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Asymptotic Spectral Analysis of Growing Regular Graphs

5.1. Main Theme

» Growing graphs and spectral distributions

151 2 7%
Our Main Theme
The asymptotic behavior of p,, as n — oco. In fact, we will investigate the limit:

lim pn
n—oo
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c Spectral Analysis of Growing Regular Graphs

5.2. Simple Example (1) P, as n — oo

P, asn — oo

kw
P,) =12 1<k<
Spec (Pr) {cosn+1, k:_n}
1 n
n:—g 4 s
H nk_l 2<:osnk’_'_1

For f € Cu(R) we have ’7 [ 1 —‘

/ +: F (@) o ()

%z:: (2cos +1)

-2 -1 0 1 2
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c Spectral Analysis of Growing Regular Graphs

5.2. Simple Example (II) K,, as n — oo
K, asn — oo
Spec (Kn) ={—-1(n—-1),n —1(1)}

-1
n o1

1
Hn = — On—1+
n

» Let us see what happens in the limit g, as n — oo
For f € Cu(R) we have

n

L -1

Feo 1
| t@pae) = e+
“+ oo
— f(-1) =/ f(@)d_1(dz) asn — oo

This means that g, — d_1

Can we accept it? What about the mean values?

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24

497



5.2. Simple Example (II) K,, as n — oo

» Normalization is a basic idea in probability theory to grasp the limit distribution.

E.g., central limit theorem (CLT) and its variants.

Definition (normalization)

For a probability distribution gt its normalization is a probability distribution fi defined by

[ @ itdn) = [ £(Z™) uae),

where

m = mean(u), o> = var(p).

Then we have

mean(fi) = 0, var(f) = 1.
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Asymptotic Spectral Anal

5.2. Simple Example (II) K,, as n — oo

K, asn — oo

n—1

Spectral distribution (eigenvalue distribution): ptn, = — dn—1 + 6_1
n

Since mean(pr) = 0 and var(p,) = m — 1, after normalization we have

/_+: f@)in(dn) = | (F=0) + " A ()

+oo
— f(0) = / f(®)do(dx) asn — oco.

—oo

This means that (i, — do.

normalized limit
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.3. Formulation of Question in General

A difference between K,, and P,, as n — 0o

1 1 n—1
rP, = E 262(:05 k7 KK, = ;5"1—1 +——061

n

mean value

mean(up,) = mean(uk,) =0

variance

2(n—1) P
9

" var(pk,) =n —1 — oco

var(up,) =

» In general, it is not reasonable to consider lim p,, when var(p,) — co.

We should take normalized limit 1im fi,,.
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5.3. Formulation of Question in General

G, = (Vu, E,): growing graphs
(A(G.), {-)v): adjacency algebra with a state (algebraic probability space)
M spectral distribution of the adjacency matrix A, of G,, i.e.,

+oco
(AT = / ™ py (dx), m=0,1,2,....

Note: mean(A,) = (A,) and var(A,) = ((A, — mean(A4,))?).
Main question in genaral

For the normalization fi, of p, find the limit spectral distribution:

p = lim i, .

v

In other words,

. A, — mean(A,) " =
lim = @ dx), m=20,1,2,....
v << \/var(A,) ) >V /_oo w(dz)
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5.4. Growing Distance-Regular Graphs (DRGs)

Definition

A graph G = (V, E) is called distance regular if the intersection numbers:
pi; =z € V; d(z,2) =i, d(y, 2) = j},

is constant for all pairs @, y such that d(z, y) = k.

» Examples: Hamming graphs, Johnson graphs, odd graphs, homogeneous trees, ...

» We are interested in growing distance-regular graphs, e.g.,

H(d,N) asd — oo and N — co
J(v,d) asv — ocoandd — oo
Or ask — oo

T, ask — oo

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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5.4. Growing Distance-Regular Graphs (DRGs)

Some general facts on a distance-regular graph G (exercise)

@ Let A = AT 4+ A~ 4+ A° be the quantum decomposition (with respect to a fixed
origin o € V). Then

A+‘I)n = VWn+1 ¢n+17 AP, = wn Ppn_1, Ao(I)"L = a"lJrl(I)"’
where
. .omn n—1 _ . n—1
Wn = P1,n—1P1,n > QAn = P1,p_1-

In particular, (T'(G), {®»}, AT, A°, A7) is an IFS associated to ({wn}, {an}).

@ mean value and variance:
mean(A) = (4) =0,  var(4) = (A%) = deg(0) = P,
@ If G is a finite distance-regular graph, the tracial and vacuum states coincide:

(A™Ver = (A™)o = (€0, A™e0), m=1,2,....
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d, N)

H(d,N) = Kn X +++- X Kn (d times): Hamming graph
P, = deg H(d, N) = d(N — 1),
p?,n—l =n, p;b;zl = (d —n)(N - 1), p1 n— 1 = (n —1)(N — 2).
Theorem

Let pwa,n be the vacuum spectral distribution of H(d, N') (in coincidence with the
eigenvalue distribution). Then the Jacobi parameters of pa,N are given by

Wn = Plym— 1p’f;1 =nd-n+1)(N—-1), 1<n<d,
an pl:ll_(n—l)(N—Z), 1<n<d+1.
In fact, the vacuum spectral distribution of A is the binomial distribution.
The IFS structure:

AT®, = \fwnt1 ®np1 =V (n+ 1)(d — n)(N — 1) ®pta,

A™®, = VwnPp1=/n(d—n+1)(N —1)®,_1,
AP

On41 ‘I’n = n(N — 2)‘I’n,

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d, N)

AT®, = wnt1 Bt =V (n+ 1)(d —n)(N — 1) &y,
AP, = Jwp, ®po1 = Vn(d—n+1)(N — 1) &1,
AP, = ant1 P = n(N — 2)®,,

» What happens when N — oo and d — o0?
» Normalization: mean(A) = (A) = 0 and var(A) = (A?) = d(N —1).
AT

n
_—— $,, = (1—— )P, 9
VAN — 1) (n+1D)(1 = 7) Bata
A~ n—1
—_— $, = 1-— D, 1,
Va(N — 1) n( 7o) ®a
A° N—-—2 /N —2

= ®d,=n e
VAN — 1) d VN=-1

» We thus find the proper scaling:

N — oo, d — oo, %—)7'20.
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c Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d, N)

N
» Taking the limit as N — oo, d — oo and q — 7 > 0, we have

At
\/ﬁ@": (n+1)<1_%) e A
A~ 5, = n(l _n- 1) By — /1By,

VAN —1) " d

A° N—-2 |[N-2
P, =ny/ B, — ny/T 4B,
VA(N —1) d N -1 VT

» Recall the Boson Fock space (T, {¥,}, BT, B™) is defined by

B9, =/n+1¥,4:,, B ¥,=/n¥,_ ;.

» Note also that

BtB~ v, =n¥,.

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d, N)

Theorem (Quantum central limit theorem (QCLT) for H(d, N))

Let A= At + A~ 4+ A° be the quantum decomposition of the adjacency matrix of
H(d,N). Let (T, {¥,}, BT, B™) be the Boson Fock space. Then we have

( At A~ A°
VA(N —1)’ Jd(N — 1)’ /d(N — 1)

) - (B*,B~,/TB*B"),

asN—)oo,d—)ooand%—)‘rZO.

m .
where — means the convergence of all mixed moments.

Deteiled proof is omitted (exercise).
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.5. Growing DRGs: An Example H(d, N)

Finding the asymptotic spectral distribution for H (d, N)

( At A~ A°
VAN —1) /d(N —1) \/d(N — 1)

implies that

<eo (\/¢1(11\r47_1)>me°> — (W0, (BY + B~ + /TBTB™)"¥,).

On the other hand, by observing moments or generating functions, we see that

) = (BT,B~,/TB*B")

<‘I’o, (B+ + B~ + ﬁB+B_)m\IIO> = /+°° mmu(dm),

where
N(07 1)’ T =0,
affine transformed Po(7~'), T > 0.

This p is the asymptotic spectral (= eigenvalue) distribution of H(d, N).
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.6. Growing DRGs: General Results

{G.}: growing DRGs with adjacency matrices A,

» Using mean(A,) = (A,) = 0 and var(A,) = (A2) = deg(G.) = p%; (v), the

normalization of A, is given by
A, —mean(A,) Ab A A

ar(A) | Jdes(G.) | deg(G.) | \/dea(Gy)

Theorem (Quantum CLT for growing DRGs)

Assume that for all n = 1,2, ... the limits

w5, = [Fm p?,nfl(u)p;’l.l,;.l(u) @i = [Birn pl n— 1(1/)
n — , =

v P} (v) v /Pl,l(l’)

exist. Let (T, {®n}, BT, B~, B®) be the interacting Fock space associated with
({wn}, {an}). Then we have

( Aj’ A, A
Vdeg(G,)’ \/deg(G.)  \/deg(G.)

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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c Spectral Analysis of Growing Regular Graphs

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

ZN as N = oo

o I‘(ZN) is asymptotically invariant under A€:

AY®, = 2N /n+1 &,41 +0(1),

A™®, = /2N \/n ®,_1 + O(N~/?).

@ Normalized adjacency matrices:

AN _ AN

€

Vdeg(An) V2N -

@ The interacting Fock space in the limit:

BYW, =\/n+1¥,,,
B~ %, =/n¥,_;, B°=0. This is Boson Fock space!
@ The asymptotic spectral distribution is the standard Gaussian distribution:

. An \™ O\ + —ym
di (e (o) o)= (o @ 500
1 [tee 2
_ m_—x</2
= — xz e dx.
\/271' Loo

lobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

o, (x
Statistics of we(x) +0)
Va+1
M@dVa) = 1 3 lwe(@)]
| | xEVp @4 (x)
o
Vi
3% (we|Vn) = V Y- {lwe(@)| = M(we| V) }?
Val 5
L(we|Vn) = max{|we(x)|; € Va}. 7=
Conditions for growing regular graphs G, = (V®), E®)) o_(x)

(A1) lim, k() = oo, where k() = deg(G.).
(A2) foreachn =1,2,...,

3 lim M(w,|V7§V)) = w, < co, lim22(w,|VTEV)) =0, sup L(w,|VTSV)) < oo.
v v v

(A3) for eachn =0,1,2,...,

M (wo |V, =2 (wo |V, L(wo |V,
3 lim 7(‘%' 0 = anpt1 < oo, lim 7(")0' ) =0, sup 7(‘%' )
ST R PN

v NID)
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.7. Growing Regular Graphs — Going Slightly Beyond DRGs

Theorem (QCLT for growing regular graphs)
Let {G, = (V), E®)} be a growing regular graph satisfying

(A1) lim, k(v) = co, where k() = deg(G.).
(A2) foreachn =1,2,...,

3 lim M(w_|V,{) = wp < o0, limZ*(w_|V,{")) =0, sup L(w_|V") < oo.

(A3) for eachn =0,1,2,...,
3 lim M@el Vi) DwolVii?) _ o yp LelVa?)
v VE) K(v) v Ve[)
Let (T, {®,}, BT, B~, B®) be the interacting Fock space associated with the Jacobi
parameters ({wn}, {an}). Then

L v
= ant1 < oo, lim (ol Vi)

( At A7 AS
Ve@) Ve@) V(@)

In particular, the asymptotic spectral distribution of the normalized A, in the vacuum

) = (B*,B7,B°)

state is a probability distribution determined by ({wn}, {an}).

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24 19 / 97



Asymptotic Spectral Analysis of Growing Regular Graphs

Outline of Proof

Prtet Shte e€e{+,—,0}, n=0,1,2,....

\f

1/2 1/2
Vil _ [Vl M (wo| Vi)
+ = M(w_|V, _AVal = M(w4|V,) [ —2— o _ %olln/
Yn (w—|Vn) oVl s T (Wi |Vn) V1] sy T Jr

n -1
@) |Val = { I1 M(w_|Vk)} K™+ O(k™1).

k=1
() limvyy = y/wn,  limy, = /wni1,  limy, = angs.
(4)

Asm  Ac
&, — €1 €2 €m P
Ve vk o T TntaTntater T Tndartoodem Tntetdem

S A€m ASk+1
D Ve et e e Smrertoten:
— 1 1 k—1 \/E \/E 1 k

(k — 1) times (m — k) times

(5) Estimate the error terms and show that

€m €rpt1
lim <¢§") A A Sek > =o0.

VR VG Tt
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5.8. Deformed Vacuum States on A(G)

Definition (@Q-matrix and deformed vacuum functional)
The Q-matrix of a graph G = (V, E) is defined by
Q=Qq = [qd(m,y)]w,yev, d(z,y) = graph distance,

where g is a parameter (in fact, we are interested only in the case of —1 < g < 1). The
deformed vacuum functional is defined by

(a)q = (Qq€0, aeo), a € A(G).

@ For g = 0 we have Qo = I so that (-)4 coincides with the vacuum state.
@ Qe, does not necessarily belong to £2(V) but (a)q is well-defined for a € A(G).
@ A(G) 3 a > (a)q is a merely a normalized linear function.

@ Positivity of (+)4 is an interesting question from several aspects.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.8. Deformed Vacuum States on A(G)

» Let G be a k-regular graph and consider the deformed vacuum functional on A(G):
(a)g = (Qqe0;ae0),  ac A(G).
We have
(A)q = Kaq,
23(A4) = ((A = (A)q)*)q = k(1 — @) {1 + g + gM (wo|V1)}
so that the quantum decomposition of the normalized adjacency matrix is given by

A—(Ayy AT A~ A° — (A),
S.(A)  5,A4) T 5,4 T 5,4

» Let {G.} be growing regular graphs. We need to find a proper scaling balance
between k(v) and g(v).

The balance condition found from the actions of A€ and explicit form of Qgeo :

lim k(v) = oo, limg(v) = 0, limg(v)vk(v) =~ €R.

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24 22 / 97



Asymptotic Spectral Analysis of Growing Regular Graphs

5.8. Deformed Vacuum States on A(G)

(A1) lim, k(v) = oo, where k() = deg(G.).
(A2) foreachn =1,2,...,

3 limM(w_|V,,E")) = w, < o0, limzz(w_|VTE")) =0, sup L(u_|V7$V)) < oo.
v v v

(A3) for eachn =0,1,2,...,

3 lim 7M(wolv’fu)) = apt1 < 0© lim 722(“'0"/75”)) =0, sup 711(”0"/75”)) < oo
N m ) N/~ 0}

(A4) (scaling balance) lim, g(v) = 0 and lim, q(v)y/k(rv) =~ € R (constant).

Lemma
Under (A1)-(A4) we have

Qo— an’n—> \I’nZQ
€ nz—oq VI nZO o o1 ¥

The above €2 is reasonably called a coherent vector of the interacting Fock space since
BT Q, = vQ,
See e.g., P. K. Das: IJTP 41 (2002), 1099-1106.
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Asymptotic Spectral Analysis of Growing Regular Graphs

5.8. Deformed Vacuum States on A(G)

Theorem (Deformed QCLT for growing regular graphs)

Let {G, = (V¥), E™)} be a growing regular graph satisying conditions (A1)—(A3)
and A, its adjacency matrix. Let (T, {®,}, BT, B~, B®) be the IFS associated to
({wn}; {an}). Under (A4) we have

im  (Qe,, AT As — (., B ... B1W,)
kroo,q—0 \ T Bg(A) T Ee(A) 7/ T T o0
avVE—ry

where
it Loz -4 B+ - B° —~
AT = A, A°=A2—(A)y, B¥*=—_—__, B°=

V1t raz’  V1F e

In particular,
; Ay —(A)g\™ Bt + B~ +B° —~v\"
lim << q) > = <Q~,,( Yo ).
K—>00, 0 > Ay
?ﬁi: a(Av) q V14 yaz

» Challenging Exercise: Examine the above argument for T); as kK — oo and find the
limit distribution (free Poisson distribution = Marchenko—Pastur distribution).

Nobuaki Obata (Tohoku University)
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Asymptotic

Regular Graphs

Some concrete examples: Asymptotic spectral distributions

’ graphs ‘ IFS vacuum state deformed vacuum state
Hamming graphs | wn, = n Gaussian (N/d — 0) Gaussian
H(d,N) (Boson) Poisson (N/d — A~ > 0) or Poisson
Johnson graphs wn = n? exponential (2d/v — 1) ‘Poissonization’ of
J(’U, d) geometric (2d/v — p € (0,1)) | exponential distribution
odd graphs Wa2n—1 = N | two-sided Rayleigh ?

O Won =N

homogeneous wnp =1 Wigner semicircle free Poisson
trees T (free)

integer lattices Wwnp =Mn Gaussian Gaussian
N (Boson)

symmetric groups | wn, = n Gaussian Gaussian
S, (Coxeter) (Boson)

Coxeter groups wn =1 Wigner semicircle free Poisson
(Fendler) (free)

Spidernets w1 =1 free Meixner law (free Meixner law)
S(a,b,c) wy=---=gq

ohoku University)
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and Graph Products

6. Concepts of Independence and Graph Products
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ce and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

X,Y,...: random variables on a classical probability space (€2, F, P)

Definition

Two random variables X and Y are called independent if

P(X<a,Y<b)=P(X <a)P(Y <b), a,b eR.

Theorem (multiplicativity of mean values)

If two random variables X,Y are independent, then
E[XY] = E[X]E[Y].

Moreover,
EX™Y"] = E[X™]E[Y"]

whenever the mean values exist.

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

X1, X2,...: sequence of random variables such that
(i) independent
(ii) identically distributed

(iii) normalized, i.e., E[X,] =0, V[X,] = E[X2] =1

» Law of Large Numbers (LLN) says that

1 N
lim Z Xn = 0 almost surely.

N —oco N
n=1

» Central Limit Theorem (CLT) describes the fluctuation of

N
1
lim —— E Xn
N —oc0
N —
Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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6.1. (Classical) Independence and Central Limit Theorem

Theorem (Central limit theorem (CLT))

Let X1, X2,... be a sequence of random variables such that (i) independent, (ii)
identically distributed, and (iii) normalized. Then

1 XN
= X,
v &
obeys the standard normal distribution IN (0, 1) in the limit.

N
1 1 @ 2
lim P —— X,<al|= —/ e~ 2dx
N—oco (x/N,; - > V27 ) oo ’

or equivalently, for any f € Cp(R),

1 < 1 [t _w?/2

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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s of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

Theorem (Algebraic Version of CLT)

Let X1, X2, ... be a sequence of random variables such that (i) independent, (ii)

identically distributed, and (iii) normalized. If X,, has finite moments of all orders, we

(e 0| = e [

In other words,

have

(g £ - 2
ol B
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Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

Combinatorial Proof

1 N m 1 N
E S Xn = — EXn Xn "'Xn
(REm) )= mmn, &m0t

» We pick up the essential terms E[ X, X, * ++ Xn,,] that contributes to the limit.

3X; appears only once

@ Hence we only need to count the terms

# of distinct X;'s < [2]

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24 31 / 97



Concepts of Independence and Graph Products

6.1. (Classical) Independence and Central Limit Theorem

1 N m 1 N
E _ Xn = — EXn Xn "'Xn
(Grx) = rom | 2 mbms o
@ Hence we only need to count the terms
E[ X, Xpyoovee- Xn,, ]

# of distinct X;'s < [7]

@ Let s be the number of distinct X;'s. The number of such terms is
N s
s | X #{arrangements of X1,..., X} ~ N°C(s).

@ Thus the terms of s < m/2 have no contribution in the limit.

@ Namely, only the terms of s = m /2 have contribution in the limit.

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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6.1. (Classical) Independence and Central Limit Theorem

E{(% i Xn>m] = ﬁ i E[(Xn, Xng - Xn,,]

n=1 MY,yeeesN =1

@ Namely, only the terms of s = m/2 have contribution in the limit.

@ If m is odd,
1 m
lim E|( — S X, =0.
Jim (5 X x-) |

@ Suppose that m = 2s is even.

E[Xn, Xn, -+ Xn,,] = B[X7 X2, --- X2 ] = E[X7]E[X7]---E[X7] =1.

s distinct X;'s

each appears twice

@ Consequently,

N—oco NS\ s 28 233!

Xn)zs} = lim 1<N)(23)! = @)t
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

» Algebraic version of CLT is proved by
@ using factorization rule of mixed moments E[Xn; Xn, -+ Xn,n ],

@ picking up the essential terms that contribute to the limit.

Factorization rule

» For classical random variables X and Y, obviously we have
E[YXX] = E[XYX] = E[XXY] = E[X?Y] = E[X?]E[Y],
» But for a = a*,b = b* in (A, ) we wonder
p(baa) = p(aba) < p(aab) =777
There are many possibilities arising from non-commutativity.

Our viewpoint
» Independence is formulated as a “good” factorization rule.

» There are four basic concepts of independence in quantum probability.
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

» Suppose we are given a concept of independence in (A, ¢).
» Then we may consider a sequence {a»} of random variables in (A, ¢) such that

(0) real, i.e., an = ay,

(i) independent,
(i) identically distributed,
(i) normalized, i.e., ¢p(a») = 0 and p(a2) = 1.

» Then we ask for the probability distribution g such that

Nliinoogo{(\/% i an)m} - '/_+°° 2" u(de), m=1,2,....

n=1 had

We call p the central limit distribution.
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

Four Concepts of Independence and Quantum CLTs

» Factorization rules are shown only for three mixed moments of low orders.

commutative free Boolean monotone
p(aba) | ¢(a?)p(b) #(a®)p(b) p(a)?p(b) | (a®)p(b)
p(bab) | p(a)p(b?) p(a)p(b?) p(a)p((d)? | p(a)p(b)?
p(a)?p(b?)
p(abab) | p(a®)e(d?) | +e(a®)pd)? | p(a)’p(b)? | p(a®)p(b)?
—p(a)?p(b)*
CLM Gaussian Wigner Bernoulli arcsine

Nobuaki Obata (Tohoku University)
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

» One more: p(azaiasasasasasasasasasas) = p(214343664435)

@ [commutative independence]

(214343664435) = (1)ip(2)(3%)(4%) 0 (5)(6°)

-»/f\-»[“

1

@ [monotone independence]
6 6

©(214343664435) = ©(2)p(4)p(4)p(66)p(133443)(5)
= p(2)p(4)P(4)p(66)p(44)p(1333)p(5)
= p(2)p(4)p(4)p(66)p(44)0(333)p(1)

@ [Boolean independence]

©(214343664435) = ¢(2)¢(1)9(4)9(3)p(4)¢(3)¢(66)p(44)(3)¢(5)
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ph Products

6.2. Independence in Quantum Probability and Quantum CLT

Central limit distributions

w[(% i ak) m] — /+°° ™ p(dx).

k=1 ad

Theorem (QCLT)

@ [commutative CLT] If a1, a2z, ... are commutative independent, we have

p(dx) = % e~ dx (normal distribution)

2w
@ [monotone CLT] If a1, az,... are monotone independent, we have
p(dz) = _dz (normalized arcsine law)
222
@ [Boolean CLT] If a1, az,... are Boolean independent, we have

1 1
n=3 041+ 5 d_1 (normalized Bernoulli distribution)
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Concepts of Independence and Graph Products

6.2. Independence in Quantum Probability and Quantum CLT

Outline of proof

cpli(% i ak>m} = nnlz/z i plak, ak, - - - ak,, ]

k=1 K1seoorkm=1
» We pick up the essential terms ¢[ak, @k, - - * ak,,] that contributes to the limit.

@ v(ak,ak, - - - ak,,) = 0 if there is a singleton.

@ ¢(ak,ak, - - - ak,, ) contributes to the limit only if the number s of distinct a;'s is
s = [m/2].

@ According to the independence evaluate ¢ (ak, @k, * * - ak,, ), where distinct a;'s

appear exact twice.
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oh Products

6.2. Independence in Quantum Probability and Quantum CLT

Outline of proof
@ Finally we get

lim ¢ [(
n— 00

£

ﬂ\

for three cases and

2m)!
(2mm)’ . commutative independence,
1 < 2m (2m.)v
()] = | e
00 n k; amamtml’ monotone independence,
1, Boolean independence.
Cf. free CLT

2
= 1 (2m> =/ mm% V4 — xz2dx.
—2
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Concepts of Independence and Graph Products

6.3. Graph Products

A binary operation of graphs

(o) B

(Gl,Gz) —> ’I’(Gl, Gz) = Gl#G2
(Al, A2) — ‘I>(A1, Az) = A[G1#G2]

(p1, p2) — ®(p1, p2) = p1#p2  (convolution)
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6.3. Graph Products — Cartesian Product

Definition

Let G1 = (Vh, E1) and G2 = (Va, E2) be two graphs. The Cartesian product or
direct product of G1 and G2, denoted by G1 X G2, is a graph on V = V; X V5 with
adjacency relation:

r=ux z~x
(,y) ~ (2',y) = , or )
y~y y=vy.
Example (C4 X C3)
1,39
: ¢ ¥ an| >
/ ,
@1) G1)
1 2 w
(1,1) 1)
Cy C3 Cyx C3
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Indepe

6.3. Graph Products — Comb Product

Definition

Let G1 = (Va, E1) and G2 = (Vz, E2) be two graphs. We fix a vertex o2 € Va. For

(z,y), (z',y") € Vi X V2 we write (z,y) ~ (z’,y’) if one of the following conditions
is satisfied:

Yxz==a"andy ~y’; (i)z~a andy =y’ = o2.

Then Vi X V2 becomes a graph, denoted by G1 >0, G2, and is called the comb
product or the hierarchical product.

Example (C4 >0, C3 with oo = 1/)

4 3 5 . X
(1,2’)» / \ /
T o)
1 2 1 2
1) 21)
C4 C3 C4 =C 3
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6.3. Graph Products — Star Product

Definition

Let G1 = (Vh, E1) and G2 = (V2, E2) be two graphs with distinguished vertices
o1 € V4 and 02 € V5. Define a subset of V4 X V3 by

Vix Vo = {(x,02); € € Vi} U{(01,9); y € V2}

The induced subgraph of G1 X G2 spanned by Vi x V4 is called the star product of G1
and G2 (with contact vertices 01 and 02), and is denoted by G1 x G2 = G1 o0;%0, Ga.

Example (C4 * C3)

@ 3
3 .

4 3 3 :

(12) ] gt

A A T 6D
1 2 1 b4 i
1,1) 1)
C, C, Cix C;
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Concepts of Independence and Graph Products

6.3. Graph Products — Adjacency Matrices

G1 = (Vi1, E1), G2 = (Vz, E2): two graphs

G = G1#G?2: a graph product and assume that V[G] = Vi X V»
A; = A[G;]: adjacency matrix of G; acting on £2(V;), (i = 1,2)
= A = A[G1#G?:] acts on

(V) =02(Vi X Vo) 2 02(V1) ® £2(Va).

Theorem

@ [Cartesian product]

A[Gl X Gz] :A1®I2+11®A2-
@ [comb product]

A[G1 > G2 = A1 QP+ 11 ® Az
@ [star product]

A[Gl*Gz] =A1®P2+P1®A2.

Here, P; is the rank one projection corresponding to 0;.

Nobuaki Obata (Tohoku University)

Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24

45 / 97



Indepe

6.4. Quantum CLT for Graph Products

» Let ¢; be the vacuum state at o; and consider the product state ¢ = 1 Q @2
= A = A[G1#G:] is a random variable in (A(G1#G2), ).
Theorem

Let A; = A[G;] be the adjacency matrix of G;.
@ [Cartesian product]

A[G1XG2]=A1®I2+11®A2

is a sum of commutative independent random variables.
@ [comb product]

A[Gl > G2] =A1®P2+11®A2
is a sum of monotone independent random variables.
@ [star product]
A[Gl*Gz] =A1®P2+P1®A2

is a sum of Boolean independent random variables.
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Concepts of Independence and Graph Products

6.4. Quantum CLT for Graph Products

Associativity of graph operations

@ [Cartesian product]
(Gl X Gz) X Gz =2 G1 X (Gz X G3)

@ [Comb product]
(Gl > Gz) > G3 > Gl > (Gz > G3)

To be precise,
(G1 Doy G2) Poy G3 2 G1 P> (0y,05) (G2 Poy Gs)
@ [Star product]
(G1xG2) x Gz =2 G1 * (G2 x Gs)
» Thus, we have naturally n-fold powers:
G7™ = G#G# -+ - #G  (n times)

A[G#"|=B1+B2+-+-+ B,
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Concepts of Independence and Graph Products

6.4. Quantum CLT for Graph Products

Theorem (CLT for Cartesian product graphs)

For the m-fold Cartesian power G™ = G X -+ x G (n-times),
zn <<L>m> — /+°° mmi e~ 2 4.
n—oo \ \ /1 y/deg(0) — V2w

Theorem (CLT for comb product graphs)

For the n-fold monotone power G™ = G >y G >o + -+ >o G (n-times),

(n) e +v2
iy (A VYo [ ey
n—oo \ \ /n+/deg(0) 3z w2 — a2’ T

Theorem (CLT for star product graphs)

For the n-fold star power G™ = G % G % - - - x G (n-times) we have

Ji»“io<(\/rjf;)gw)m> =/:°wm%(5_1+5+1)(dm), m=1,2,....
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Concepts of Independence and Graph Products

More Graph Products

products G1#G2 A[G1#G2] spectral distribution

Cartesian GiXcGz | A1 QI +1, ® A2 H1 ok p2

monotone Gi1 > G2 A1 QP+ 1. Q A2 H1 > 2

star G1 % G2 AL QP+ P ® A H1 W po

lexicographic | G1 > G2 | A1 ® J2 + P1 @ Az D(p1) > p2

Kronecker Gi Xk Gz | A1 Q Az 1 kN A2

strong G1 Xs G2 Ar@ L+ L4, S~ (Su1 *nr Sp2)
+A1 ® A2

free G1 * G2 A * Ag w1 B pe

@ Every product except the free product is a graph on V3 X V5.

@ There is a classification of graph products realized on Vi X V3,
see e.g., R. Hammack et al.: “Handbook of Product Graphs,” CRC Press, 2011.
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Concepts of Independence and Graph Products

Exercises

Exercise 12 Let G, be the graph obtained by joining n triangles (K3 =2 Cs at the
origin o, also called the n-fold star product of K3. (The following figure shows Gé.)
Calculate explicitly the spectral distribution of G,, at o and study its asymptotic behevior

as n — O0.
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Countir

7. Counting Walks

N. Obata: “Spectral Analysis of Growing Graphs,” Chapter 7, Springer, 2017.

H. H. Lee and N. Obata: Kronecker product graphs and counting walks
in restricted lattices, arXiv:1607.06808.
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7.1. Counting Walks and Spectral Distributions

G = (V, E): a (finite or infinite) graph
o € V: a fixed origin
Wi (0;G) = |{o — o : m-step walk}|

Theorem

Let A be the adjacency matrix of G and p the vacuum spectral distribution at o € V.
Then we have

+oco
Wi (0; G) = (€0, A™eo) = / ™ p(dx), m=0,1,2,....
—oo
» we are interested in the correspondence
G — p

from the point of view of counting walks.
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______________________ ConnWels]
7.1. Counting Walks and Spectral Distributions

Basic result (1) Z

Wam (0;Z) = (27:11) = /_2 z*™a(dx), a(z) = ﬂ_\/ﬁ .

Basic result (2) Z4+ = {0,1,2,...}

2
Wam(074) = — <2m>= P w(de), w= o A—a?.

m+1\m _2

Catalan number
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. CoutingWals |
7.2. Cartesian Product: W ((01,02); G1 X¢c G2)

The adjacency matrix of G1 X¢c G2 is G,
A=A QI+ 1R Az,

where two matrices in RHD are commutative.

A

We then have

<e(01,02)’ Ame(ohoz))

= (eol ® €05, (Al ® I + I ® A2)m601 ® 602>

m

=0
m

=0

0, >

0, G,

k

-3

k

m m—

(k) <eO1 ® eozaA’f ® Az keo1 ® 602>
m
k

( ) <601 ) Alf801 ) <e¢72 ® A;n_k602>

Consequently,

W((01,02); G1 Xc G2) = i <m> Wi (015 G1) Wik (02; G2)

k
k=0
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. CoutingWals |
7.2. Cartesian Product: W ((01,02); G1 X¢c G2)

i Spectral distribution of G; at o;
p: Spectral distribution of G = G1 X¢ G2 at (01, 02)
—+ oo +oo
Wi(osG) = [ a"ui(da), Win((o1,02):G1 0 Ga) = [ a™u(da).
Then the identity

W((01,02); G1 Xc G2) = Z <TZ> Wi (015 G1) Wik (02; G2)

k=0

implies that

/_:o =™ p(de) = i <7Z> /_:” = ua (de) /_J:° 2™ 1 ()

k=0
—+oo —+oo
= [ [ @+ @) (de)ua(de).

Thus, = p1 * p2 (classical) convolution.
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7.3. Graph Products and Convolution of Distributions

Counting Walks

products G1#G2 A[G1#G3] spectral distribution

Cartesian Gi XcG2 | A1 QI+ 11 ® As 11 * 2

comb G1 > G2 AL QP+ 1, R Az Hn1 > pe

star G1 x G2 A1 QP+ P ® A2 M1 po

lexicographic | G1 > G2 | A1 ® J2 + P1 ® Az D(p1) > po2

Kronecker Gi Xk G2 | A1 ® A2 K1 knr 2

strong Gi1 Xs G2 A®L+L® A S™H(Sp1 #rr Sp2)
+A1Q A2

free G1 * G2 A1 x Ag w1 B pe

@ Every product except the free product is a graph on Vi X V5.

@ There is a classification of graph products realized on V7 X V3,
see e.g., R. Hammack et al.: “Handbook of Product Graphs,” CRC Press, 2011.
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7.3. Graph Products and Convolution of Distributions

» Monotone convolution g = p1 > p2 is characterized by

H, (Z) =H,, (Huz (z))7
where

+ oo
HuD) = gy Gu= [ )

— o0

» Boolean convolution pt = p1 W e is characterized by

1 1 1
Gu(®) ~ G2 T Glz)

z
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Counting Walks

7.4. Kronecker Product

Definition (Kronecker product)

Let G1 = (V1, E1) and G2 = (Vz, E2) be graphs. The Kronecker product
G1 XK Gz is a graph on V. = V3 X V5> with the adjacency relation:

(x,y) ~x (2',y) = z~a’, y~y
In other words, the adjacency matrix A = A[G1 Xk G2] is given by
A=A QR A;.
") Gl XKGz = G2 XKGl.
@ (G1 XK G2) XKk G3 =2 G1 Xk (G2 XK G3).

@ (trivial case) For any graph G = (V, E) the Kronecker product K1 Xk G is a
graph on V' with no edges (i.e., an empty graph on V).
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Countir

7.4. Kronecker Product

P3XKP3 KzXKK,g

Lemma (exercise)

If|Vi| > 2 and |Vz| > 2, then G1 X k G2 has at most two connected components.

Lemma (exercise)

G1 Xk Gz is a subgraph of the distance-2 graph of G1 X ¢ G2. (But not necessarily
induced subgraph.)
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Counting

7.5. Counting Walks in Kronecker Product

G; = (V;i, E;): a connected graph with fixed origin 0; € V;
G = G1 Xk G2: Kronecker product with origin (01, 02)

G° = (G1 XKk G2)°: the connected component containing (01, 02)

W ((01,02); G) = W, ((01,02); G%)
= (€(01,02)1 A" €(01,02))
= (€01 ® €0y, (A1 ® A2)" €0, ® €oy)
= (€01, AT" €0, ) (€0z, A" €0y)

= Wmn(01; G1)Wp,(02; G2)
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Counting

7.5. Counting Walks in Kronecker Product

G; = (Vi, E;): a connected graph with fixed origin 0; € V;
G = G1 Xk G2: Kronecker product with origin (01, 02)

G° = (G1 Xk G2)°: the connected component containing (01, 02)

Thus,
Wi ((01,02); G) = Wi (01; G1)Win(01; G2).

pi: spectral distribution of the adjacency matrix A; at o;

p: spectral distribution of the adjacency matrix A = A[G] at (01, 02)

/ ™ p(dx) =/ w{nul(dwl)/ x5 po(de2)

oo —0o0

= [T [ ey s s o)

This w is called the Mellin convolution and denoted by pt = 1 *ns p2.
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Counting Walks

7.5. Counting Walks in Kronecker Product

Theorem

Fori =1,2 let G; = (V;, E;) be a graph with a distinguished vertex o;. Let p; be the
spectral distribution of the adjacency matrix A; = A[G;] at o;. Then the spectral
distribution of G = G1 X k G2 at (01, 02) is given by the Mellin convolution:

1(G1 XKk G2) = p1 *n pa.

@ 6. *nr Op = Oap for a, b € R.
[Cf. 5,1 * 51, = 5a+b-]

@ If pi(dz) = fi(x)dx and fi(—x) = fi(x), then p1 *pr p2 admits a symmetric
density function 2f1 % f2(x), where

f1*fz(w)—/ fl(y)f2< >yy /Ooof1<§>f2(y)%, x > 0.

In fact, this is the standard convolution of the multiplicative group Rxo.
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Counting Walks

Exercises
Exercise 13 Observe that (K2 X x K2)° = K> and examine the identity:

1 1 1 1 1 1
(55—14-551) * M (55—14-551) =§5—1+551-

Exercise 14 Using K3 X xk Ko =2 Cg, derive the spectral distribution of Cg at a fixed
origin (which in fact coincides with the eigenvalue distribution):

1 1 1 1
65—2+§5—1+§51+852-

Exercise 15 Using K4 Xk K2 =2 K2 X¢ K2 X¢ K2 = H(3,2), derive the spectral
distribution of H (3, 2) at a fixed origin (which in fact coincides with the eigenvalue
distribution):

1 3 3 1

= —o_ -4 = 3.

g 03 + g 01 + g 1 + 893

Also examine the identity:

3 1 1 1 1 1.\
(15—1-1-153) * N <§5—1+§51> = (55—14-551) .
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7.6. Restricted Lattices

» Z X Z (2d interger lattice): a graph on Z? with adjacency relation:

T =xz+1, =z,

(z,y) ~ (2',y) <= or
Yy =y, Yy =y=E1.

» 7 X Z: a graph on Z? = {(u,v) ; u,v € Z} with adjacency relation:

(u,v) ~x (U,v) <= v =u£1l and v =v+1.

A
@ 7 Xk Z has two connected components,
each of which is isomorphic to Z X ¢ Z. - R
@ Let (Z Xk 7)© denote the connected
O ) >

component of Z X k Z containing ;
O = (0,0). Then

(Z xx 2)° 27 xc 7.
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7.6. Restricted Lattices

@ 7Z Xk Z has two connected components,
each of which is isomorphic to Z X ¢ Z. - )

@ Let (Z Xk Z)O denote the connected
component of Z X ik Z containing
O = (0,0). Then

(Z xx 2)° 27 xc 7.

Since the spectral distribution of Z at 0 is the arcsine law «, we have

Theorem

The spectral distribution of 2d lattice Z* at (0, 0) is given by

QX o= Q¥
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7.6. Restricted Lattices

» Let L{x > y} denote the induced subgraph of Z X ¢ Z spanned by the vertices

{(z,y) € 2®; = > y}.

¥ y

Theorem

We have L{x > y} = (Z4 Xk 7) and its spectral distribution at (0, 0) is given by

W *pr O
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7.6. Restricted Lattices

» Let L{x > y > —a} denote the induced subgraph of Z X ¢ Z spanned by the vertices

{(z,y) €Z®; 2 >y > —x}.

y y

Theorem

We have L{z > y > —a} = (Z4 Xk Z)© and its spectral distribution at (0, 0) is
given by

w *pr W
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Counting Walks

7.6. Restricted Lattices

Domain D Wam (L[D], O) | spectral distribution
z ) «
Z, Con = s (37 w
z? (2;:)2 a*xa=a*yua
{z >y} Cm (?™) w kN
{z>y> -z} cr. w *pr w
{z >0,y >0} (A) w*w
{z2y2z—-(n-1)} (B) Tn *M &
0<z+y<k-1,
{ } () Tl %0 701
0<e—y<il-1

_ = 2m
w=3 (Gp ) CeComns

(B) = Wam (Pa, 0) (1), (C) = Wam(Pi, 0)Wam (B, 0).
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Counting Walks

7.6. Restricted Lattices — Density Functions

Elliptic integrals  For k2 < 1, the elliptic integrals are defined by

/2 do ! dx

K@) = | __ -/ :
0 V1 — k2sin’ 0 o V(1 —22)(1 — k222)
/2

1 _ k2p2
E(k) = V1 — k2 sin29d9:/ 1=k
o]

— 2
o 1—=x

@ The density function of w *ps « is given by

LKE@) - BE@)), (@ =1-%, —a<e<a

@ The density function of o *p7r @ = @ * « is given by

1
272

K(¢(z)), —4<z<4.

@ The density function of w *ar w is given by

{(1+ f—ﬁ) K(E@) - 28(6@) |, —4<a<a

w2
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7.6. Restricted Lattices — Density Functions

W *pr O
1.0
0.5
0
—4 -2 0 2 4
A *xpr X w *pr W
1.0
0.4
0.5
0.2
0 0
-4 -2 0 2 4 -4 -2 0 2 4
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N - ¢ 2=
An Example in 3-Dimension: Z X g Z Xk 7
7 XK 7 X K 7 has 4 connected components, which are mutually isomorphic. The

connected component containing O(0, 0, 0) looks like an octahedra honeycomb, built up
by gluing octahedra or body-centered cubes.

e (LLD)

We have

3
2
Wam(Z Xk 7 Xk Z,(0,0,0)) = nT), m=0,1,2,..

and the spectral distribution is given by 4 = o % @ * 01 .

Nobuaki Obata (Tohoku University)
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Bivariate Extension: An Example

8. Bivariate Extension: An Example

J. V. S. Morales, N. Obata and H. Tanaka: Asymptotic joint spectra of Cartesian
powers of strongly regular graphs and bivariate Charlier-Hermite polynomials,
arXiv:1809.03761, to appear in Colloq. Math.
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Bivariate Extension: An Example

Motivation

(1) Quantum CLT: A, — B
= The limit spectral distribution is a probability distribution on R*
= Multi-variate extension: (AS"Y, ..., AP) 2 (Z4,..., Zp)?

See e.g., T. Espinasse and P. Rochet (2019), arXiv:1904.10720

— An extension of Boolean CLT

(1) Method of quantum decomposition A = AT 4+ A° + A~

=> Orthogonal polynomials in one variable:
an((I!) == Pn—‘,—l(w) + a'n-}-lP'n(w) + wnPn—l(w)

=> Multi-variate extension?
potentially very interesting in connection to multi-variate orthogonal polynomials
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Bivariate Extension: An Example

8.1. Hamming Graphs H (n, v)

e m > 1, v > 1: natural numbers
o Alphabets K = {1,2,...,v}
@ Words of length n:
V={x = (£,42,...,én) & € K} = K"
@ Hamming distance between two words « and y:
O(z,y) = {1 <i<nl& #nl}l
@ A graph is defined with vertex set V' and adjacency relation
r~y & 9(xz,y)=1

= This is the Hamming graph H (n, v).
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Bivariate Extension: An Example

8.1. Hamming Graphs

@ Product structure
H(n,v) = K, X --- X K, (n-fold Cartesian power)

where K, is the complete graph on v vertices.

@ The adjacency matrix of H(n,v) is given by

1 n—i

r_’%
Ao = ZI® " RIRARI® QI
where A = A[K,] is the adjacency matrix of K.

@ The eigenvalue distribution fir, is specified by

1 Foo
v—n’I‘r(A;'fv) = / ™ v (d), m=0,1,2,....

Question [CLT for Hamming graphs]

Hn,o —27 asm — oo and v — 0O
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Bivariate Extension: An Example

8.1. Hamming Graphs

Review of Hora's argument (1998). This is before quantum decomposition

@ The adjacency matrix of K, is given by A = J — I (J: all-one matrix)
@ Then C(K,) =C¥ =Uy—1 ®U_1 and

AlUy—1=v—1, dimUy_1=1; A|U-1 =-1, dimU_1 =v — 1.
@A, =>IR---®AR®---QI acts on
(C)®" = (Uo1 @U-1) ® -+ ® (Uv—1 ® U-1)
@ The eigenvalues of Ay, are

(v—1(n—3j)+(-Dj=-n+(n—jv
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Bivariate Extension: An Example

8.1. Hamming Graphs

@ Hence
1 & (n i i
Prw = ——= ) ( .)1" T =1)""0 g (n—iyo

G
Namely, pn, is essentially the binomial distribution.
@ By classical theory we know

B(n,p) = N(np,np(1—p)),  B(n,p) = Po(np)
@ Consider the normalization fin,, <= mean(fn,v) = 0, var(fin,») = n(v — 1)
@ Under the proper scaling n — oo, v — oo and % —T72>0,
N(0,1), T =0,

affine transform of Po(7™ '), 7 >0

MHn,v —>

» Actual proof is based on characteristic functions (Laplace transform).
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Bivariate Extension: An Example

8.2. Strongly Regular Graphs

Complementary graphs

In general, G denotes the complementary graph of G = (V, E),i.e., a graph on V with
edge set E = {{z,y}; z,y € V,z # y,{z,y} € E}.

Or equivalently, the adjacency matrix of G is defined by
A=J—-1-A. (J: all-one matrix)
Lemma
For a finite graph G with adjacency matrix A we have
G is a regular graph < AA=AA & AJ=JA.
Definition

For a finite regular graph G the commutative *-algebra generated by I, A, A, denoted
by A(G, G), is called the “extended adjacency algebra.”

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24 78 / 97



Bivariate Extension: An Example

8.2. Strongly Regular Graphs

Definition
G = (V, E) is a strongly regular graph with papameter (v, k, X, p) if
@ |V|=u;
@ G is k-regular;
@ every two adjacent &,y € V has A common adjacent vertices;
@ every two non-adjacent ¢,y € V has u common adjacent vertices;

@ (avoiding trivial cases) G is neither complete nor empty, that is, 0 < k < v — 1.

Note: A strongly regular graph is a distance-regular graph with diameter 2.
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Bivariate Extension: An Example

8.2. Strongly Regular Graphs

Lemma

If G is a strongly regular graph with papameter (v, k, X, i), so is G with parameter
(vk=v—k—1,xA=v—2k+p—2,0=0v— 2k + ).

Lemma

Let G be a finite regular graph with degree 0 < kK < v — 1. Then the following
conditions are equivalent:

@ G is a strongly regular graph;
@ A(G,G) is the three-dimensional linear space spanned by I, A, A.

For the proof we need only to note that

A? = kT + AA + pA = kI + AA + u(J — I — A).
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Bivariate Extension: An Example

8.2. Strongly Regular Graphs

Lemma

Let G be a strongly regular graph with (v, k, X, u). Then the spectrum of G are given

by
s<r<k with multiplicities g, f, 1,
where
oo A=) EVA—p)?+ 4k —p)
9 - 2 9
and

f:(v—l)s+k:’ g:(v—l)r—i—k:.

S —7T T— S8

The spectrum of G are given by
5=—7r—-1<7f=-s—-1<k with multiplicities f, g, 1.
There are many relations among these constants. For example,

1+k—|—l_<::1+f—|-g=v, k:2+fr2+gs2=kv

Nobuaki Obata (Tohoku University)
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Bivariate Extension: An Example

8.3. Cartesian Product of Strongly Regular Graphs

@ Let G be a strongly regular graph and G the complement.
@ Consider the pair (G™, G™), where
G" =GxX---XG (n-fold Cartesian power), G"=Gx---xG (similar).

@ Adjacency matrices:

k—1 n—k

Anc=) IQ - QIQARTI®---QI, A,g= (similar).
k=1

@ Let vy, (dxdy) be the joint spectral distribution of (An,g, An,c) specified by

1 _
v—nTr(Ai’GAfL,G) = / z°y* v, (dedy), s,t=0,1,2,....
R2

Question (Asymptotic spectral distribution)

Un,c —?7 asn — oo and |G| — oo
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Bivariate Extension: An Example

8.3. Cartesian Product of Strongly Regular Graphs

How we generalized the case of Hamming graphs?

» Outline of our procedure:

@ Consider a strongly regular graph G and its complement G.
@ Consider a pair of Cartesian powers (G™, G™)
@ and their adjacency matrices (An,g, An,c).

@ The joint spectral distribution of (An,G, An,c) is a probability distribution on R?

specified by
1 s T s
UTTr(An,GAZ,G) = /2 z yt VH’G(dmdy% s,t=0,1,2,....
R

» Case of Hamming graphs:

Take G = K,. Then G is an empty graph,
G"=K, X--- X K, = H(n,v) (Hamming graph),
(An,gy An,c) = (An,s,0).

Thus, the spectral distribution is reduced to one-dimension.

Nobuaki Obata (Tohoku University) Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24 83 / 97




Bivariate Extension: An Example

8.4. Joint spectral distribution of (G™, G™)

Theorem
The joint spectral distribution of (G™,G™) is given by
B ) _ ) [ n F\Ig\h/1\n—i—h
v = Y GO B), ) = ( h) Y (@) 3
0<j+h<n
0;n = (n —j — h)k + jr + hs, 0jn = (n—j — h)k + j5 + h7,
(v—1)s+k g_(v—l)r+k

S—7T rTr—S

=

Proof: According to ev(An,c) = {s,r,k} and ev(A,,c) = {7, 5, k} we have
C(G)=C"=U, ®Us ®Ux, dimU,=f, dimUs=g, dimU; = 1.
Then look at
An,G:ZI®"'®A®"'®I,
CG")=U U ®Uk) Q-+ Q (Ur ® Us ® Uy).
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N . e R
8.4. Joint spectral distribution of (G™,G™)

vneg= »_  m(j,h)8(05n,05n)
0<ith<n
ﬂ(j,h)=<jf‘h) ZyE e P PN

ev(G) = {s,r, k} :
ev(é) = {73, E} e
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Bivariate Extension: An Example

8.5. Asymptotic Joint Spectral Distributions

n — oo, v — oo and some balance conditions

» Hamming graphs: H(n,v) = K, X --- X K, (n-fold Cartesian power)
v—1

. —1
— T and automatically — — O, — T.
n

v
n
these are conditions for eigenvalues!

» Growing pair of strongly regular graphs: (G™, G™)
Recall: ev(G) = {s,r,k}, ev(G) = {7, 5, k}

1+k+k=w, §=—r—1, F=—s—1.
The proper scaling is given by
k k _r s v _
- K, — K, ——=p, ——0, —FK+RER=wW
n n n n n

» Note: p = 0 or o = 0 follows.
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Bivariate Extension: An Example

8.5. Asymptotic Joint Spectral Distributions

Theorem (Morales-Obata-Tanaka (2019+))

9 0 o o . . . A'n G An G
Let v be the limit of the joint spectral distribution of < 2 = > Then,
vk Vnk

@ Ifk >0 k= —0o >0, p=0, then v is an affine transformation of the bivariate
Poisson distribution:
y kj —kh Kj+kKh—1 _e_l/g(l)j(i)h 1
N VE - w/ \wk/ j'h!

@ Ifk=p>0 k>0, 0 =0, then similar as above.

@ /fx >00rk >0, and if p = o = 0, then v is an affine transformation of the

product of Gaussian and Poisson distributions:

[ s@mwis) = [ e 32 ()" [ sene
Bhe = (\/Eh+\/5t—§,\/§h_\/;t_?)

@ Ifk =k = p = o =0, v is the bivariate Gaussian distribution.
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8.5. Asymptotic Joint Spectral Distributions

Bivariate Poisson distribution

E

y ((;@j\;;h, Rj + kh — 1)) _ e_l/g(
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8.5. Asymptotic Joint Spectral Distributions

Gauss X Poisson distribution

/]R? f(«'E)V(dw) = \/ge—l/w i_o: (%)h% /_'::o f(:l:h,t)e_“’tz/zdt
Th, = (\/Eh+ﬁt_ﬁ,\/gh_\/;t_?)

w

y
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Bivariate Extension: An Example

8.6. Bivariate Orthogonal Polynomials

Extended Adjacency Algebra A(G™,G™)

For 0 < a+ B8 < n we put

A p= Z[@...@A@)...@A@...@I,

A appears o times and A appears 3 times

In particular, the adjacency matrices of (G™, G™) are

A[G"] = Anc = A1, A[G"] = Ang = Ao.
A(G™,G™): unital *-algebra generated by A, g and A, c.
Lemma
A(G™,G™) is a linear span of {Aap; 0 < a+ 8 < n}.

Lemma (Orthogonal relation)

1 n _
—Tr(Aa Ao’ p) = ka.80c.c’03.38 kapg = kKR,
on I (AapAarer) B0a,a10p,875 B (a’ﬂ>
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nsion: An Example

Bivariate Exte

8.6. Bivariate Orthogonal Polynomials

Lemma (Mizukawa—Tanaka (PAMS 2004))

The eigenvalues of A, are given in the form:

ko.sPas(j, h) with multiplicity <j"h) figh,
9

Bivariate Krawtchouk Polynomials

Pa,B(jv h)
(_a)l/l-i-vs(_5)V2+V4(_j)111+'/2(_h)V3+V4 t’1/1t52t;3tz4
9

Z (_n)u1+l'2+l'3+l’4 vilvaluglyg!

0<vi+-4v4<n

a3

tg =1—

where s
) t2:1_Ea

» This is a particular case of Aomoto-Gelfand hypergeometric function of (3, 6)-type

» Pochhammer symbol: (a)r = a(a+1)(a+2)---(a+n—1)
Asymptotic Spectral Analysis Yichang, China, 2019.08.20-24
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Bivariate Extension: An Example

8.6. Bivariate Orthogonal Polynomials

Then the orthogonal relation becomes
Y. Vkap Pap(Gs h)Vkar g Par,pr (3, R) (G, B) = a,ar0p,0 -
0<j+h<n

Using integral form and applying variable change:

Vna= > (,"h>7r(j,h)6(9j,h,§j,h),

0<j+h<n \"’

Oj,hz(n—j—h)k—l-jr—l-hs, éj,hz(n—j—h)l_c—i-jg—l-hf,

0j.n 0j.n

- \/nk7 v= \/nl_c’

we obtain polynomials { Pn s (x, y)} such that

/2 ﬁa,ﬁ(m’ y)ISa’,B’ (2, y)Pc,n(dxdy) = du,a70p,p
R
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

» We consider the Gauss X Poisson case

Let
Rap(z,y) = lim Pag(z,y)

under the scaling

S

k
— = k>0 or
n

Then we have

[, R (@, 9) Rav g (2 9)(dly) = G0,
J R

Theorem (Morales-Obata-Tanaka (2019+))

{Ra,8(x,y)} are the orthogonal polynomials with respect to the Gauss X Poisson
distribution v.
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

Explicit form
@ We start with the generating function:
Y. kapPap(lh)ETES
0<a+B<n
= (L+ k€1 + ké2)" 77" (1 + ré1 + 862)7 (1 + 561 + 7€2)"

@ Changing variables and taking the limit, we have

oo

Ra,g(m,y) a 06
MZZO e G

— (1+\/E£1 + ﬁ€2)(ﬁw+ﬁy+l)/w
% exp{ _ VE&L +VREE _ (\/Efl — \/Eﬁz)z
w

2w

+ (Ee = VE(/RG = VRE) )
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

Five-term recurrence relation

@ We start with

AAop = (a+1)Aat1p + (@ +1)(k — B)Aat1,p-1
+ (ax + B(k — n))Aas + (B+ DpAa—1,5+1
+(n—a—-B+1)kAa_1,s,
AAop = (B+1)Aapt1+ (@ +1)EAct1p—1
+ (a(k — fi) + BA)Aap + (B + 1) (k — N Aa—1,841
+(n—a—-B+1)kAqs-1.
@ Use the correspondence:

Ao
ka,ﬂ

< Vka,p Pa,s(d, h)

we obtain the five-term recurrence relation for {Pa,5(j, h)}.

@ Changing variables and taking the limit, we have
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Bivariate Extension: An Example

8.7. Bivariate Orthogonal Polynomials in the Limit

Theorem (Five-term recurrence relation)

TzRap =vVa+1Rat18+V(x+1)8—— Ra+1,!3 1
+ (ak + ,Bf@)£ Rap+ Va(B+1) — Ra 1,8+1 + vVa Ra—1,,

YRao,p = /B +1Rapt1 + m A A Ra-i—l,ﬁ a
+ (ar + ﬂk)% Rap+ vVa(B+1) %\/E Ra—1,6+1 + VB Rap—1.

» This would be a good example for a bivariate spectral analysis of growing graphs.

» The next step is to derive a bivariate extension of quantum decomposition.
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Life is short, but there is always time enough for mathematics!

THANK YOU VERY MUCH!

YR, 300
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