum Probability

1.5. Matrix Algebras and States

Equipped with the usual matrix operations,

A = M(n,C) = {a = [aij] ; aij ∈ C}

becomes a unital ∗-algebra over C.

(i) normalized trace:

φ(a) =
1

n
Tr (a) =

1

n

n∑
i=1

aii , a = [aij].

(ii) vector state:

φ(a) = ⟨ξ, aξ⟩, ξ ∈ Cn, ∥ξ∥ = 1.

Lemma (exercise)

A general form of a state on M(n,C) is given by

φ(a) = Tr (ρa),

where ρ is a density matrix, i.e., ρ = ρ∗ ≥ 0 and Tr (ρ) = 1.
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Basic Concepts of Quantum Probability

Exercises

Exercise 1 Let (A, φ) be an algebraic probability space and a, b, · · · ∈ A.

(1) Show that φ(a∗) = φ(a).

(2) Show that |φ(a∗b)|2 ≤ φ(a∗a)φ(b∗b).

(3) Show that a
m
= 0 if φ(a) = φ(a∗) = 0 and φ(a∗a) = φ(aa∗) = 0.

(4) Show that a
m
= φ(a)1A if φ(a∗a) = φ(aa∗) = |φ(a)|2.

Exercise 2 A matrix ρ ∈ M(n,C) is called a density matrix if ρ = ρ∗ ≥ 0 and

Tr ρ = 1. Show that for any state φ on M(n,C) there exists a unique density matrix

ρ such that φ(a) = Tr (ρa).

Exercise 3 Consider a sequence of cycles Cn.

(1) Write the adjacency matrix An of Cn.

(2) Find Spec (Cn).

(3) Write the eigenvalue distribution µn of Cn.

(4) Find the limit of µn (after normalization if necessary).
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Interacting Fock Space and Quantum Decomposition

2. Interacting Fock Space and Quantum Decomposition
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Interacting Fock Space and Quantum Decomposition

2.1. Jacobi Coefficients

Definition

A pair of sequences ({ωn}, {αn}) is called Jacobi coeffcients if

1 (infinite type) {ωn} and {αn} are infinite sequences such that ωn > 0 and

αn ∈ R for all n = 1, 2, . . . ;

or

2 (finite type) there exists d ≥ 1 such that {ωn} = {ω1, . . . , ωd−1} is a positive

sequence of d− 1 terms and {αn} = {α1, . . . , αd} is a real sequence of d terms.

(For d = 1 we tacitly understand {ωn} is an empty sequence.) This d is called the

length of ({ωn}, {αn}).

Set

J = J∞ ∪ Jfin , Jfin =
∪

1≤d<∞

Jd ,

where J∞ is the set of Jacobi coefficients of infinite type and Jd is the set of Jacobi

coefficients of finite length d.
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Interacting Fock Space and Quantum Decomposition

2.1. Interacting Fock Space (IFS)

({ωn}, {αn}) ∈ J: Jacobi coefficients of length d (1 ≤ d ≤ ∞),

Γ: d-dimensional Hilbert space with CONS {Φn} = {Φ0,Φ1,Φ2, . . . }
Define three linear operators A+, A−, A◦ by

A+Φn =
√
ωn+1 Φn+1, A−Φn =

√
ωn Φn−1, A◦Φn = αn+1Φn.

n+1n

a n

n+1n

n+1

n
ww w w

a a a a

▶ More precisely, A+, A−, A◦ are linear operators defined on the domain

Γ0 = linear span of {Φn} ⊂ Γ.

Definition

The quintuple (Γ, {Φn}, A+, A−, A◦) is called an interacting Fock space (IFS)

associated with Jacobi coefficients ({ωn}, {αn}). We call A+, A− and A◦ the

creation, annihilation and conservation operators, respectively.
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Interacting Fock Space and Quantum Decomposition

2.2. Vacuum Spectral Distributions

Given IFS (Γ, {Φn}, A+, A−, A◦), we consider the algebraic probability space

A = ∗-algebra generated by A+, A−, A◦

with the vacuum state

⟨a⟩ = ⟨Φ0, aΦ0⟩, a ∈ A.

In particular, we are interested in the real random variable

A+ +A− +A◦

called the canonical random variable of the IFS (Γ, {Φn}, A+, A−, A◦).

Definition (Vacuum spectral distribution)

A probability distribution µ characterized by

⟨Φ0, (A
+ +A− +A◦)mΦ0⟩ =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . ,

is called the vacuum spectral distribution of IFS (Γ, {Φn}, A+, A−, A◦).
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Interacting Fock Space and Quantum Decomposition

2.3. Boson, Fermion and Free Fock Spaces

1 Boson Fock space ({ωn = n}, {αn ≡ 0})

A−A+ −A+A− = I (canonical commutation relation)

The vacuume spectral distribution: µ(dx) =
1√
2π

e−x2/2dx (normal distribution)

2 Free Fock space ({ωn ≡ 1}, {α ≡ 0})
A−A+ = I

The vacuume spectral distribution: µ(dx) =
1

2π

√
4 − x2 dx (semi-circle law)

3 Fermioin Fock space ({ω1 = 1, ω2 = ω2 = · · · = 0}, {αn ≡ 0})

A−A+ +A+A− = I (canonical anti-commutation relation)

The vacuume spectral distribution: µ =
1

2
δ−1 +

1

2
δ+1 (Bernoulli distribution)

4 q-Fock space ({ωn = [n]q}, {αn ≡ 0})

A−A+ − qA+A− = I (q-commutation relation)

The vacuume spectral distribution: µq in terms of Jacobi theta function.
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Interacting Fock Space and Quantum Decomposition

2.4. Orthogonal Polynomials

µ(dx) ∈ Pfm(R): a probability distribution with finite moments of all orders

Define an inner product by

⟨f, g⟩ =

∫ +∞

−∞
f(x)g(x)µ(dx), f, g ∈ L2(R, µ;R).

Definition (Orthogonal polynomials)

Applying the Gram-Schmidt orthogonalization to 1, x, x2, . . . , xn, . . . we obtain a

sequence of polynomials:

P0(x) = 1, P1(x) = x− ⟨x, P0⟩
⟨P0, P0⟩

P0(x), Pn(x) = xn −
n−1∑
k=0

⟨xn, Pk⟩
⟨Pk, Pk⟩

Pk(x).

We call {Pn(x)} the orthogonal polynomials associated to µ.

Note: The orthogonalization process stops at n = d if ⟨Pd, Pd⟩ = 0 happens. In that

case we consider {P0(x), P1(x), . . . , Pd−1(x)} as the orthogonal polynomials. That

happens if and only if |suppµ| = d (exercise).
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Interacting Fock Space and Quantum Decomposition

2.5. Three-Term Recurrence Relation

Theorem (Three-term recurrence relation)

Assume that |suppµ| = ∞. Let {Pn(x)} be the orthogonal polynomials associated to

µ. Then there exist Jacobi coeficients ({ωn}, {αn}) of infinite type such that

P0 = 1, P1 = x− α1, xPn = Pn+1 + αn+1Pn + ωnPn−1 .

Note: If |suppµ| = d < ∞, we get Jacobi coeficients ({ωn}, {αn}) of length d and

the same recurrence relation holds.

Proof (exercise)

▶ We note that

α1 =

∫ +∞

−∞
xµ(dx) = mean(µ),

ω1 =

∫ +∞

−∞
(x− α1)

2µ(dx) = variance(µ),

ωnωn−1 · · ·ω1 =

∫ +∞

−∞
Pn(x)

2µ(dx),
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Interacting Fock Space and Quantum Decomposition

2.5. Three-Term Recurrence Relation

▶ Three-Term Recurrence Relation =⇒ IFS Structure

1 The three-term recurrence relation:

P0 = 1, P1 = x− α1, xPn = Pn+1 + αn+1Pn + ωnPn−1 .

2 Define

Φn(x) =
1

∥Pn∥
Pn(x) =

1√
ωnωn−1 · · ·ω1

Pn(x).

Then {Φn(x)} becomes an orthonormal set in L2(R, µ).
3 Let Γ be the Hilbert space spanned by {Φn(x)} (not necessarily Γ = L2(R, µ)).
4 Define

A+Pn = Pn+1 , A◦Pn = αn+1Pn , A−Pn = ωnPn−1 .

Then

A+Φn =
√
ωn+1 Φn+1, A◦Φn = αn+1Φn, A−Φn =

√
ωn Φn−1 .

Namely, (Γ, {Φn}, A+, A◦, A−) is an IFS.
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Interacting Fock Space and Quantum Decomposition

2.5. Three-Term Recurrence Relation

▶ Computing the vacuum spectral distribution of (Γ, {Φn}, A+, A◦, A−)

1 Set A = A+ +A◦ +A−. Then

APn(x) = A+Pn(x) +A◦Pn(x) +A−Pn(x)

= Pn+1(x) + αn+1Pn(x) + ωnPn−1(x)

= xPn(x)

2 Hence for Φ0(x) = P0(x) = 1 we have

AmΦ0(x) = xmΦ0(x) = xm.

3 Then,

⟨Φ0, (A
+ +A◦ +A−)mΦ0⟩ = ⟨1, xm⟩ =

∫ +∞

−∞
xmµ(dx),

which means that the vacuum spectral distribution of (Γ, {Φn}, A+, A◦, A−) is

the initial µ.
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Interacting Fock Space and Quantum Decomposition

2.6. IFS Structure in Orthogonal Polynomials

Summing up,

Theorem

Let (Γ, A+, A−, A◦) be an interacting Fock space given by

A+Φn =
√
ωn+1 Φn+1, A−Φn =

√
ωn Φn−1, A◦Φn = αn+1Φn.

Then the vacuum spectral distribution of A = A+ +A◦ +A− is a probability

distribution µ of which the orthogonal polynomials {Pn(x)} are given by

P0 = 1, P1 = x− α1, xPn = Pn+1 + αn+1Pn + ωnPn−1 .

Namely, we have

⟨Φ0, A
mΦ0⟩ = ⟨Φ0, (A

+ +A◦ +A−)mΦ0⟩ =

∫ +∞

−∞
xmµ(dx).
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Interacting Fock Space and Quantum Decomposition

2.6. IFS Structure in Orthogonal Polynomials

µ ∈ Pfm(R)

?
{Pn(x)} orthogonal polynomials

?
({ωn}, {αn}) Jacobi coefficients

?
(Γ, {Φn}, A+, A◦, A−) IFS

6

vaccum spectral distribution
⋆

⋆ means: ⟨Φ0, (A
+ +A◦ +A−)mΦ0⟩ =

∫ +∞

−∞
xmµ(dx)

Note: µ is not uniquely determined by ({ωn}, {αn}) when µ is not a solution to the

determinate moment problem.
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Interacting Fock Space and Quantum Decomposition

2.7. Quantum Decomposition

Theorem (quantum decomposition)

Let (A, φ) be an algebraic probability space and a = a∗ ∈ A a real random variable.

Then there exists an interacting Fock space (Γ, {Φn}, A+, A−, A◦) such that

a
m
= A+ +A− +A◦.

In particular, if a classical random variable X has finite moments of all orders, there

exists an IFS (Γ, {Φn}, A+, A−, A◦) such that

X
m
= A+ +A− +A◦.

Proof. Let µ be the spectral distribution of a. Consider the Jacobi coefficients

({ωn}, {αn}) and the associated IFS (Γ, {Φn}, A+, A−, A◦). Then we have

φ(am) =

∫ +∞

−∞
xmµ(dx) = ⟨Φ0, (A

+ +A◦ +A−)mΦ0⟩.

▶ We apply the above idea to the adjacency matrix of a graph.
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Interacting Fock Space and Quantum Decomposition

2.8. How to Explicitly Calculate µ from ({ωn}, {αn})

Determinate moment problem

In general, µ ∈ Pfm(R) is not uniquely determined by the moments. Namely, it may

happen that µ ̸= ν but∫ +∞

−∞
xmµ(dx) =

∫ +∞

−∞
xmν(dx) = Mm, m = 0, 1, 2, . . . .

We say that µ is the unique solution to a determinate moment problem if µ is uniquely

determined by its moments.

Some sufficient conditions for uniqueness of the determinate moment problem:

(i) suppµ is finite.

(ii) µ is supported by a compact set.

(iii) (Carleman’s moment test)
∞∑

m=1

M
− 1

2m
2m = ∞ .

(iv) (Carleman)
∞∑

n=1

1√
ωn

= ∞.

▶ In fact, (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).
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Interacting Fock Space and Quantum Decomposition

2.8. How to Explicitly Calculate µ from ({ωn}, {αn})

Continued fraction For saving space we write

1

z − α1 − ω1

z − α2 − ω2

z − α3 − ω3

z − α4 − · · ·

=
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·

= lim
n→∞

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 − · · ·−
ωn−1

z − αn
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Interacting Fock Space and Quantum Decomposition

2.8. How to Explicitly Calculate µ from ({ωn}, {αn})

Theorem (Cauchy–Stieltjes transform and inversion formula)

If µ is a unique solution to the determinate moment problem, we have

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·

where the right-hand side is convergent in {Im z ̸= 0}. Moreover, the absolutely

continuous part of µ is given by

ρ(x) = − 1

π
lim

y→+0
ImGµ(x+ iy)

Useful properties of G(z)

1 G(z) is holomorphic in {Im z ̸= 0}.
2 G(z̄) = G(z).

3 ImG(z) < 0 for Im z > 0.
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Interacting Fock Space and Quantum Decomposition

2.8. How to Explicitly Calculate µ from ({ωn}, {αn})

Exercise: Consider the Jacobi coefficients ({ωn ≡ 1}, {αn ≡ 0}).
1 Check Carleman’s condition.

2 Calculate the continued fraction:

G(z) =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·
3 Apply the inversion formula to get the absolutely continuous part:

ρ(x) = − 1

π
lim

y→+0
ImG(x+ iy)

4 Check ∫ +∞

−∞
ρ(x)dx = 1.

Theorem (free Fock space)

The vacuum spectral distribution of free Fock space is given by the semi-circle law:

µ(dx) =
1

2π

√
4 − x2 1[−2,2](x)dx
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Interacting Fock Space and Quantum Decomposition

2.9. Chebyshev Polynomials (exercise)

1st kind {Tn(x)} defined by Tn(cos θ) = cosnθ, x = cos θ

T0(x) = 1, T1(x) = x, Tn+1(x) − 2xTn(x) + Tn−1(x) = 0.

Modifiying Tn(x) as

T̃0(x) = 1, T̃n(x) =
( 1√

2

)n−2

Tn

( x√
2

)
, n ≥ 1.

Three-term recurrence relation:

xT̃1(x) = T̃2(x) + T̃0(x), xT̃n(x) = T̃n+1(x) +
1

2
T̃n−1(x), n ≥ 2.

Orthogonal relation wrt normalized arcsine law :∫ √
2

−
√

2

T̃m(x)T̃n(x)
dx

π
√

2 − x2
= 0, m ̸= n.

Jacobi coefficients: ({ωn} = {1, 1/2, 1/2, . . . }, {αn ≡ 0})
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Interacting Fock Space and Quantum Decomposition

2.9. Chebyshev Polynomials (exercise)

2nd kind {Un(x)} defined by Un(cos θ) =
sin(n+ 1)θ

sin θ
, x = cos θ

U0(x) = 1, U1(x) = 2x, Un+1(x) − 2xUn(x) + Un−1(x) = 0,

Modifying Un(x) as

Ũn(x) = Un

(x
2

)
, n ≥ 0.

Three-term recurrence relation:

Ũ0(x) = 1, Ũ1(x) = x, xŨn(x) = Ũn+1(x) + Ũn−1(x), n ≥ 1.

Orthogonal relation wrt Wigner’s semi-circle law :∫ 2

−2

Ũm(x)Ũn(x)
1

2π

√
4 − x2 dx = 0, m ̸= n.

Jacobi coefficients: ({ωn ≡ 1}, {αn ≡ 0})
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Interacting Fock Space and Quantum Decomposition

2.10. Some Topics Relevant to Quantum Decomposition

[1] Quantum walks [Konno–Obata–Segawa, CMP (2013)]

[2] Random walks [Y. Kang, Physica (2016)]

[3] Another growing graphs [Kurihara–Hibino, IDAQP (2011), Gaxiola (2017)]

[4] S. Jafarizadeh and R. Sufiani: Evaluation of effective resistances in

pseudo-distance-regular resistor networks, J. Stat. Phys. 139 (2010).

[5] Hecke algebras for p-adic PGL2 [Hasegawa et al. arXiv:1803.02217]

[6] see also R. Schott and G. S. Staple: “Operator Calculus on Graphs” (2012).

[7] Stochastic processes

Of course the root is the quantum stochastic calculus due to Hudson–Parthasarathy

(1984), and many others.

Quantum white noise calculus [Ji and others, Obata also]

Quantum decomposition of Lévy processes [Y-J. Lee and H.-H. Shih, others]

[8] Quantum decomposition without moments [Accardi–Rebei–Riahi (2013)]
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Interacting Fock Space and Quantum Decomposition

Exercises

Exercise 4 Let {Pn(x)} be the orthogonal polynomials associated to a probability

distribution µ with |suppµ| = ∞. Derive the three-term recurrence relation:

P0 = 1, P1 = x− α1, xPn = Pn+1 + αn+1Pn + ωnPn−1 ,

where ({ωn}, {αn}) are Jacobi coeficients of infinite type. Moreover, show that

α1 =

∫ +∞

−∞
xµ(dx) = mean(µ),

ω1 =

∫ +∞

−∞
(x− α1)

2µ(dx) = variance(µ),

ωnωn−1 · · ·ω1 =

∫ +∞

−∞
Pn(x)

2µ(dx),
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Interacting Fock Space and Quantum Decomposition

Exercises

Exercise 5 Consider the IFS (Γ, {Φn}, A+, A−) associated to Jacobi coefficients:

ω1 = 2, ω2 = 1, ω3 = 2, (ωn = 0, n ≥ 4);

α1 = α2 = α3 = α4 = 0 (αn = 0, n ≥ 5).

(1) Calculate the continued fraction:

G(z) =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·

(2) Find the probability distribution µ such that

G(z) =

∫ +∞

−∞

µ(dx)

z − x
.

(3) Show that

⟨Φ0, (A
+ +A−)2m−1Φ0⟩ = 0,

⟨Φ0, (A
+ +A−)2mΦ0⟩ =

1

3
(4m + 2).
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Interacting Fock Space and Quantum Decomposition

Exercises

Exercise 6 (free Fock space) Consider the free Fock space (Γ, {Φn}, A+, A−), i.e.,

the IFS associated to Jacobi coefficients ({ωn ≡ 1}, {αn ≡ 0}).
(1) Check Carleman’s condition.

(2) Calculate the continued fraction:

G(z) =
1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·

(3) Apply the inversion formula to get the absolutely continuous part:

ρ(x) = − 1

π
lim

y→+0
ImG(x+ iy)

(4) Check ∫ +∞

−∞
ρ(x)dx = 1.

(5) Show that

⟨Φ0, (A
+ +A−)2mΦ0⟩ =

1

m+ 1

(
2m

m

)
(Catalan number)
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Spectral Distributions of Graphs

3. Spectral Distributions of Graphs

Nobuaki Obata (Tohoku University) Spectral Analysis Yichang, China, 2019.08.20–24 43 / 88



Spectral Distributions of Graphs

3.1. Graphs and Matrices

Definition (graph)

A (finite or infinite) graph is a pair G = (V,E), where V is the set of vertices and E

the set of edges. We write x ∼ y (adjacent) if they are connected by an edge.

Definition (adjacency matrix)

The adjacency matrix A = [Axy] is defined by Axy =

{
1, x ∼ y,

0, otherwise.

Assumption 1 [connected] Any pair of distinct vertices are connected by a walk.

Assumption 2 [locally finite] degG(x) = (degree of x) < ∞ for all x ∈ V .

Definition (adjacency algebra)

Let G = (V,E) be a graph. The ∗-algebra generated by the adjacency matrix A is

called the adjacency algebra of G and is denoted by A(G). In fact, A(G) is the set of

polynomials in A.

▶ Equipped with a state φ, (A(G), φ) becomes an algebraic probability space.
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Spectral Distributions of Graphs

3.2. Tracial States for Finite Graphs

φtr(a) = ⟨a⟩tr =
1

|V | Tr (a) =
1

|V |
∑
x∈V

⟨ex , aex⟩, a ∈ A,

where {ex ; x ∈ V } is the canonical basis of C(V ).

Lemma

The spectral distribution of A in φtr coincides with the eigenvalue distribution of G,

namely, letting µ be the eigenvalue distribution of G, we have

⟨Am⟩tr =

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

Proof. Let Spec (G) = {λ1(m1), . . . , λs(ms)} be the spectrum of G, where λi is

an eigenvalue of A with multiplicity mi. The eigenvalue distribution is defined by

µ =
1

|V |

s∑
i=1

miδλi .

Then we have

⟨Am⟩tr =
1

|V | Tr (A
m) =

1

|V |
∑

miλ
m
i =

∫ +∞

−∞
xmµ(dx).
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Spectral Distributions of Graphs

3.3. Vacuum State (at a fixed origin o ∈ V )

Fix a vertex o ∈ V as an origin (root).

The vacuum state at o ∈ V is the vector state defined by

φ(a) = ⟨a⟩o = ⟨δo , aδo⟩, a ∈ A(G).

Lemma

Let µ be the spectral distribution of A. Then we have

⟨Am⟩o = ⟨δo, Amδo⟩ =

∫ +∞

−∞
xmµ(dx) = |{m-step walks from o to o}|.

Proof. We need only to note that

⟨δo, Amδo⟩ = (Am)oo =
∑

Aox1Ax1x2 · · ·Axm−1o ,

where Aox1Ax1x2 · · ·Axm−1o = 1 if o ∼ x1 ∼ x2 ∼ · · · ∼ xm−1 ∼ o and = 0

otherwise.
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Spectral Distributions of Graphs

3.4. Our Main Questions

1 Given a graph G = (V,E) and a state ⟨·⟩ on A(G), find the spectral distribution

of A, i.e., a probability distribution µ on R satisfying

⟨Am⟩ =

∫ +∞

−∞
xmµ(dx)

2 Given growing graphs Gν = (Vν , Eν) and states ⟨·⟩ν on A(Gν), find the

asymptotic spectral distribution, i.e., a probability measure µ on R satisfying

lim
ν

⟨(Aν − ⟨Aν⟩ν
Σ(Aν)

)m⟩
ν

=

∫ +∞

−∞
xmµ(dx).

▶ Quantum Probabilistic Approaches (Use of Non-Commutativity)

1 Method of quantum decomposition:

A = A+ +A− +A◦

2 Sum of independent random variables and quantum central limit theorem (CLT):

A = B1 +B2 + · · · +Bn
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Spectral Distributions of Graphs

Of course, we may focus on generalizations of graphs

Lemma

A matrix A with index set V × V is the adjacency matrix of a graph on V if and only if

(i) (A)xy ∈ {0, 1}; (ii) (A)xy = (A)yx; (iii) (A)xx = 0.

1 Graph with loops. Dropping (iii) allows a loop connecting a vertex with itself.

2 Multigraph. Relaxing (i) as (A)xy ∈ {0, 1, 2, . . . } allows a multi-edge.

3 Digraph (directed graph). Dropping (ii) gives rise to orientation of edges, namely,

(A)xy = 1 ⇔ x → y.

4 Network. In a broad sense, an arbitrary matrix A with index set V × V gives rise

to a network, where each directed edge x → y is associated with the value (A)xy

whenever (A)xy ̸= 0. A transition diagram of a Markov chain is an example.
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Spectral Distributions of Graphs

and more matrices associated to graphs ...

▶ Matrices with index set V × V :

1 Adjacency matrix: A = [Axy]

2 Combinatorial Laplacian: L = D −A, where D = [δxy deg x] (degree matrix).

3 Signless Laplacian: D +A

4 Transition matrix: T = [Txy], where Txy = deg(x)−1Axy.

5 Normalized transition matrix: T̂ = D1/2TD−1/2.

6 Random walk Laplacian: I − T = D−1L

7 Normalized Laplacian: L̂ = D−1/2LD−1/2 = I − T̂

8 Distance matrix: D = [dG(x, y)]

9 Q-matrix: Q = [qd(x,y)]

▶ Other matrices with index set V × E:

incidence matrix, oriented incidence matrix (coboundary matrix), ...
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Spectral Distributions of Graphs

3.5. Fock Spaces Associated to Graphs — Stratification

1 Fix an origin o ∈ V of G = (V,E).

2 Stratification (Distance Partition)

V =

∞∪
n=0

Vn , Vn = {x ∈ V ; d(o, x) = n}

Vn+1VnVn-1V1V0

n+1nn-110 FFFFFG (G):

V : 

3 Associated Hilbert space Γ(G) ⊂ ℓ2(V )

Φn = |Vn|−1/2
∑

x∈Vn

ex , Γ(G) =

∞∑
n=0

⊕CΦn .
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Spectral Distributions of Graphs

3.5. Fock Spaces Associated to Graphs — Quantum Decomposition

(     ) (     )

Vn+1VnVn-1

+-

y

x

y

y

A A Ayx(     ) yx yx

4 Quantum decomposition

A = A+ +A− +A◦, (A+)∗ = A−, (A◦)∗ = A◦.

5 Is (Γ(G), {Φn}, A+, A◦, A−) an IFS?

▶ Yes, if Γ(G) is invariant under the actions of A+, A−, A◦.

▶ Yes in the limit, if Γ(G) is asymptotically invariant under A+, A−, A◦.
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Spectral Distributions of Graphs

3.6. IFS Structure Associated to Graphs

w (x) w (x)
w (x)

{

Vn+1VnVn-1

x

{ {
▶ For x ∈ Vn and ϵ = +,−, ◦ we set ωϵ(x) = {y ∈ Vn+ϵ ; y ∼ x}.

Lemma (exercise)

Γ(G) is invariant under Aϵ if and only if ωϵ(x) is constant on each Vn . In that case

there exist Jacobi coefficients ({ωn}, {αn}) ∈ J such that

A+Φn =
√
ωn+1 Φn+1, A−Φn =

√
ωn Φn−1, A◦Φn = αn+1Φn.

In other words, (Γ(G), {Φn}, A+, A−, A◦) is an interacting Fock space (IFS).
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Spectral Distributions of Graphs

3.7. IFS Structure Associated to Homogeneous Trees

Let Tκ denote the homogeneous tree of degree κ ≥ 2.

For T4

Φn = |Vn|−1/2
∑

x∈Vn

ex

A = A+ +A− +A◦

A+Φ0 =
√
4Φ1

A+Φn =
√
3Φn+1 (n ≥ 1)

A−Φ0 = 0

A−Φ1 =
√
4Φ0

A−Φn =
√
3Φn−1 (n ≥ 2)

A◦ = 0
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Spectral Distributions of Graphs

3.7. IFS Structure Associated to Homogeneous Trees

Let Tκ denote the homogeneous tree of degree κ ≥ 2.

For a general Tκ

Φn = |Vn|−1/2
∑

x∈Vn

ex

A = A+ +A− +A◦

A+Φ0 =
√
κΦ1

A+Φn =
√
κ− 1Φn+1 (n ≥ 1)

A−Φ0 = 0

A−Φ1 =
√
κΦ0

A−Φn =
√
κ− 1Φn−1 (n ≥ 2)

A◦ = 0
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3.7. IFS Structure Associated to Homogeneous Trees

1 Quantum decomposition: A = A+ +A−

A+Φ0 =
√
κΦ1, A+Φn =

√
κ− 1Φn+1 (n ≥ 1)

A−Φ0 = 0, A−Φ1 =
√
κΦ0, A−Φn =

√
κ− 1Φn−1 (n ≥ 2)

2 Jacobi coefficients: ({ω1 = κ, ω2 = ω3 = · · · = κ− 1}, {αn ≡ 0})
3 Cauchy–Stieltjes transform:∫ +∞

−∞

µ(dx)

z − x
= Gµ(z) =

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·

=
(κ− 2)z − κ

√
z2 − 4(κ− 1)

2(κ2 − z2)

4 Vacuum spectral distribution: µ(dx) = ρκ(x)dx

ρκ(x) =
κ

2π

√
4(κ− 1) − x2

κ2 − x2
, |x| ≤ 2

√
κ− 1 .

This is called the Kesten distribution (1959).
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Spectral Distributions of Graphs

3.7. IFS Structure Associated to Homogeneous Trees

Theorem (see also Kesten (1959))

Let A = Aκ be the adjacency matrix of Tκ. Then we have

⟨Am⟩ = ⟨eo, Ameo⟩ =

∫ 2
√

κ−1

−2
√

κ−1

xmρκ(x)dx, m = 0, 1, 2, . . . .

▶ Kesten measure

ρκ(x) =
κ

2π

√
4(κ− 1) − x2

κ2 − x2

|x| ≤ 2
√
κ− 1

▶ Semi-circle law

lim
κ→∞

√
κρκ(

√
κx) =

1

2π

√
4 − x2.

k = 4

k = 8

k = 12

0.1

0 2 4 6-2-4-6
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Spectral Distributions of Graphs

3.8. IFS Structure Associated to Spidernets

Lattices vs Trees

additive group Zn free group Fn

many cycles no cycles

binomial coefficients Catalan numbers

commutative independence free independence

Normal distribution Wigner semi-circle law
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Spectral Distributions of Graphs

3.8. IFS Structure Associated to Spidernets

Spidernet = Homogeneous tree + large cycles
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Spectral Distributions of Graphs

3.8. IFS Structure Associated to Spidernets

Spidernet = Homogeneous tree + large cycles
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Spectral Distributions of Graphs

3.8. IFS Structure Associated to Spidernets

▶ Parametrization: S(a, b, c)

deg(x) =

a x = o (origin)

b x ̸= o

For x ̸= o we have


ω−(x) = 1

ω+(x) = c

ω◦(x) = b− 1 − c

S(4, 6, 3)

▶ Note: (a, b, c) does not necessarily determine a spidernet uniquely.
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Spectral Distributions of Graphs

3.9. Vacuum Spectral Distribution of S(a, b, c)


ω−(o) = 0,

ω+(o) = a,

ω◦(o) = 0,


ω−(x) = 1,

ω+(x) = c,

ω◦(x) = b− 1 − c,

x ̸= o.

1 Quantum decomposition: A = A+ +A− +A◦

A+Φ0 =
√
aΦ1, A+Φn =

√
cΦn+1 (n ≥ 1)

A−Φ0 = 0, A−Φ1 =
√
aΦ0, A−Φn =

√
cΦn−1 (n ≥ 2)

A◦Φ0 = 0, A◦Φn = (b− 1 − c)Φn (n ≥ 1)

2 Jacobi coefficients ({ωn}, {αn}):

ω1 = a, ω2 = ω3 = · · · = c,

α1 = 0, α2 = α3 = b− 1 − c.

3 Cauchy–Stieltjes transform:∫ +∞

−∞

µ(dx)

z − x
= Gµ(z) =

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · ·
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3.9. Vacuum Spectral Distribution of S(a, b, c)

Definition (Free Meixner distribution)

For p > 0, q ≥ 0 and a ∈ R a probability distribution µ uniquely determined by

Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
=

1

z −
p

z − a−
q

z − a−
q

z − a−
q

z − a− · · ·

is called the Free Meixner distribution with parameters p, q, a.

1 Calculating the continued fraction:

G(z) =
(2q − p)z + pa− p

√
(z − a)2 − 4q

2(q − p)z2 + 2paz + 2p2
.

2 The absolutely continuous part of µ is obtained by means of the inversion formula:

ρp,q,a(x) =
p

2π

√
4q − (x− a)2

(q − p)x2 + pax+ p2
, |x− a| ≤ 2

√
q .

3 We obtain an explicit form of µ:

µ(dx) = ρp,q,a(x)dx+ w+δλ+
+ w−δλ− (at most two atoms)

For further details see Hora–Obata (2007).
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3.9. Vacuum Spectral Distribution of S(a, b, c)

Free Meixner distribution µ4,3,a(dx) = ρ4,3,a(x)dx+ w1δc1 + w2δc2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-4 -2  0  2  4  6

r
4,3,a

(x)

a 
a 
a a 

a 
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Spectral Distributions of Graphs

3.9. Vacuum Spectral Distribution of S(a, b, c)

Theorem

The vacuum spectral distribution of S(a, b, c) is the free Meixner distribution with

parameters a, c, b− 1 − c. namely,

⟨eo, Ameo⟩ =

∫ +∞

−∞
xmµa,c,b−1−c(dx), m = 0, 1, 2, . . . .

Proof. Let µ be the vacuum spectral distribution of S(a, b, c).

By graphical observation we have obtained the Jacobi coefficients:

ω1 = a, ω2 = ω3 = · · · = c,

α1 = 0, α2 = α3 = b− 1 − c.

Then the Cauchy–Stieltjes transform of µ satisfies∫ +∞

−∞

µ(dx)

z − x
= Gµ(z) =

1

z − α1 −
ω1

z − α2 −
ω2

z − α3 −
ω3

z − α4 − · · · .

By definition the above µ is the free Meixner distribution µa,c,b−1−c .
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Spectral Distributions of Graphs

Exercises

Exercise 7 Let G = (V,E) be a graph with fixed origin o ∈ V . Let Γ(G) be the

associated Fock space. Show that Γ(G) is invariant under the actions A+, A−, A◦ if

and only if ω+(x), ω−(x) and ω◦(x) are constant on each Vn . Then find the Jacobi

coefficients ({ωn}, {αn}) ∈ J such that

A+Φn =
√
ωn+1 Φn+1, A−Φn =

√
ωn Φn−1, A◦Φn = αn+1Φn.

Exercise 8 Let A = A+ +A− be the quantum decomposition of the adjacency matrix

of the homogeneous tree Tκ (κ ≥ 2). Examine the actions of A+ and A−:

A+Φ0 =
√
κΦ1, A+Φn =

√
κ− 1Φn+1 (n ≥ 1)

A−Φ0 = 0, A−Φ1 =
√
κΦ0, A−Φn =

√
κ− 1Φn−1 (n ≥ 2)
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Spectral Distributions of Graphs

Exercises

Exercise 9 Applying the method of quantum decomposition to the following graphs,

derive the spectral distribution of at the vertex o.

o

o
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Spectral Distributions of Graphs

Exercises

Exercise 10 Applying the method of quantum decomposition to the following graphs,

derive the spectral distribution of at the vertex o.

o

o

o
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Spectral Distributions of Graphs

Exercises

Exercise 11 [Challenging Project] Let Gn be the graph obtained by joining n infinite

paths at the endpoint o, also called the n-fold star product of Z+. (The following figure

shows G5.) Calculate explicitly the spectral distribution of Gn at o and study its

asymptotic behevior as n → ∞. Note: µn posesses two atoms.
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Quantum Walks on Spidernets

4. Quantum Walks on Spidernets
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Quantum Walks on Spidernets

4.1. Random Walks on a Graph

{Xn}: isotropic random walk on G = (V,E)

determined by the transition probability:

P (Xn+1 = j|Xn = i) =


1

deg(i)
j ∼ i,

0, otherwise.

i

j

Transition matrix T = [P (Xn+1 = j|Xn = i)] gives the n-step transition probability:

P (Xn = j|X0 = i) = Tn(i, j) = ⟨ei, Tnej⟩

▶ Asymptotic behavior of Pn(i, j) as n → ∞ is important from several points of view.

For example, i ∈ V is recurrent, i.e.,

P (Ti < ∞|X0 = i) = 1, Ti = inf{n ≥ 1 ; Xn = i},

if and only if
∞∑

n=1

Tn(i, i) = +∞.
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Quantum Walks on Spidernets

4.2. Grover Walks on Graphs

For a graph G = (V,E) we consider the arcs (half-edges):

A(G) = {(u, v) ∈ V × V ; u ∼ v}

and the associated Hilbert space: H(G) = ℓ2(A(G)),

where {e(u,v) ; (u, v) ∈ A(G)} becomes the canonical orthonormal basis.

u

v

u

v

▶ 1-step dynamics of random walk (RW) is given by the transition matrix:

Teu =
∑
v∼u

T (u, v)ev

▶ 1-step dynamics of quantum walk (QW) is given by a particular unitary matrix:

Ue(u,v) =
∑
w∼u

.....e(w,u)
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Quantum Walks on Spidernets

4.2. Grover Walks on Graphs

1 Coin flip matrix C is defined by

Ce(u,v) =
∑
w∼u

(
2

deg(u)
− δwv

)
e(u,w)

2 Shift matrix S is defined by

Se(u,v) = e(v,u)

3 Time evolution matrix U is the unitary matrix defined by U = SC.

4 Grover walk is given by {Unψ0} with an initial state ψ0 ∈ H(G), ∥ψ0∥ = 1,

1
-1/3

2/32/3 2/3
2/3

-1/3

C S
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Quantum Walks on Spidernets

4.2. Grover Walks on Graphs

Finding probability

{Unψ0}: Grover walk with initial state ψ0 ∈ H(G)

XGW
n : position of the “Grover walker” at time n

P (XGW
n = u) =

∑
v∼u

|⟨e(u,v), U
nψ0⟩|2

▶ Note: Since {e(u,v)} is an orthonormal basis of H(G) and U is unitary,∑
u∈V

∑
v∼u

|⟨e(u,v), U
nψ0⟩|2 = ∥Unψ0∥2 = ∥ψ0∥2 = 1

▶ Check the finding probability (exercise)

1
-1/3

2/32/3 2/3
2/3

-1/3

C S
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Quantum Walks on Spidernets

4.3. Main Question on Grover Walk on Spidernet S(a, b, c)

G = S(a, b, c)

a = deg(o)

b = deg(x) for x ̸= o

c = ω+(x) for x ̸= o

U = SC: time evolution matrix of Grover walk

{Unψ+
0 }: Grover walk with initial state

ψ+
0 =

1√
a

∑
u∼o

e(o,u)

▶ By symmetry we have

P (XGW
n = 0) = |⟨ψ+

0 , U
nψ+

0 ⟩|2,

of which the asymptotic behavior is to be studied.
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Quantum Walks on Spidernets

4.4. Isotropic Random Walk on S(a, b, c)

Theorem

For the adjacency matrix A of S(a, b, c) we have

⟨eo, Ameo⟩ =

∫ +∞

−∞
xmµa,c,b−1−c(dx), m = 0, 1, 2, . . . ,

where µa,c,b−1−c is the free Meixner distribution.
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Quantum Walks on Spidernets

4.4. Isotropic Random Walk on S(a, b, c)

In a similar manner we have

Theorem

For the transition matrix T of S(a, b, c) we have

P (XRW
n = o|XRW

0 = o) = ⟨eo, Tneo⟩

=

∫ +∞

−∞
xnµq,pq,r(dx), n = 0, 1, 2, . . . ,

Here µq,pq,r is the free Meixner distribution, where p > 0, q > 0 and r ≥ 0 given by

p =
c

b
, q =

1

b
, r =

b− c− 1

b
.
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Quantum Walks on Spidernets

4.4. Isotropic Random Walk on S(a, b, c)

▶ Interesting case: c ≥ 2 and b > c+ 1 ≥ 3 (namely, avoiding trees)

Then

p > q > 0, r > 0, p+ q + r = 1. (*)

In this case the free Meixner law is of the form:

µq,pq,r(dx) = ρq,pq,r(x)dx+ wδc ,

c = − q

1 − p
, w = max

{
(1 − p)2 − pq

(1 − p)(1 − p+ q)
, 0

}

Since the support of µq,pq,r is properly contained in (−1, 1), we see that

lim
n→∞

P (XRW
n = o|XRW

0 = o) = lim
n→∞

∫ +∞

−∞
xnµa,c,b−1−c(dx) = 0.
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Quantum Walks on Spidernets

4.4. Isotropic Random Walk on S(a, b, c)

▶ In fact, the return probability is obtained

by means of 1-dimensional reduction.

a = deg(o)

b = deg(x) for x ̸= o

c = ω+(x) for x ̸= o

p =
c

b
,

q =
1

b
,

r =
b− c− 1

b

0 1 2 n+1n

p

q

n-1

1

q qq

p p

r r r r r
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Quantum Walks on Spidernets

4.5. Reduction to (p, q)-Quantum Walk on Z+

▶ State spaces

H(G) = H+
0 ⊕

∞∑
n=1

⊕(H−
n ⊕ H◦

n ⊕ H+
n )

y
0

+

0 1 2 n

y +y

y

n

n

n

H(Z+) = Cψ+
0 ⊕

∞∑
n=1

⊕(Cψ+
n ⊕ Cψ◦

n ⊕ Cψ−
n )
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Quantum Walks on Spidernets

4.5. Reduction to (p, q)-Quantum Walk on Z+

In fact,
ψ+

n =
1√
acn

∑
u∈Vn

∑
v∈Vn+1

v∼u

e(u,v) , n ≥ 0,

ψ◦
n =

1√
a(b− c− 1)cn−1

∑
u∈Vn

∑
v∈Vn
v∼u

e(u,v) , n ≥ 1,

ψ−
n =

1√
acn−1

∑
u∈Vn

∑
v∈Vn−1

v∼u

e(u,v) , n ≥ 1,

H(Z+) = Cψ+
0 ⊕

∞∑
n=1

⊕(Cψ+
n ⊕ Cψ◦

n ⊕ Cψ−
n )

Cψ+
0 = ψ+

0 ; Cψ+
n = (2p− 1)ψ+

n + 2
√
pr ψ◦

n + 2
√
pq ψ−

n , n ≥ 1,

Cψ◦
n = 2

√
pr ψ+

n + (2r − 1)ψ◦
n + 2

√
qr ψ−

n , n ≥ 1,

Cψ−
n = 2

√
pq ψ+

n + 2
√
qr ψ◦

n + (2q − 1)ψ−
n , n ≥ 1.

Sψ+
n = ψ−

n+1 , n ≥ 0; Sψ◦
n = ψ◦

n , n ≥ 1; Sψ−
n = ψ+

n−1 , n ≥ 1.
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Quantum Walks on Spidernets

4.5. Reduction to (p, q)-Quantum Walk on Z+

State space: H(Z+) = Cψ+
0 ⊕

∞∑
n=1

⊕(Cψ+
n ⊕ Cψ◦

n ⊕ Cψ−
n )

y
0

+

0 1 2 n

y +y

y

n

n

n

1 H(Z+) is invariant under U = SC (proof by computation).

2 We call U = SC restricted to H(Z+) a (p, q)-quantum walk on Z+.

3 Thus, the finding probability is obtained by

P (XGW
n = o) = |⟨ψ+

0 , U
nψ+

0 ⟩H(Z+)|2
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Quantum Walks on Spidernets

4.6. Calculating Probabbility Amplitude ⟨ψ+
0 , U

nψ+
0 ⟩

▶ Cut off the (p, q)-quantum walk at N

State space: H(N) = Cψ+
0 ⊕

N−1∑
n=1

⊕(Cψ+
n ⊕ Cψ◦

n ⊕ Cψ−
n ) ⊕ Cψ−

N

Time evolution matrix: UN = SNCN (CNψ
−
N = ψ−

N )

ψ
0

+

0 1 2 n

ψ +ψ

ψ

n

n

n

N

ψ
N

Lemma

⟨ψ+
0 , U

nψ+
0 ⟩ = ⟨ψ+

0 , U
n
Nψ

+
0 ⟩H(N), n < N.
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Quantum Walks on Spidernets

4.6. Calculating Probability Amplitude ⟨ψ+
0 , U

nψ+
0 ⟩

▶ Suppose r > 0 (the case of r = 0 is similar with small modification).

Eigenvalues of UN

1(1), e±iθ1(1), . . . , e±iθN (1), −1(N − 2)

where 0 = θ0 < θ1 < θ2 < · · · < θN < π are determined in such a way that

λ0 = 1 = cos θ0, λ1 = cos θ1 , λ2 = cos θ2 , . . . , λN = cos θN

are the eigenvalues of

TN =



0
√
q

√
q r

√
pq

√
pq r

√
pq

. . .
. . .

. . .
√
pq r

√
pq

√
pq r

√
p

√
p 0


.
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Quantum Walks on Spidernets

4.6. Calculating Probability Amplitude ⟨ψ+
0 , U

nψ+
0 ⟩

Let Ωj be the eigenvector of TN with eigenvalue cos θj (explicitly known but omitted).

1 By simple calculus we have

⟨ψ+
0 , U

n
Nψ

+
0 ⟩ =

N∑
j=0

|⟨ψ+
0 ,Ωj⟩|2 cosnθj .

2 Define a probability distribution

µN =

N∑
j=0

|⟨Ωj, ψ
+
0 ⟩|2δλj .

Then

⟨ψ+
0 , U

n
Nψ

+
0 ⟩ =

∫ 1

−1

cosnθ µN(dλ), λ = cos θ.

3 The LHS may be replaced with ⟨ψ+
0 , U

nψ+
0 ⟩ whenever n < N .

4 Letting N → ∞, we have

⟨ψ+
0 , U

nψ+
0 ⟩ =

∫ 1

−1

cosnθ µq,pq,r(dλ), λ = cos θ,

where µq,pq,r is the free Meixner distribution with parameters q, pq, r.
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Quantum Walks on Spidernets

4.6. Calculating Probability Amplitude ⟨ψ+
0 , U

nψ+
0 ⟩

Outline of µN → µq,pq,r

1 The limit of

TN =



0
√
q

√
q r

√
pq

√
pq r

√
pq

. . .
. . .

. . .
√
pq r

√
pq

√
pq r

√
p

√
p 0


determines an IFS of which vacuum spectral distribution is the free Meixner

distribution with parameters q, pq, r.

2 µN
m−→ µq,pq,r.

3 µq,pq,r is determined uniquely by moments.

4 By general theory µN
m−→ µq,pq,r implies weak convergence.
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Quantum Walks on Spidernets

4.6. Calculating Probability Amplitude ⟨ψ+
0 , U

nψ+
0 ⟩

Summing up,

Theorem (Integral representation)

Let U be the Grover walk on S(a, b, c). We have

⟨ψ+
0 , U

nψ+
0 ⟩ =

∫ 1

−1

cosnθ µq,pq,r(dλ), λ = cos θ.

Recall: For the isotropic random walk on S(a, b, c) we have

P (XRW
n = o|XRW

0 = o) = ⟨eo, Tneo⟩ =

∫ 1

−1

xnµq,pq,r(dx).
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4.7. Initial Value Localization

Using µq,pq,r(dx) = ρq,pq,r(x)dx+ wδc with

c = − q

1 − p
, w = max

{
(1 − p)2 − pq

(1 − p)(1 − p+ q)
, 0

}
,

we have

⟨ψ+
0 , U

nψ+
0 ⟩=

∫ 1

−1

cosnθ ρq,pq,r(λ)dλ+ w cosnθ̃,

cos θ̃ = − q

1 − p
.

By Riemann–Lebesgue lemma we have

⟨ψ+
0 , U

nψ+
0 ⟩ ∼ w cosnθ̃ as n → ∞.

Theorem (Konno-Obata–Segawa)

Grover walk on S(a, b, c) exhibits localization if and only if (1 − p)2 − pq > 0.
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4.7. Initial Value Localization

▶ For example, S(κ, κ+ 2, κ− 1) exhibits localization for 2 ≤ κ < 10.

▶ large κ ⇐⇒ density of large cycles is low ⇐⇒ more likely tree

Example S(4, 6, 3)

625 630 635 640 645 650

0.05

0.10

0.15

0.20

0.25

P (Xn = o) ∼ 1

4
cos2(nθ̃), θ̃ = arccos(−1/3)
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