
Asymptotic Spectral Analysis of Growing Regular Graphs

Spectral Analysis of Growing Graphs

A Quantum Probability Point of View

by

Nobuaki Obata (Tohoku University)

5. Asymptotic Spectral Analysis of Growing Regular Graphs

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20–24 1 / 97



Asymptotic Spectral Analysis of Growing Regular Graphs

5.1. Main Theme

▶ Growing graphs and spectral distributions

µ1 µ2 µ3 · · ·

Our Main Theme

The asymptotic behavior of µn as n → ∞. In fact, we will investigate the limit:

lim
n→∞

µn
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.2. Simple Example (I) Pn as n → ∞

 2

 4

 6

-2 -1  0  1  2

Pn as n → ∞

Spec (Pn) =

{
2 cos

kπ

n + 1
; 1 ≤ k ≤ n

}

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

For f ∈ Cb(R) we have∫ +∞

−∞
f(x)µn(dx)

=
1

n

n∑
k=1

f
(
2 cos

kπ

n + 1

)

→
∫ 1

0

f(2 cosπt)dt

=

∫ +2

−2

f(x)
dx

π
√
4 − x2

.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.2. Simple Example (II) Kn as n → ∞

Kn as n → ∞

Spec (Kn) = {−1(n − 1), n − 1(1)}

µn =
1

n
δn−1 +

n − 1

n
δ−1

-1 n-10

▶ Let us see what happens in the limit µn as n → ∞

For f ∈ Cb(R) we have∫ +∞

−∞
f(x)µn(dx) =

1

n
f(n − 1) +

n − 1

n
f(−1)

→ f(−1) =

∫ +∞

−∞
f(x)δ−1(dx) as n → ∞

This means that µn → δ−1

Can we accept it? What about the mean values?
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.2. Simple Example (II) Kn as n → ∞

▶ Normalization is a basic idea in probability theory to grasp the limit distribution.

E.g., central limit theorem (CLT) and its variants.

Definition (normalization)

For a probability distribution µ its normalization is a probability distribution µ̃ defined by∫
f(x) µ̃(dx) =

∫
f
(x − m

σ

)
µ(dx),

where

m = mean(µ), σ2 = var(µ).

Then we have

mean(µ̃) = 0, var(µ̃) = 1.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.2. Simple Example (II) Kn as n → ∞

Kn as n → ∞

Spectral distribution (eigenvalue distribution): µn =
1

n
δn−1 +

n − 1

n
δ−1

Since mean(µn) = 0 and var(µn) = n − 1, after normalization we have∫ +∞

−∞
f(x)µ̃n(dx) =

1

n
f
( n − 1√

n − 1

)
+

n − 1

n
f
( −1√

n − 1

)
→ f(0) =

∫ +∞

−∞
f(x)δ0(dx) as n → ∞.

This means that µ̃n → δ0.

-1 n-10 0

-
normalized limit
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.3. Formulation of Question in General

A difference between Kn and Pn as n → ∞

µPn =
1

n

n∑
k=1

δ2 cos kπ
n+1

, µKn =
1

n
δn−1 +

n − 1

n
δ−1

mean value

mean(µPn) = mean(µKn) = 0

variance

var(µPn) =
2(n − 1)

n
→ 2, var(µKn) = n − 1 → ∞

▶ In general, it is not reasonable to consider limµn when var(µn) → ∞.

We should take normalized limit lim µ̃n.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.3. Formulation of Question in General

Gν = (Vν , Eν): growing graphs

(A(Gν), ⟨·⟩ν): adjacency algebra with a state (algebraic probability space)

µν : spectral distribution of the adjacency matrix Aν of Gν , i.e.,

⟨Am
ν ⟩ =

∫ +∞

−∞
xmµν(dx), m = 0, 1, 2, . . . .

Note: mean(Aν) = ⟨Aν⟩ and var(Aν) = ⟨(Aν − mean(Aν))
2⟩.

Main question in genaral

For the normalization µ̃ν of µν find the limit spectral distribution:

µ = lim
ν

µ̃ν .

In other words,

lim
ν

⟨(
Aν − mean(Aν)√

var(Aν)

)m⟩
ν

=

∫ +∞

−∞
xmµ(dx), m = 0, 1, 2, . . . .
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.4. Growing Distance-Regular Graphs (DRGs)

Definition

A graph G = (V,E) is called distance regular if the intersection numbers:

pk
i,j = |{z ∈ V ; d(x, z) = i, d(y, z) = j}|,

is constant for all pairs x, y such that d(x, y) = k.

▶ Examples: Hamming graphs, Johnson graphs, odd graphs, homogeneous trees, ...

▶ We are interested in growing distance-regular graphs, e.g.,

H(d,N) as d → ∞ and N → ∞

J(v, d) as v → ∞ and d → ∞

Ok as k → ∞

Tk as k → ∞

· · ·
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.4. Growing Distance-Regular Graphs (DRGs)

Some general facts on a distance-regular graph G (exercise)

1 Let A = A+ + A− + A◦ be the quantum decomposition (with respect to a fixed

origin o ∈ V ). Then

A+Φn =
√

ωn+1 Φn+1, A−Φn =
√

ωn Φn−1, A◦Φn = αn+1Φn,

where
ωn = pn

1,n−1p
n−1
1,n , αn = pn−1

1,n−1 .

2 In particular, (Γ(G), {Φn}, A+, A◦, A−) is an IFS associated to ({ωn}, {αn}).
3 mean value and variance:

mean(A) = ⟨A⟩ = 0, var(A) = ⟨A2⟩ = deg(o) = p0
11

4 If G is a finite distance-regular graph, the tracial and vacuum states coincide:

⟨Am⟩tr = ⟨Am⟩o = ⟨eo, A
meo⟩, m = 1, 2, . . . .
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d,N)

H(d,N) = KN × · · · × KN (d times): Hamming graph

p0
1,1 = degH(d,N) = d(N − 1),

pn
1,n−1 = n, pn−1

1,n = (d − n)(N − 1), pn−1
1,n−1 = (n − 1)(N − 2).

Theorem

Let µd,N be the vacuum spectral distribution of H(d,N) (in coincidence with the

eigenvalue distribution). Then the Jacobi parameters of µd,N are given by

ωn = pn
1,n−1p

n−1
1,n = n(d − n + 1)(N − 1), 1 ≤ n ≤ d,

αn = pn−1
1,n−1 = (n − 1)(N − 2), 1 ≤ n ≤ d + 1.

In fact, the vacuum spectral distribution of A is the binomial distribution.

The IFS structure:

A+Φn =
√

ωn+1 Φn+1 =
√

(n + 1)(d − n)(N − 1)Φn+1,

A−Φn =
√

ωn Φn−1 =
√

n(d − n + 1)(N − 1)Φn−1,

A◦Φn = αn+1 Φn = n(N − 2)Φn,
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d,N)

A+Φn =
√

ωn+1 Φn+1 =
√

(n + 1)(d − n)(N − 1)Φn+1,

A−Φn =
√

ωn Φn−1 =
√

n(d − n + 1)(N − 1)Φn−1,

A◦Φn = αn+1 Φn = n(N − 2)Φn,

▶ What happens when N → ∞ and d → ∞?

▶ Normalization: mean(A) = ⟨A⟩ = 0 and var(A) = ⟨A2⟩ = d(N − 1).

A+√
d(N − 1)

Φn =

√
(n + 1)

(
1 − n

d

)
Φn+1,

A−√
d(N − 1)

Φn =

√
n
(
1 − n − 1

d

)
Φn−1,

A◦√
d(N − 1)

Φn = n

√
N − 2

d

√
N − 2

N − 1
Φn,

▶ We thus find the proper scaling:

N → ∞, d → ∞,
N

d
→ τ ≥ 0.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d,N)

▶ Taking the limit as N → ∞, d → ∞ and
N

d
→ τ ≥ 0, we have

A+√
d(N − 1)

Φn =

√
(n + 1)

(
1 − n

d

)
Φn+1 →

√
n + 1“Φn+1” ,

A−√
d(N − 1)

Φn =

√
n
(
1 − n − 1

d

)
Φn−1 →

√
n “Φn−1” ,

A◦√
d(N − 1)

Φn = n

√
N − 2

d

√
N − 2

N − 1
Φn → n

√
τ “Φn”.

▶ Recall the Boson Fock space (Γ, {Ψn}, B+, B−) is defined by

B+Ψn =
√

n + 1Ψn+1, B−Ψn =
√

nΨn−1.

▶ Note also that

B+B−Ψn = nΨn .
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d,N)

Theorem (Quantum central limit theorem (QCLT) for H(d,N))

Let A = A+ + A− + A◦ be the quantum decomposition of the adjacency matrix of

H(d,N). Let (Γ, {Ψn}, B+, B−) be the Boson Fock space. Then we have(
A+√

d(N − 1)
,

A−√
d(N − 1)

,
A◦√

d(N − 1)

)
m−→ (B+, B−,

√
τ B+B−),

as N → ∞, d → ∞ and
N

d
→ τ ≥ 0.

where
m−→ means the convergence of all mixed moments.

Deteiled proof is omitted (exercise).
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d,N)

Finding the asymptotic spectral distribution for H(d,N)(
A+√

d(N − 1)
,

A−√
d(N − 1)

,
A◦√

d(N − 1)

)
m−→ (B+, B−,

√
τ B+B−)

implies that⟨
eo

(
A√

d(N − 1)

)m

eo

⟩
→
⟨
Ψ0, (B

+ + B− +
√

τ B+B−)mΨ0

⟩
.

On the other hand, by observing moments or generating functions, we see that

⟨
Ψ0, (B

+ + B− +
√

τ B+B−)mΨ0

⟩
=

∫ +∞

−∞
xmµ(dx),

where

µ =

N(0, 1), τ = 0,

affine transformed Po(τ−1), τ > 0.

This µ is the asymptotic spectral (= eigenvalue) distribution of H(d,N).
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.6. Growing DRGs: General Results

{Gν}: growing DRGs with adjacency matrices Aν

▶ Using mean(Aν) = ⟨Aν⟩ = 0 and var(Aν) = ⟨A2
ν⟩ = deg(Gν) = p0

11(ν), the

normalization of Aν is given by

Aν − mean(Aν)√
var(Aν)

=
A+

ν√
deg(Gν)

+
A◦

ν√
deg(Gν)

+
A−

ν√
deg(Gν)

.

Theorem (Quantum CLT for growing DRGs)

Assume that for all n = 1, 2, . . . the limits

ωn = lim
ν

pn
1,n−1(ν)p

n−1
1,n (ν)

p0
1,1(ν)

, αn = lim
ν

pn−1
1,n−1(ν)√
p0
1,1(ν)

,

exist. Let (Γ, {Φn}, B+, B−, B◦) be the interacting Fock space associated with

({ωn}, {αn}). Then we have(
A+

ν√
deg(Gν)

,
A−

ν√
deg(Gν)

,
A◦

ν√
deg(Gν)

)
m−→ (B+, B−, B◦).
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

ZN as N → ∞
1 Γ(ZN) is asymptotically invariant under Aϵ:

A+Φn =
√

2N
√

n + 1 Φn+1 + O(1),

A−Φn =
√

2N
√

n Φn−1 + O(N−1/2).

2 Normalized adjacency matrices:

Aϵ
N√

deg(AN)
=

Aϵ
N√
2N

→ Bϵ

3 The interacting Fock space in the limit:

B+Ψn =
√

n + 1 Ψn+1,

B−Φn =
√

n Ψn−1, B◦ = 0. This is Boson Fock space!

4 The asymptotic spectral distribution is the standard Gaussian distribution:

lim
N→∞

⟨
eo,

(
AN√
2N

)m

eo

⟩
= ⟨Ψ0, (B

+ + B−)mΨ0⟩

=
1√
2π

∫ +∞

−∞
xme−x2/2dx.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Statistics of ωϵ(x)
Vn+1

Vn−1

Vn

ω (x)

x

ω (x)

ω (x)

{

{

{

M(ωϵ|Vn) =
1

|Vn|
∑

x∈Vn

|ωϵ(x)|

Σ2(ωϵ|Vn) =
1

|Vn|
∑

x∈Vn

{
|ωϵ(x)| − M(ωϵ|Vn)

}2
L(ωϵ|Vn) = max{|ωϵ(x)| ; x ∈ Vn}.

Conditions for growing regular graphs Gν = (V (ν), E(ν))

(A1) limν κ(ν) = ∞, where κ(ν) = deg(Gν).

(A2) for each n = 1, 2, . . . ,

∃ lim
ν

M(ω−|V (ν)
n ) = ωn < ∞, lim

ν
Σ

2
(ω−|V (ν)

n ) = 0, sup
ν

L(ω−|V (ν)
n ) < ∞.

(A3) for each n = 0, 1, 2, . . . ,

∃ lim
ν

M(ω◦|V (ν)
n )√

κ(ν)
= αn+1 < ∞, lim

ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0, sup

ν

L(ω◦|V (ν)
n )√

κ(ν)
< ∞.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Theorem (QCLT for growing regular graphs)

Let {Gν = (V (ν), E(ν))} be a growing regular graph satisfying

(A1) limν κ(ν) = ∞, where κ(ν) = deg(Gν).

(A2) for each n = 1, 2, . . . ,

∃ lim
ν

M(ω−|V (ν)
n ) = ωn < ∞, lim

ν
Σ

2
(ω−|V (ν)

n ) = 0, sup
ν

L(ω−|V (ν)
n ) < ∞.

(A3) for each n = 0, 1, 2, . . . ,

∃ lim
ν

M(ω◦|V (ν)
n )√

κ(ν)
= αn+1 < ∞, lim

ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0, sup

ν

L(ω◦|V (ν)
n )√

κ(ν)
< ∞.

Let (Γ, {Ψn}, B+, B−, B◦) be the interacting Fock space associated with the Jacobi

parameters ({ωn}, {αn}). Then(
A+

ν√
κ(ν)

,
A−

ν√
κ(ν)

,
A◦

ν√
κ(ν)

)
m−→ (B+, B−, B◦)

In particular, the asymptotic spectral distribution of the normalized Aν in the vacuum

state is a probability distribution determined by ({ωn}, {αn}).
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Asymptotic Spectral Analysis of Growing Regular Graphs

Outline of Proof

(1)
Aϵ√
κ

Φn = γϵ
n+ϵΦn+ϵ + Sϵ

n+ϵ, ϵ ∈ {+,−, ◦}, n = 0, 1, 2, . . . .

γ
+
n = M(ω−|Vn)

(
|Vn|

κ|Vn−1|

)1/2

, γ
−
n = M(ω+|Vn)

(
|Vn|

κ|Vn+1|

)1/2

, γ
◦
n =

M(ω◦|Vn)√
κ

.

(2) |Vn| =
{

n∏
k=1

M(ω−|Vk)

}−1

κn + O(κn−1).

(3) lim
ν

γ+
n =

√
ωn, lim

ν
γ−
n =

√
ωn+1, lim

ν
γ◦
n = αn+1.

(4)

Aϵm

√
κ

· · ·
Aϵ1

√
κ

Φn = γϵ1
n+ϵ1

γϵ2
n+ϵ1+ϵ2

· · · γϵm
n+ϵ1+···+ϵm

Φn+ϵ1+···+ϵm

+
m∑

k=1

γϵ1
n+ϵ1

· · · γ
ϵk−1

n+ϵ1+···+ϵk−1︸ ︷︷ ︸
(k − 1) times

Aϵm

√
κ

· · ·
Aϵk+1

√
κ︸ ︷︷ ︸

(m − k) times

S
ϵk
n+ϵ1+···+ϵk

.

(5) Estimate the error terms and show that

lim
ν

⟨
Φ

(ν)
j ,

Aϵm√
κ(ν)

· · ·
Aϵk+1√
κ(ν)

S
ϵk
n+ϵ1+···+ϵk

⟩
= 0.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.8. Deformed Vacuum States on A(G)

Definition (Q-matrix and deformed vacuum functional)

The Q-matrix of a graph G = (V,E) is defined by

Q = Qq = [qd(x,y)]x,y∈V , d(x, y) = graph distance,

where q is a parameter (in fact, we are interested only in the case of −1 ≤ q ≤ 1). The

deformed vacuum functional is defined by

⟨a⟩q = ⟨Qqeo, aeo⟩, a ∈ A(G).

1 For q = 0 we have Q0 = I so that ⟨·⟩q coincides with the vacuum state.

2 Qeo does not necessarily belong to ℓ2(V ) but ⟨a⟩q is well-defined for a ∈ A(G).

3 A(G) ∋ a 7→ ⟨a⟩q is a merely a normalized linear function.

4 Positivity of ⟨·⟩q is an interesting question from several aspects.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.8. Deformed Vacuum States on A(G)

▶ Let G be a κ-regular graph and consider the deformed vacuum functional on A(G):

⟨a⟩q = ⟨Qqeo, aeo⟩, a ∈ A(G).

We have

⟨A⟩q = κq,

Σ2
q(A) = ⟨(A − ⟨A⟩q)2⟩q = κ(1 − q){1 + q + qM(ω◦|V1)}

so that the quantum decomposition of the normalized adjacency matrix is given by

A − ⟨A⟩q
Σq(A)

=
A+

Σq(A)
+

A−

Σq(A)
+

A◦ − ⟨A⟩q
Σq(A)

▶ Let {Gν} be growing regular graphs. We need to find a proper scaling balance

between κ(ν) and q(ν).

The balance condition found from the actions of Aϵ and explicit form of Qqe0 :

lim
ν

κ(ν) = ∞, lim
ν

q(ν) = 0, lim
ν

q(ν)
√

κ(ν) = γ ∈ R.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.8. Deformed Vacuum States on A(G)

(A1) limν κ(ν) = ∞, where κ(ν) = deg(Gν).
(A2) for each n = 1, 2, . . . ,

∃ lim
ν

M(ω−|V (ν)
n ) = ωn < ∞, lim

ν
Σ

2
(ω−|V (ν)

n ) = 0, sup
ν

L(ω−|V (ν)
n ) < ∞.

(A3) for each n = 0, 1, 2, . . . ,

∃ lim
ν

M(ω◦|V (ν)
n )√

κ(ν)
= αn+1 < ∞, lim

ν

Σ2(ω◦|V (ν)
n )

κ(ν)
= 0, sup

ν

L(ω◦|V (ν)
n )√

κ(ν)
< ∞.

(A4) (scaling balance) limν q(ν) = 0 and limν q(ν)
√

κ(ν) = γ ∈ R (constant).

Lemma

Under (A1)–(A4) we have

Qeo =

∞∑
n=0

qn
√

|Vn|Φn −→
∞∑

n=0

γn√
ωn · · ·ω1

Ψn = Ωγ

The above Ωγ is reasonably called a coherent vector of the interacting Fock space since

B−Ωγ = γΩγ .

See e.g., P. K. Das: IJTP 41 (2002), 1099–1106.
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5.8. Deformed Vacuum States on A(G)

Theorem (Deformed QCLT for growing regular graphs)

Let {Gν = (V (ν), E(ν))} be a growing regular graph satisying conditions (A1)–(A3)

and Aν its adjacency matrix. Let (Γ, {Ψn}, B+, B−, B◦) be the IFS associated to

({ωn}, {αn}). Under (A4) we have

lim
κ→∞,q→0
q
√

κ→γ

⟨
Qeo,

Ãϵm

Σq(A)
· · · Ãϵ1

Σq(A)
eo

⟩
= ⟨Ωγ , B̃

ϵm · · · B̃ϵ1Ψ0⟩,

where

Ã± = A±
ν , Ã◦ = A◦

ν − ⟨Aν⟩q, B̃± =
B±√

1 + γα2

, B̃◦ =
B◦ − γ√
1 + γα2

.

In particular,

lim
κ→∞,q→0
q
√

κ→γ

⟨(
Aν − ⟨A⟩q
Σq(Aν)

)m⟩
q

=

⟨
Ωγ ,

(
B+ + B− + B◦ − γ√

1 + γα2

)m

Ψ0

⟩
.

▶ Challenging Exercise: Examine the above argument for Tκ as κ → ∞ and find the

limit distribution (free Poisson distribution = Marchenko–Pastur distribution).
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Asymptotic Spectral Analysis of Growing Regular Graphs

Some concrete examples: Asymptotic spectral distributions

graphs IFS vacuum state deformed vacuum state

Hamming graphs ωn = n Gaussian (N/d → 0) Gaussian

H(d,N) (Boson) Poisson (N/d → λ−1 > 0) or Poisson

Johnson graphs ωn = n2
exponential (2d/v → 1) ‘Poissonization’ of

J(v, d) geometric (2d/v → p ∈ (0, 1)) exponential distribution

odd graphs ω2n−1 = n two-sided Rayleigh ?

Ok ω2n = n

homogeneous ωn = 1 Wigner semicircle free Poisson

trees Tκ (free)

integer lattices ωn = n Gaussian Gaussian

ZN (Boson)

symmetric groups ωn = n Gaussian Gaussian

Sn (Coxeter) (Boson)

Coxeter groups ωn = 1 Wigner semicircle free Poisson

(Fendler) (free)

Spidernets ω1 = 1 free Meixner law (free Meixner law)

S(a, b, c) ω2 = · · · = q
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Concepts of Independence and Graph Products

6. Concepts of Independence and Graph Products
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

X,Y, . . . : random variables on a classical probability space (Ω,F , P )

Definition

Two random variables X and Y are called independent if

P (X ≤ a, Y ≤ b) = P (X ≤ a)P (Y ≤ b), a, b ∈ R.

Theorem (multiplicativity of mean values)

If two random variables X,Y are independent, then

E[XY ] = E[X]E[Y ].

Moreover,

E[XmY n] = E[Xm]E[Y n]

whenever the mean values exist.
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

X1, X2, . . . : sequence of random variables such that

(i) independent

(ii) identically distributed

(iii) normalized, i.e., E[Xn] = 0, V[Xn] = E[X2
n] = 1

▶ Law of Large Numbers (LLN) says that

lim
N→∞

1

N

N∑
n=1

Xn = 0 almost surely.

▶ Central Limit Theorem (CLT) describes the fluctuation of

lim
N→∞

1√
N

N∑
n=1

Xn

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20–24 28 / 97



Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

Theorem (Central limit theorem (CLT))

Let X1, X2, . . . be a sequence of random variables such that (i) independent, (ii)

identically distributed, and (iii) normalized. Then

1√
N

N∑
n=1

Xn

obeys the standard normal distribution N(0, 1) in the limit.

lim
N→∞

P

(
1√
N

N∑
n=1

Xn ≤ a

)
=

1√
2π

∫ a

−∞
e−x2/2dx,

or equivalently, for any f ∈ Cb(R),

lim
N→∞

E

[
f

(
1√
N

N∑
n=1

Xn

)]
=

1√
2π

∫ +∞

−∞
f(x)e−x2/2dx.
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

Theorem (Algebraic Version of CLT)

Let X1, X2, . . . be a sequence of random variables such that (i) independent, (ii)

identically distributed, and (iii) normalized. If Xn has finite moments of all orders, we

have

lim
N→∞

E

[(
1√
N

N∑
n=1

Xn

)m]
=

1√
2π

∫ +∞

−∞
xme−x2/2dx.

In other words,

lim
N→∞

E

[(
1√
N

N∑
n=1

Xn

)2m]
=

(2m)!

2mm!
,

lim
N→∞

E

[(
1√
N

N∑
n=1

Xn

)2m−1]
= 0.
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

Combinatorial Proof

E

[(
1√
N

N∑
n=1

Xn

)m]
=

1

Nm/2

N∑
n1,...,nm=1

E[Xn1Xn2 · · ·Xnm ]

▶ We pick up the essential terms E[Xn1Xn2 · · ·Xnm ] that contributes to the limit.

1

E[Xn1Xn2 · · · · · ·Xnm︸ ︷︷ ︸
∃Xi appears only once

] = E[Xi]E[· · · · · · ] = 0.

2 Hence we only need to count the terms

E[ Xn1Xn2 · · · · · ·Xnm︸ ︷︷ ︸
# of distinct Xi’s ≤ [m

2
]

]
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

E

[(
1√
N

N∑
n=1

Xn

)m]
=

1

Nm/2

N∑
n1,...,nm=1

E[Xn1Xn2 · · ·Xnm ]

2 Hence we only need to count the terms

E[ Xn1Xn2 · · · · · ·Xnm︸ ︷︷ ︸
# of distinct Xi’s ≤ [m

2
]

]

3 Let s be the number of distinct Xi’s. The number of such terms is(
N

s

)
× #{arrangements of X1, . . . , Xs} ∼ NsC(s).

4 Thus the terms of s < m/2 have no contribution in the limit.

5 Namely, only the terms of s = m/2 have contribution in the limit.
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

E

[(
1√
N

N∑
n=1

Xn

)m]
=

1

Nm/2

N∑
n1,...,nm=1

E[Xn1Xn2 · · ·Xnm ]

5 Namely, only the terms of s = m/2 have contribution in the limit.

6 If m is odd,

lim
N→∞

E

[(
1√
N

N∑
n=1

Xn

)m]
= 0.

7 Suppose that m = 2s is even.

E[Xn1Xn2 · · ·Xnm︸ ︷︷ ︸
s distinct Xi’s

each appears twice

] = E[X2
i1X

2
i2 · · ·X2

is ] = E[X2
i1 ]E[X2

i2 ] · · ·E[X2
is ] = 1.

8 Consequently,

lim
N→∞

E

[(
1√
N

N∑
n=1

Xn

)2s]
= lim

N→∞

1

Ns

(
N

s

)
(2s)!

2s
=

(2s)!

2ss!
.
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

▶ Algebraic version of CLT is proved by

1 using factorization rule of mixed moments E[Xn1Xn2 · · ·Xnm ],

2 picking up the essential terms that contribute to the limit.

Factorization rule

▶ For classical random variables X and Y , obviously we have

E[Y XX] = E[XY X] = E[XXY ] = E[X2Y ] = E[X2]E[Y ], . . .

▶ But for a = a∗, b = b∗ in (A, φ) we wonder

φ(baa)
?
= φ(aba)

?
= φ(aab) =??? . . .

There are many possibilities arising from non-commutativity.

Our viewpoint

▶ Independence is formulated as a “good” factorization rule.

▶ There are four basic concepts of independence in quantum probability.
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

▶ Suppose we are given a concept of independence in (A, φ).

▶ Then we may consider a sequence {an} of random variables in (A, φ) such that

(0) real, i.e., an = a∗
n,

(i) independent,

(ii) identically distributed,

(iii) normalized, i.e., φ(an) = 0 and φ(a2
n) = 1.

▶ Then we ask for the probability distribution µ such that

lim
N→∞

φ

[(
1√
N

N∑
n=1

an

)m]
=

∫ +∞

−∞
xmµ(dx), m = 1, 2, . . . .

We call µ the central limit distribution.
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

Four Concepts of Independence and Quantum CLTs

▶ Factorization rules are shown only for three mixed moments of low orders.

commutative free Boolean monotone

φ(aba) φ(a2)φ(b) φ(a2)φ(b) φ(a)2φ(b) φ(a2)φ(b)

φ(bab) φ(a)φ(b2) φ(a)φ(b2) φ(a)φ(b)2 φ(a)φ(b)2

φ(a)2φ(b2)

φ(abab) φ(a2)φ(b2) +φ(a2)φ(b)2 φ(a)2φ(b)2 φ(a2)φ(b)2

−φ(a)2φ(b)2

CLM Gaussian Wigner Bernoulli arcsine
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

▶ One more: φ(a2a1a4a3a4a3a6a6a4a4a3a5) = φ(214343664435)

1 [commutative independence]

φ(214343664435) = φ(1)φ(2)φ(33)φ(44)φ(5)φ(62)

2 [monotone independence]

2

1

3

1

33

44

66

44 3

3 3

44

3 3 3

1

5

φ(214343664435) = φ(2)φ(4)φ(4)φ(66)φ(133443)φ(5)

= φ(2)φ(4)φ(4)φ(66)φ(44)φ(1333)φ(5)

= φ(2)φ(4)φ(4)φ(66)φ(44)φ(333)φ(1)

3 [Boolean independence]

φ(214343664435) = φ(2)φ(1)φ(4)φ(3)φ(4)φ(3)φ(66)φ(44)φ(3)φ(5)
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

Central limit distributions

φ

[(
1√
n

n∑
k=1

ak

)m]
→
∫ +∞

−∞
xmµ(dx).

Theorem (QCLT)

1 [commutative CLT] If a1, a2, . . . are commutative independent, we have

µ(dx) =
1√
2π

e−x2/2dx (normal distribution)

2 [monotone CLT] If a1, a2, . . . are monotone independent, we have

µ(dx) =
dx

π
√

2 − x2
(normalized arcsine law)

3 [Boolean CLT] If a1, a2, . . . are Boolean independent, we have

µ =
1

2
δ+1 +

1

2
δ−1 (normalized Bernoulli distribution)
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

Outline of proof

φ

[(
1√
n

n∑
k=1

ak

)m]
=

1

nm/2

n∑
k1,...,km=1

φ[ak1ak2 · · · akm ]

▶ We pick up the essential terms φ[ak1ak2 · · · akm ] that contributes to the limit.

1 φ(ak1ak2 · · · akm) = 0 if there is a singleton.

2 φ(ak1ak2 · · · akm) contributes to the limit only if the number s of distinct ai’s is

s = [m/2].

3 According to the independence evaluate φ(ak1ak2 · · · akm), where distinct ai’s

appear exact twice.
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

Outline of proof

4 Finally we get

lim
n→∞

φ

[(
1√
n

n∑
k=1

ak

)2m−1]
= 0

for three cases and

lim
n→∞

φ

[(
1√
n

n∑
k=1

ak

)2m]
=



(2m)!

2mm!
, commutative independence,

(2m)!

2mm!m!
, monotone independence,

1, Boolean independence.

Cf. free CLT

lim
n→∞

φ

[(
1√
n

n∑
k=1

ak

)2m]
=

1

m + 1

(
2m

m

)
=

∫ 2

−2

xm 1

2π

√
4 − x2 dx.
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Concepts of Independence and Graph Products

6.3. Graph Products

A binary operation of graphs

#G G1 2 G1 G2#

(G1, G2) 7→ Φ(G1, G2) = G1#G2

(A1, A2) 7→ Φ(A1, A2) = A[G1#G2]

(µ1, µ2) 7→ Φ(µ1, µ2) = µ1#µ2 (convolution)
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Concepts of Independence and Graph Products

6.3. Graph Products — Cartesian Product

Definition

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product or

direct product of G1 and G2, denoted by G1 × G2, is a graph on V = V1 × V2 with

adjacency relation:

(x, y) ∼ (x′, y′) ⇐⇒

x = x′

y ∼ y′
or

x ∼ x′

y = y′.

Example (C4 × C3)

(2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C  × C34 34

(1,1’
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Concepts of Independence and Graph Products

6.3. Graph Products — Comb Product

Definition

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. We fix a vertex o2 ∈ V2. For

(x, y), (x′, y′) ∈ V1 × V2 we write (x, y) ∼ (x′, y′) if one of the following conditions

is satisfied:

(i) x = x′ and y ∼ y′; (ii) x ∼ x′ and y = y′ = o2.

Then V1 × V2 becomes a graph, denoted by G1 ▷o2 G2, and is called the comb

product or the hierarchical product.

Example (C4 ▷o2 C3 with o2 = 1′)

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C
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Concepts of Independence and Graph Products

6.3. Graph Products — Star Product

Definition

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with distinguished vertices

o1 ∈ V1 and o2 ∈ V2. Define a subset of V1 × V2 by

V1 ⋆ V2 = {(x, o2) ; x ∈ V1} ∪ {(o1, y) ; y ∈ V2}

The induced subgraph of G1 × G2 spanned by V1 ⋆ V2 is called the star product of G1

and G2 (with contact vertices o1 and o2), and is denoted by G1 ⋆ G2 = G1 o1⋆o2 G2.

Example (C4 ⋆ C3)

(1,1’ (2,1’

1 2

34

1’ 2’

3’

(1,3’

(1,2’

(3,1’(4,1’

C C C      C
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Concepts of Independence and Graph Products

6.3. Graph Products — Adjacency Matrices

G1 = (V1, E1), G2 = (V2, E2): two graphs

G = G1#G2: a graph product and assume that V [G] = V1 × V2

Ai = A[Gi]: adjacency matrix of Gi acting on ℓ2(Vi), (i = 1, 2)

=⇒ A = A[G1#G2] acts on

ℓ2(V ) = ℓ2(V1 × V2) ∼= ℓ2(V1) ⊗ ℓ2(V2).

Theorem

1 [Cartesian product]

A[G1 × G2] = A1 ⊗ I2 + I1 ⊗ A2 .

2 [comb product]

A[G1 ▷ G2] = A1 ⊗ P2 + I1 ⊗ A2 .

3 [star product]

A[G1 ⋆ G2] = A1 ⊗ P2 + P1 ⊗ A2 .

Here, Pi is the rank one projection corresponding to oi.
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Concepts of Independence and Graph Products

6.4. Quantum CLT for Graph Products

▶ Let φi be the vacuum state at oi and consider the product state φ = φ1 ⊗ φ2.

=⇒ A = A[G1#G2] is a random variable in (A(G1#G2), φ).

Theorem

Let Ai = A[Gi] be the adjacency matrix of Gi.

1 [Cartesian product]

A[G1 × G2] = A1 ⊗ I2 + I1 ⊗ A2

is a sum of commutative independent random variables.

2 [comb product]

A[G1 ▷ G2] = A1 ⊗ P2 + I1 ⊗ A2

is a sum of monotone independent random variables.

3 [star product]

A[G1 ⋆ G2] = A1 ⊗ P2 + P1 ⊗ A2

is a sum of Boolean independent random variables.
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Concepts of Independence and Graph Products

6.4. Quantum CLT for Graph Products

Associativity of graph operations

1 [Cartesian product]

(G1 × G2) × G3
∼= G1 × (G2 × G3)

2 [Comb product]

(G1 ▷ G2) ▷ G3
∼= G1 ▷ (G2 ▷ G3)

To be precise,

(G1 ▷o2 G2) ▷o3 G3
∼= G1 ▷(o2,o3) (G2 ▷o3 G3)

3 [Star product]

(G1 ⋆ G2) ⋆ G3
∼= G1 ⋆ (G2 ⋆ G3)

▶ Thus, we have naturally n-fold powers:

G#n = G#G# · · ·#G (n times)

A[G#n] = B1 + B2 + · · · + Bn
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Concepts of Independence and Graph Products

6.4. Quantum CLT for Graph Products

Theorem (CLT for Cartesian product graphs)

For the n-fold Cartesian power G(n) = G × · · · × G (n-times),

lim
n→∞

⟨(
A(n)

√
n
√

deg(o)

)m⟩
=

∫ +∞

−∞
xm 1√

2π
e−x2/2dx.

Theorem (CLT for comb product graphs)

For the n-fold monotone power G(n) = G ▷o G ▷o · · · ▷o G (n-times),

lim
n→∞

⟨(
A(n)

√
n
√

deg(o)

)m⟩
=

∫ +
√

2

−
√

2

xm dx

π
√

2 − x2
, m = 1, 2, . . . .

Theorem (CLT for star product graphs)

For the n-fold star power G(n) = G ⋆ G ⋆ · · · ⋆ G (n-times) we have

lim
n→∞

⟨(
A(n)

√
n
√

deg(o)

)m⟩
=

∫ +∞

−∞
xm 1

2
(δ−1 + δ+1)(dx), m = 1, 2, . . . .
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Concepts of Independence and Graph Products

More Graph Products

products G1#G2 A[G1#G2] spectral distribution

Cartesian G1 ×C G2 A1 ⊗ I2 + I1 ⊗ A2 µ1 ∗ µ2

monotone G1 ▷ G2 A1 ⊗ P2 + I2 ⊗ A2 µ1 ▷ µ2

star G1 ⋆ G2 A1 ⊗ P2 + P1 ⊗ A2 µ1 ⊎ µ2

lexicographic G1 ▷L G2 A1 ⊗ J2 + P1 ⊗ A2 D(µ1) ▷ µ2

Kronecker G1 ×K G2 A1 ⊗ A2 µ1 ∗M µ2

strong G1 ×S G2

A1 ⊗ I2 + I1 ⊗ A2

+A1 ⊗ A2

S−1(Sµ1 ∗M Sµ2)

free G1 ∗ G2 A1 ∗ A2 µ1 ⊞ µ2

1 Every product except the free product is a graph on V1 × V2.

2 There is a classification of graph products realized on V1 × V2,

see e.g., R. Hammack et al.: “Handbook of Product Graphs,” CRC Press, 2011.
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Concepts of Independence and Graph Products

Exercises

Exercise 12 Let Gn be the graph obtained by joining n triangles (K3
∼= C3 at the

origin o, also called the n-fold star product of K3. (The following figure shows G6.)

Calculate explicitly the spectral distribution of Gn at o and study its asymptotic behevior

as n → ∞.
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Counting Walks

7. Counting Walks

N. Obata: “Spectral Analysis of Growing Graphs,” Chapter 7, Springer, 2017.

H. H. Lee and N. Obata: Kronecker product graphs and counting walks

in restricted lattices, arXiv:1607.06808.
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Counting Walks

7.1. Counting Walks and Spectral Distributions

G = (V,E): a (finite or infinite) graph

o ∈ V : a fixed origin

Wm(o;G) = |{o → o : m-step walk}|

Theorem

Let A be the adjacency matrix of G and µ the vacuum spectral distribution at o ∈ V .

Then we have

Wm(o;G) = ⟨eo, A
meo⟩ =

∫ +∞

−∞
xmµ(dx), m = 0, 1, 2, . . . .

▶ we are interested in the correspondence

G → µ

from the point of view of counting walks.
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Counting Walks

7.1. Counting Walks and Spectral Distributions

Basic result (1) Z

0

W2m(0;Z) =

(
2m

m

)
=

∫ 2

−2

x2mα(dx), α(x) =
1

π
√

4 − x2
.

Basic result (2) Z+ = {0, 1, 2, . . . }

0

W2m(0;Z+) =
1

m + 1

(
2m

m

)
=

∫ 2

−2

x2mw(dx), w =
1

2π

√
4 − x2 .

Catalan number
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Counting Walks

7.2. Cartesian Product: W ((o1, o2);G1 ×C G2)

G
1

G
2

o
1

o
2

The adjacency matrix of G1 ×C G2 is

A = A1 ⊗ I + I ⊗ A2,

where two matrices in RHD are commutative.

We then have

⟨e(o1,o2), A
me(o1,o2)⟩

= ⟨eo1 ⊗ eo2 , (A1 ⊗ I + I ⊗ A2)
meo1 ⊗ eo2⟩

=

m∑
k=0

(
m

k

)
⟨eo1 ⊗ eo2 , A

k
1 ⊗ Am−k

2 eo1 ⊗ eo2⟩

=
m∑

k=0

(
m

k

)
⟨eo1 , A

k
1eo1⟩⟨eo2 ⊗ Am−k

2 eo2⟩

Consequently,

W ((o1, o2);G1 ×C G2) =
m∑

k=0

(
m

k

)
Wk(o1;G1)Wm−k(o2;G2)
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Counting Walks

7.2. Cartesian Product: W ((o1, o2);G1 ×C G2)

µi: Spectral distribution of Gi at oi

µ: Spectral distribution of G = G1 ×C G2 at (o1, o2)

Wm(oi;Gi) =

∫ +∞

−∞
xmµi(dx), Wm((o1, o2);G1 ×C G2) =

∫ +∞

−∞
xmµ(dx).

Then the identity

W ((o1, o2);G1 ×C G2) =

m∑
k=0

(
m

k

)
Wk(o1;G1)Wm−k(o2;G2)

implies that∫ +∞

−∞
xmµ(dx) =

m∑
k=0

(
m

k

)∫ +∞

−∞
xkµ1(dx)

∫ +∞

−∞
xm−kµ2(dx)

=

∫ +∞

−∞

∫ +∞

−∞
(x1 + x2)

mµ1(dx1)µ2(dx2).

Thus, µ = µ1 ∗ µ2 (classical) convolution.
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Counting Walks

7.3. Graph Products and Convolution of Distributions

products G1#G2 A[G1#G2] spectral distribution

Cartesian G1 ×C G2 A1 ⊗ I2 + I1 ⊗ A2 µ1 ∗ µ2

comb G1 ▷ G2 A1 ⊗ P2 + I2 ⊗ A2 µ1 ▷ µ2

star G1 ⋆ G2 A1 ⊗ P2 + P1 ⊗ A2 µ1 ⊎ µ2

lexicographic G1 ▷L G2 A1 ⊗ J2 + P1 ⊗ A2 D(µ1) ▷ µ2

Kronecker G1 ×K G2 A1 ⊗ A2 µ1 ∗M µ2

strong G1 ×S G2

A1 ⊗ I2 + I1 ⊗ A2

+A1 ⊗ A2

S−1(Sµ1 ∗M Sµ2)

free G1 ∗ G2 A1 ∗ A2 µ1 ⊞ µ2

1 Every product except the free product is a graph on V1 × V2.

2 There is a classification of graph products realized on V1 × V2,

see e.g., R. Hammack et al.: “Handbook of Product Graphs,” CRC Press, 2011.
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Counting Walks

7.3. Graph Products and Convolution of Distributions

▶ Monotone convolution µ = µ1 ▷ µ2 is characterized by

Hµ(z) = Hµ1(Hµ2(z)),

where

Hµ(z) =
1

Gµ(z)
, Gµ(z) =

∫ +∞

−∞

µ(dx)

z − x
.

▶ Boolean convolution µ = µ1 ⊎ µ2 is characterized by

1

Gµ(z)
=

1

Gµ1(z)
+

1

Gµ2(z)
− z
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Counting Walks

7.4. Kronecker Product

Definition (Kronecker product)

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. The Kronecker product

G1 ×K G2 is a graph on V = V1 × V2 with the adjacency relation:

(x, y) ∼K (x′, y′) ⇐⇒ x ∼ x′, y ∼ y′.

In other words, the adjacency matrix A = A[G1 ×K G2] is given by

A = A1 ⊗ A2 .

1 G1 ×K G2
∼= G2 ×K G1.

2 (G1 ×K G2) ×K G3
∼= G1 ×K (G2 ×K G3).

3 (trivial case) For any graph G = (V,E) the Kronecker product K1 ×K G is a

graph on V with no edges (i.e., an empty graph on V ).
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Counting Walks

7.4. Kronecker Product

P3 ×K P3 K2 ×K K3

Lemma (exercise)

If |V1| ≥ 2 and |V2| ≥ 2, then G1 ×K G2 has at most two connected components.

Lemma (exercise)

G1 ×K G2 is a subgraph of the distance-2 graph of G1 ×C G2. (But not necessarily

induced subgraph.)
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Counting Walks

7.5. Counting Walks in Kronecker Product

Gi = (Vi, Ei): a connected graph with fixed origin oi ∈ Vi

G = G1 ×K G2: Kronecker product with origin (o1, o2)

Go = (G1 ×K G2)
o: the connected component containing (o1, o2)

Wm((o1, o2);G) = Wm((o1, o2);G
o)

= ⟨e(o1,o2), A
me(o1,o2)⟩

= ⟨eo1 ⊗ eo2 , (A1 ⊗ A2)
meo1 ⊗ eo2⟩

= ⟨eo1 , A
m
1 eo1⟩⟨eo2 , A

m
2 eo2⟩

= Wm(o1;G1)Wm(o2;G2)
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Counting Walks

7.5. Counting Walks in Kronecker Product

Gi = (Vi, Ei): a connected graph with fixed origin oi ∈ Vi

G = G1 ×K G2: Kronecker product with origin (o1, o2)

Go = (G1 ×K G2)
o: the connected component containing (o1, o2)

Thus,
Wm((o1, o2);G) = Wm(o1;G1)Wm(o1;G2).

µi: spectral distribution of the adjacency matrix Ai at oi

µ: spectral distribution of the adjacency matrix A = A[G] at (o1, o2)∫ +∞

−∞
xmµ(dx) =

∫ +∞

−∞
xm

1 µ1(dx1)

∫ +∞

−∞
xm

2 µ2(dx2)

=

∫ +∞

−∞

∫ +∞

−∞
(x1x2)

mµ1(dx1)µ2(dx2)

This µ is called the Mellin convolution and denoted by µ = µ1 ∗M µ2.
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Counting Walks

7.5. Counting Walks in Kronecker Product

Theorem

For i = 1, 2 let Gi = (Vi, Ei) be a graph with a distinguished vertex oi. Let µi be the

spectral distribution of the adjacency matrix Ai = A[Gi] at oi. Then the spectral

distribution of G = G1 ×K G2 at (o1, o2) is given by the Mellin convolution:

µ(G1 ×K G2) = µ1 ∗M µ2.

1 δa ∗M δb = δab for a, b ∈ R.

[cf. δa ∗ δb = δa+b.]

2 If µi(dx) = fi(x)dx and fi(−x) = fi(x), then µ1 ∗M µ2 admits a symmetric

density function 2f1 ⋆ f2(x), where

f1 ⋆ f2(x) =

∫ ∞

0

f1(y)f2

(x
y

)dy
y

=

∫ ∞

0

f1

(x
y

)
f2(y)

dy

y
, x > 0.

In fact, this is the standard convolution of the multiplicative group R>0.
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Exercises

Exercise 13 Observe that (K2 ×K K2)
o ∼= K2 and examine the identity:(

1

2
δ−1 +

1

2
δ1

)
∗M

(
1

2
δ−1 +

1

2
δ1

)
=

1

2
δ−1 +

1

2
δ1 .

Exercise 14 Using K3 ×K K2
∼= C6, derive the spectral distribution of C6 at a fixed

origin (which in fact coincides with the eigenvalue distribution):

1

6
δ−2 +

1

3
δ−1 +

1

3
δ1 +

1

6
δ2.

Exercise 15 Using K4 ×K K2
∼= K2 ×C K2 ×C K2 = H(3, 2), derive the spectral

distribution of H(3, 2) at a fixed origin (which in fact coincides with the eigenvalue

distribution):
1

8
δ−3 +

3

8
δ−1 +

3

8
δ1 +

1

8
δ3.

Also examine the identity:(
3

4
δ−1 +

1

4
δ3

)
∗M

(
1

2
δ−1 +

1

2
δ1

)
=

(
1

2
δ−1 +

1

2
δ1

)∗3

.
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7.6. Restricted Lattices

▶ Z ×C Z (2d interger lattice): a graph on Z2 with adjacency relation:

(x, y) ∼ (x′, y′) ⇐⇒

x′ = x ± 1,

y′ = y,
or

x′ = x,

y′ = y ± 1.

▶ Z ×K Z: a graph on Z2 = {(u, v) ; u, v ∈ Z} with adjacency relation:

(u, v) ∼K (u′, v′) ⇐⇒ u′ = u ± 1 and v′ = v ± 1.

1 Z ×K Z has two connected components,

each of which is isomorphic to Z ×C Z.

2 Let (Z ×K Z)O denote the connected

component of Z ×K Z containing

O = (0, 0). Then

(Z ×K Z)O ∼= Z ×C Z.
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7.6. Restricted Lattices

1 Z ×K Z has two connected components,

each of which is isomorphic to Z ×C Z.

2 Let (Z ×K Z)O denote the connected

component of Z ×K Z containing

O = (0, 0). Then

(Z ×K Z)O ∼= Z ×C Z.

Since the spectral distribution of Z at 0 is the arcsine law α, we have

Theorem

The spectral distribution of 2d lattice Z2 at (0, 0) is given by

α ∗M α = α ∗ α

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20–24 65 / 97



Counting Walks

7.6. Restricted Lattices

▶ Let L{x ≥ y} denote the induced subgraph of Z ×C Z spanned by the vertices

{(x, y) ∈ Z2 ; x ≥ y}.

x

y

x

y

Theorem

We have L{x ≥ y} ∼= (Z+ ×K Z)O and its spectral distribution at (0, 0) is given by

w ∗M α
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7.6. Restricted Lattices

▶ Let L{x ≥ y ≥ −x} denote the induced subgraph of Z×C Z spanned by the vertices

{(x, y) ∈ Z2 ; x ≥ y ≥ −x}.

x

y

x

y

Theorem

We have L{x ≥ y ≥ −x} ∼= (Z+ ×K Z)O and its spectral distribution at (0, 0) is

given by

w ∗M w
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7.6. Restricted Lattices

Domain D W2m(L[D], O) spectral distribution

Z
(
2m
m

)
α

Z+ Cm = 1
m+1

(
2m
m

)
w

Z2
(
2m
m

)2
α ∗ α = α ∗M α

{x ≥ y} Cm

(
2m
m

)
w ∗M α

{x ≥ y ≥ −x} C2
m w ∗M w

{x ≥ 0, y ≥ 0} (A) w ∗ w

{x ≥ y ≥ x − (n − 1)} (B) πn ∗M α{
0 ≤ x + y ≤ k − 1,

0 ≤ x − y ≤ l − 1

}
(C) πk ∗M πl

(A) =
m∑

k=0

(2m
2k

)
CkCm−k,

(B) = W2m(Pn, 0)
(2m
m

)
, (C) = W2m(Pk, 0)W2m(Pl, 0).
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7.6. Restricted Lattices — Density Functions

Elliptic integrals For k2 < 1, the elliptic integrals are defined by

K(k) =

∫ π/2

0

dθ√
1 − k2 sin2 θ

=

∫ 1

0

dx√
(1 − x2)(1 − k2x2)

,

E(k) =

∫ π/2

0

√
1 − k2 sin2 θ dθ =

∫ 1

0

√
1 − k2x2

1 − x2
dx.

1 The density function of w ∗M α is given by

1

π2
{K(ξ(x)) − E(ξ(x))}, ξ(x) =

√
1 − x2

16
, −4 ≤ x ≤ 4.

2 The density function of α ∗M α = α ∗ α is given by

1

2π2
K(ξ(x)), − 4 ≤ x ≤ 4.

3 The density function of w ∗M w is given by

2

π2

{(
1 +

x2

16

)
K(ξ(x)) − 2E(ξ(x))

}
, − 4 ≤ x ≤ 4.
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7.6. Restricted Lattices — Density Functions

w ∗M α

 0

 0  2  4

0.5

1.0

 − 2 − 4

α ∗M α w ∗M w

 0

 0.2

 0.4

 0  2  4 − 2 − 4

 0

0.5

1.0

 0  2  4 − 2 − 4
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An Example in 3-Dimension: Z ×K Z ×K Z

Z ×K Z ×K Z has 4 connected components, which are mutually isomorphic. The

connected component containing O(0, 0, 0) looks like an octahedra honeycomb, built up

by gluing octahedra or body-centered cubes.

(−1,1,1)

(0,0,0)

(1,1,1)

(−1,−1,1)

(1,−1,1)

We have

W2m(Z ×K Z ×K Z, (0, 0, 0)) =

(
2m

m

)3

, m = 0, 1, 2, . . . ,

and the spectral distribution is given by µ = α ∗M α ∗M α.
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8. Bivariate Extension: An Example

J. V. S. Morales, N. Obata and H. Tanaka: Asymptotic joint spectra of Cartesian

powers of strongly regular graphs and bivariate Charlier-Hermite polynomials,

arXiv:1809.03761, to appear in Colloq. Math.
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Bivariate Extension: An Example

Motivation

(I) Quantum CLT: Aν
m−→ B

⇒ The limit spectral distribution is a probability distribution on R1

⇒ Multi-variate extension: (A
(1)
ν , . . . , A

(p)
ν )

m−→ (Z1, . . . , Zp)?

See e.g., T. Espinasse and P. Rochet (2019), arXiv:1904.10720

— An extension of Boolean CLT

(II) Method of quantum decomposition A = A+ + A◦ + A−

⇒ Orthogonal polynomials in one variable:

xPn(x) = Pn+1(x) + αn+1Pn(x) + ωnPn−1(x)

⇒ Multi-variate extension?

potentially very interesting in connection to multi-variate orthogonal polynomials
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8.1. Hamming Graphs H(n, v)

n ≥ 1, v ≥ 1: natural numbers

Alphabets K = {1, 2, . . . , v}

Words of length n:

V = {x = (ξ1, ξ2, . . . , ξn) ξi ∈ K} = Kn

Hamming distance between two words x and y:

∂(x, y) = |{1 ≤ i ≤ n | ξi ̸= ηi}|.

A graph is defined with vertex set V and adjacency relation

x ∼ y ⇔ ∂(x, y) = 1

⇒ This is the Hamming graph H(n, v).
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Bivariate Extension: An Example

8.1. Hamming Graphs

Product structure

H(n, v) = Kv × · · · × Kv (n-fold Cartesian power)

where Kv is the complete graph on v vertices.

The adjacency matrix of H(n, v) is given by

An,v =

n∑
i=1

i−1︷ ︸︸ ︷
I ⊗ · · · ⊗ I ⊗A ⊗

n−i︷ ︸︸ ︷
I ⊗ · · · ⊗ I,

where A = A[Kv] is the adjacency matrix of Kv.

The eigenvalue distribution µn,v is specified by

1

vn
Tr(Am

n,v) =

∫ +∞

−∞
xmµn,v(dx), m = 0, 1, 2, . . . .

Question [CLT for Hamming graphs]

µn,v →?? as n → ∞ and v → ∞

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20–24 75 / 97



Bivariate Extension: An Example

8.1. Hamming Graphs

Review of Hora’s argument (1998). This is before quantum decomposition

1 The adjacency matrix of Kv is given by A = J − I (J : all-one matrix)

2 Then C(Kv) = Cv = Uv−1 ⊕ U−1 and

A ↾ Uv−1 = v − 1, dimUv−1 = 1; A ↾ U−1 = −1, dimU−1 = v − 1.

3 An,v =
∑

I ⊗ · · · ⊗ A ⊗ · · · ⊗ I acts on

(Cv)⊗n = (Uv−1 ⊕ U−1) ⊗ · · · ⊗ (Uv−1 ⊕ U−1)

4 The eigenvalues of An,v are

(v − 1)(n − j) + (−1)j = −n + (n − j)v

with multiplicity (
n

j

)
1n−j(v − 1)n−j,

where 0 ≤ j ≤ n.
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Bivariate Extension: An Example

8.1. Hamming Graphs

5 Hence

µn,v =
1

vn

n∑
j=0

(
n

j

)
1n−j(v − 1)n−jδ−n+(n−j)v

=

n∑
j=0

(
n

j

)(1
v

)k(
1 − 1

v

)n−k

δ−n+vk

Namely, µn,v is essentially the binomial distribution.

6 By classical theory we know

B(n, p) ≈ N(np, np(1 − p)), B(n, p) ≈ Po(np)

7 Consider the normalization µ̃n,v ⇐ mean(µn,v) = 0, var(µn,v) = n(v − 1)

8 Under the proper scaling n → ∞, v → ∞ and
v

n
→ τ ≥ 0,

µ̃n,v →

N(0, 1), τ = 0,

affine transform of Po(τ−1), τ > 0

▶ Actual proof is based on characteristic functions (Laplace transform).
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8.2. Strongly Regular Graphs

Complementary graphs

In general, Ḡ denotes the complementary graph of G = (V,E),i.e., a graph on V with

edge set Ē = {{x, y} ; x, y ∈ V, x ̸= y, {x, y} ̸∈ E}.

Or equivalently, the adjacency matrix of Ḡ is defined by

Ā = J − I − A. (J : all-one matrix)

Lemma

For a finite graph G with adjacency matrix A we have

G is a regular graph ⇔ AĀ = ĀA ⇔ AJ = JA.

Definition

For a finite regular graph G the commutative ∗-algebra generated by I, A, Ā, denoted

by A(G, Ḡ), is called the “extended adjacency algebra.”
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8.2. Strongly Regular Graphs

Definition

G = (V,E) is a strongly regular graph with papameter (v, k, λ, µ) if

1 |V | = v;

2 G is k-regular;

3 every two adjacent x, y ∈ V has λ common adjacent vertices;

4 every two non-adjacent x, y ∈ V has µ common adjacent vertices;

5 (avoiding trivial cases) G is neither complete nor empty, that is, 0 < k < v − 1.

Note: A strongly regular graph is a distance-regular graph with diameter 2.
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Bivariate Extension: An Example

8.2. Strongly Regular Graphs

Lemma

If G is a strongly regular graph with papameter (v, k, λ, µ), so is Ḡ with parameter

(v, k̄ = v − k − 1, λ̄ = v − 2k + µ − 2, µ̄ = v − 2k + λ).

Lemma

Let G be a finite regular graph with degree 0 < κ < v − 1. Then the following

conditions are equivalent:

1 G is a strongly regular graph;

2 A(G, Ḡ) is the three-dimensional linear space spanned by I,A, Ā.

For the proof we need only to note that

A2 = kI + λA + µĀ = kI + λA + µ(J − I − A).
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Bivariate Extension: An Example

8.2. Strongly Regular Graphs

Lemma

Let G be a strongly regular graph with (v, k, λ, µ). Then the spectrum of G are given

by

s < r ≤ k with multiplicities g, f, 1,

where

s, r =
(λ − µ) ±

√
(λ − µ)2 + 4(k − µ)

2
,

and

f =
(v − 1)s + k

s − r
, g =

(v − 1)r + k

r − s
.

The spectrum of Ḡ are given by

s̄ = −r − 1 < r̄ = −s − 1 ≤ k̄ with multiplicities f, g, 1.

There are many relations among these constants. For example,

1 + k + k̄ = 1 + f + g = v, k2 + fr2 + gs2 = kv
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8.3. Cartesian Product of Strongly Regular Graphs

1 Let G be a strongly regular graph and Ḡ the complement.

2 Consider the pair (Gn, Ḡn), where

Gn = G×· · ·×G (n-fold Cartesian power), Ḡn = Ḡ×· · ·×Ḡ (similar).

3 Adjacency matrices:

An,G =

n∑
k=1

k−1︷ ︸︸ ︷
I ⊗ · · · ⊗ I ⊗A ⊗

n−k︷ ︸︸ ︷
I ⊗ · · · ⊗ I , Ān,G = (similar).

4 Let νn,G(dxdy) be the joint spectral distribution of (An,G, Ān,G) specified by

1

vn
Tr(As

n,GĀt
n,G) =

∫
R2

xsyt νn,G(dxdy), s, t = 0, 1, 2, . . . .

Question (Asymptotic spectral distribution)

νn,G →?? as n → ∞ and |G| → ∞
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Bivariate Extension: An Example

8.3. Cartesian Product of Strongly Regular Graphs

How we generalized the case of Hamming graphs?

▶ Outline of our procedure:

1 Consider a strongly regular graph G and its complement Ḡ.

2 Consider a pair of Cartesian powers (Gn, Ḡn)

3 and their adjacency matrices (An,G, Ān,G).

4 The joint spectral distribution of (An,G, Ān,G) is a probability distribution on R2

specified by

1

vn
Tr(As

n,GĀt
n,G) =

∫
R2

xsyt νn,G(dxdy), s, t = 0, 1, 2, . . . .

▶ Case of Hamming graphs:

Take G = Kv. Then Ḡ is an empty graph,

Gn = Kv × · · · × Kv = H(n, v) (Hamming graph),

(An,G, Ān,G) = (An,v, 0).

Thus, the spectral distribution is reduced to one-dimension.
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Bivariate Extension: An Example

8.4. Joint spectral distribution of (Gn, Ḡn)

Theorem

The joint spectral distribution of (Gn, Ḡn) is given by

νn,G =
∑

0≤j+h≤n

π(j, h)δ(θj,h, θ̄j,h), π(j, h) =

(
n

j, h

)(f
v

)j(g
v

)h(1
v

)n−j−h

,

θj,h = (n − j − h)k + jr + hs, θ̄j,h = (n − j − h)k̄ + js̄ + hr̄,

f =
(v − 1)s + k

s − r
, g =

(v − 1)r + k

r − s
.

Proof: According to ev(An,G) = {s, r, k} and ev(Ān,G) = {r̄, s̄, k̄} we have

C(G) = Cv = Ur ⊕ Us ⊕ Uk, dimUr = f, dimUs = g, dimUk = 1.

Then look at

An,G =
∑

I ⊗ · · · ⊗ A ⊗ · · · ⊗ I,

C(Gn) = (Ur ⊕ Us ⊕ Uk) ⊗ · · · ⊗ (Ur ⊕ Us ⊕ Uk).
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Bivariate Extension: An Example

8.4. Joint spectral distribution of (Gn, Ḡn)

νn,G =
∑

0≤j+h≤n

π(j, h)δ(θj,h, θ̄j,h)

π(j, h) =

(
n

j, h

)(f
v

)j(g
v

)h(1
v

)n−j−h

(nk, nk)  

(ns, nr)  

(nr, ns)  

j = 0

j = 1

j = n

h 
=
 0

h 
=
 1

h 
=
 n

ev(G) = {s, r, k}
ev(Ḡ) = {r̄, s̄, k̄}
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Bivariate Extension: An Example

8.5. Asymptotic Joint Spectral Distributions

n → ∞, v → ∞ and some balance conditions

▶ Hamming graphs: H(n, v) = Kv × · · · × Kv (n-fold Cartesian power)

v

n
→ τ and automatically

−1

n
→ 0,

v − 1

n
→ τ.

these are conditions for eigenvalues!

▶ Growing pair of strongly regular graphs: (Gn, Ḡn)

Recall: ev(G) = {s, r, k}, ev(Ḡ) = {r̄, s̄, k̄}

1 + k + k̄ = v, s̄ = −r − 1, r̄ = −s − 1.

The proper scaling is given by

k

n
→ κ,

k̄

n
→ κ̄,

r

n
→ ρ,

s

n
→ σ,

v

n
→ κ + κ̄ ≡ ω.

▶ Note: ρ = 0 or σ = 0 follows.
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Bivariate Extension: An Example

8.5. Asymptotic Joint Spectral Distributions

Theorem (Morales-Obata-Tanaka (2019+))

Let ν be the limit of the joint spectral distribution of

(
An,G√

nk
,
Ān,G√

nk̄

)
. Then,

1 If κ > 0, κ̄ = −σ > 0, ρ = 0, then ν is an affine transformation of the bivariate

Poisson distribution:

ν

((
κj − κ̄h√

κ
,
κ̄j + κ̄h − 1√

κ̄

))
= e−1/κ̄

( 1

ω

)j( κ

ωκ̄

)h 1

j!h!

2 If κ = ρ > 0, κ̄ > 0, σ = 0, then similar as above.

3 If κ > 0 or κ̄ > 0, and if ρ = σ = 0, then ν is an affine transformation of the

product of Gaussian and Poisson distributions:∫
R2

f(x)ν(dx) =

√
ω

2π
e−1/ω

∞∑
h=0

( 1

ω

)h 1

h!

∫ +∞

−∞
f(xh,t)e

−ωt2/2dt

xh,t =
(√

κh +
√
κ̄ t −

√
κ

ω
,
√
κ̄ h −

√
κ t −

√
κ̄

ω

)
4 If κ = κ̄ = ρ = σ = 0, ν is the bivariate Gaussian distribution.
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Bivariate Extension: An Example

8.5. Asymptotic Joint Spectral Distributions

Bivariate Poisson distribution

ν

((
κj − κ̄h√

κ
,
κ̄j + κ̄h − 1√

κ̄

))
= e−1/κ̄

( 1

ω

)j( κ

ωκ̄

)h 1

j!h!

x

y

j = 0

j = 1

h = 0

h = 1
h = 2

j = 2
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Bivariate Extension: An Example

8.5. Asymptotic Joint Spectral Distributions

Gauss × Poisson distribution∫
R2

f(x)ν(dx) =

√
ω

2π
e−1/ω

∞∑
h=0

( 1

ω

)h 1

h!

∫ +∞

−∞
f(xh,t)e

−ωt2/2dt

xh,t =
(√

κh +
√
κ̄ t −

√
κ

ω
,
√
κ̄ h −

√
κ t −

√
κ̄

ω

)

x

y

t

t = 0

h = 0

h = 1

h = 2
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Bivariate Extension: An Example

8.6. Bivariate Orthogonal Polynomials

Extended Adjacency Algebra A(Gn, Ḡn)

For 0 ≤ α + β ≤ n we put

Aα,β=
∑

I ⊗ · · · ⊗ A ⊗ · · · ⊗ Ā ⊗ · · · ⊗ I,

A appears α times and Ā appears β times

In particular, the adjacency matrices of (Gn, Ḡn) are

A[Gn] = An,G = A1,0, A[Ḡn] = Ān,G = A0,1.

A(Gn, Ḡn): unital ∗-algebra generated by An,G and Ān,G.

Lemma

A(Gn, Ḡn) is a linear span of {Aα,β ; 0 ≤ α + β ≤ n}.

Lemma (Orthogonal relation)

1

vn
Tr(Aα,βAα′,β′) = kα,βδα,α′δβ,β′ , kα,β =

(
n

α, β

)
kαk̄β.
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Bivariate Extension: An Example

8.6. Bivariate Orthogonal Polynomials

Lemma (Mizukawa–Tanaka (PAMS 2004))

The eigenvalues of Aα,β are given in the form:

kα,βPα,β(j, h) with multiplicity

(
n

j, h

)
fjgh,

Bivariate Krawtchouk Polynomials

Pα,β(j, h)

=
∑

0≤ν1+···+ν4≤n

(−α)ν1+ν3(−β)ν2+ν4(−j)ν1+ν2(−h)ν3+ν4

(−n)ν1+ν2+ν3+ν4

tν1
1 tν2

2 tν3
3 tν4

4

ν1!ν2!ν3!ν4!
,

where
t1 = 1 − r

k
, t2 = 1 − s̄

k̄
, t2 = 1 − s

k
, t4 = 1 − r̄

k̄
.

▶ This is a particular case of Aomoto-Gelfand hypergeometric function of (3, 6)-type.

▶ Pochhammer symbol: (a)n = a(a + 1)(a + 2) · · · (a + n − 1)
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Bivariate Extension: An Example

8.6. Bivariate Orthogonal Polynomials

Then the orthogonal relation becomes∑
0≤j+h≤n

√
kα,β Pα,β(j, h)

√
kα′,β′Pα′,β′(j, h)π(j, h) = δα,α′δβ,β′ .

Using integral form and applying variable change:

νn,G =
∑

0≤j+h≤n

(
n

j, h

)
π(j, h)δ(θj,h, θ̄j,h),

θj,h = (n − j − h)k + jr + hs, θ̄j,h = (n − j − h)k̄ + js̄ + hr̄,

x =
θj,h√
nk

, y =
θ̄j,h√
nk̄

,

we obtain polynomials {P̃α,β(x, y)} such that∫
R2

P̃α,β(x, y)P̃α′,β′(x, y)ν̃G,n(dxdy) = δα,α′δβ,β′
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

▶ We consider the Gauss × Poisson case

Let

Rα,β(x, y) = lim P̃α,β(x, y)

under the scaling

k

n
→ κ > 0 or

k̄

n
→ κ̄ > 0,

r

n
→ ρ = 0,

s

n
→ σ = 0,

Then we have ∫
R2

Rα,β(x, y)Rα′,β′(x, y)ν(dxdy) = δα,α′δβ,β′

Theorem (Morales-Obata-Tanaka (2019+))

{Rα,β(x, y)} are the orthogonal polynomials with respect to the Gauss × Poisson

distribution ν.
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

Explicit form

1 We start with the generating function:∑
0≤α+β≤n

kα,βPα,β(j, h)ξ
α
1 ξ

β
2

= (1 + kξ1 + k̄ξ2)
n−j−h(1 + rξ1 + s̄ξ2)

j(1 + sξ1 + r̄ξ2)
h

2 Changing variables and taking the limit, we have

∞∑
α,β=0

Rα,β(x, y)√
α!β!

ξα
1 ξ

β
2

= (1 +
√
κ ξ1 +

√
κ̄ ξ2)

(
√

κx+
√

κ̄ y+1)/ω

× exp

{
−

√
κ ξ1 +

√
κ̄ ξ2

ω
− (

√
κ̄ ξ1 −

√
κ ξ2)

2

2ω

+
(
√
κ̄ x −

√
κ y)(

√
κ̄ ξ1 −

√
κ ξ2)

ω

}
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

Five-term recurrence relation

1 We start with

AAα,β = (α + 1)Aα+1,β + (α + 1)(k̄ − µ̄)Aα+1,β−1

+ (αλ + β(k − µ))Aα,β + (β + 1)µAα−1,β+1

+ (n − α − β + 1)kAα−1,β,

ĀAα,β = (β + 1)Aα,β+1 + (α + 1)µ̄Aα+1,β−1

+ (α(k̄ − µ̄) + βλ̄)Aα,β + (β + 1)(k − λ)Aα−1,β+1

+ (n − α − β + 1)k̄Aα,β−1.

2 Use the correspondence:

Aα,β√
kα,β

↔
√

kα,β Pα,β(j, h)

we obtain the five-term recurrence relation for {Pα,β(j, h)}.
3 Changing variables and taking the limit, we have
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

Theorem (Five-term recurrence relation)

xRα,β =
√
α + 1Rα+1,β +

√
(α + 1)β

κ
√
κ̄

ω
Rα+1,β−1

+ (ακ + βκ̄)

√
κ

ω
Rα,β +

√
α(β + 1)

κ
√
κ̄

ω
Rα−1,β+1 +

√
αRα−1,β,

yRα,β =
√

β + 1Rα,β+1 +
√

(α + 1)β
κ
√
κ̄

ω
Rα+1,β−1

+ (ακ + βκ̄)

√
κ̄

ω
Rα,β +

√
α(β + 1)

κ̄
√
κ

ω
Rα−1,β+1 +

√
βRα,β−1.

▶ This would be a good example for a bivariate spectral analysis of growing graphs.

▶ The next step is to derive a bivariate extension of quantum decomposition.
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Bivariate Extension: An Example

Life is short, but there is always time enough for mathematics!

THANK YOU VERY MUCH!
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