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Abstract

After a reminder of four very used models in Mathematical ecology, we breach
into two different topics. In chapter 2, we study the phenomenon of apparent
competition on a 1 predator species - N prey species system. We prove the
conditions for the survival of the prey species or predator species, with the
existence of a unique globally asymptotically stable steady state in any case.
In chapter 3, we study the diffusion of a species, first alone, then in a system
competing for resources with a motionless species. We use Neumann border-
ing conditions, but we prove that there is a similarity between this system
and a system of one species diffusing with Dirichlet bordering condition. In-
deed, here in some cases the motionless species acts as a ”death zone” for the
diffusing species. Finally by looking at the ratio of the size of the motionless
species’ habitat and the total size of the patch, we also show the existence
of a critical ratio size under which the diffusing species can survive whatever
the total size of the patch is.
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Chapter 1

Introduction

1.1 Mathematical modeling in ecology

The very first step when modeling a population dynamic is to lay down the
biological assumptions we make about the situation. Those assumptions will
then be transformed into the language of mathematics.

For all the models that will be presented in this paper, we will neglect the
effects of stochastic events. If we suppose the population to be large enough,
this assumption is a reasonable one.

Furthermore, we will assume that we isolated our population, and no
migration (immigration nor emigration) occurs.

Finally, we will assume there are no distinctions between individuals of
a same species.

Though those assumptions are never exactly satisfied in field situations,
they are reasonable enough to allow for models that give a good description
of the data while being simple enough to be analyzed through a mathematical
lens.

1.2 A first model : exponential growth (Malthus

Model, 1798)

The easiest way to model a population is to consider that the environment
it is in is not affected by the population. Meaning, the resources and life
conditions stay the same, however big the population becomes. We call such
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an environment invariant.
The growth of a species in such an environment boils down to a conser-

vation equation. If we call β the growth rate per individual, µ the death rate
per individual, and N(t) the population of the species at time t, then we
have the model called Malthus model :

dN

dt
= births− deaths = βN − µN (1.1)

with β and µ positive constants, and N(0) = N0 > 0. Then :

N(t) = N0e
(β−µ)t (1.2)

If β > µ, the species grows exponentially. If µ > β, then it decays until
extinction.

This model can be applied, for example, at the beginning of the growth
of a species, when it invades a new habitat. Or to the growth of a bacteria
in a Petri dish with enough nutrient that it can be viewed as invariant for
the duration of the observation.

Though, the assumption of an invariant habitat is not really realistic in
a lot of other situations.

1.3 A more realistic model : logistic growth

(Verhulst model, 1838)

As stated by Verhulst a long time ago, ”the growth of a population is limited
by the space available and the fertility of its fields” [13]. This cannot be
expressed with the previous model, based on the idea of an invariant habitat.
With this new assumption, if the population exceeds some threshold level, the
habitat cannot supports its growth. More precisely, the higher a population
number, the less its growth rate. This leads to the new model :

dN

dt
= rN − φ(N) (1.3)

The easiest function for φ will be a power function, simplest of all being the
square function φ(N) = aN2. The new equation given by Verhulst is then

dN

dt
= (r − aN)N (1.4)
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Figure 1.1: Logistic population growth

frequently written as
dN

dt
= r

(
1− N

K

)
N (1.5)

to put forward K, called the carrying capacity, representing the limit of the
population size in the model.

In this case, we can obtain an analytical solution for N by a separation
of variables :

N(t) = K
N0

N0 + (K −N0)e−rt
→ K as t→ +∞ (1.6)

The graph of N(t) is shown in Figure 1.1 depending on the value N0.
When N0 < K/2, the curve is a sigmoid (it presents an inflection point),
as the function N is a logistic function. This gives the other name of this
model: the logistic growth model.

1.4 A model of an interaction between a prey

species and its predator species

To model the interaction between one species (the prey) being eaten by
another (the predator), we make the following assumptions :
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• The prey species undergoes a Malthusian growth in the absence of
predation with a rate r > 0.

• The predator species would go extinct in the absence of prey with a
rate −δ < 0.

• We assume the response to predation will follow a mass action law.

We then obtain the Lotka-Volterra model for predation :{
dH
dt

= rH(t)− aH(t)P (t)
dP
dt

= −δP (t) + γaH(t)P (t)
(1.7)

where a is the predation rate, with aHP the number of preys consumed by
predator in the time unit, and γ is the energy conversion rate, meaning the
per capita number of new predators for each prey consumed.

From the system(1.7) we get the equations

H(t) = H(0)e
∫ t
0 (r−aP (s))ds, P (t) = P (0)e

∫ t
0 (−δ+γaH(s))ds (1.8)

and since we take H(0) ≥ 0, P (0) ≥ 0, then H(t) ≥ 0, P (t) ≥ 0, ∀t ≥ 0.
From the Cauchy-Lipschitz theorem, and since the system(1.7) is au-

tonomous, the trajectories of the solutions in the phase plane cannot cross
each other. Furthermore, we notice that the function

F (H,P ) = δ ln(H) + r ln(P )− γaH − aP (1.9)

is such that dF/dt = 0 ; F is called a first integral of the system(1.7). Thus,
the trajectories of the solutions follow the curves given by F = constant.
And since

lim
H+P→∞

(δ ln(H) + r ln(P )− γaH − aP ) = −∞ (1.10)

the solutions of the system(1.7) are bounded. Furthermore, the trajectories
in the phase plane are closed, as illustrated in Figure(1.2). It means that the
solutions are periodic, as we can see in Figure(1.3).

For an ecological interpretation, when the predator species grows in size,
it means they will eat more, implying the decay of the prey species. On the
other hand, when the number of prey is low, the predators have less to eat,
and it’s their turn to decay, leading to the growth of the prey species. It is
then natural to find periodic solutions with a phase shift.
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Figure 1.2: Phase plane (H,P ) of the Lotka-Volterra prey-predator model.

Figure 1.3: Solutions of the Lotka-Volterra prey-predator model, with r =
3 ; a = 0.1 ; δ = 3 ; γ = 1.1.

8



1.5 A model of an interaction between two

species competing for natural resources

Finally we will present the Lotka-Volterra model for describing the interac-
tion of two prey species competing for natural resources. We consider that
in the absence of competitor, the species would follow a logistic growth. The
model is the following ;{

∂N1

∂t
= (r1 − γ11N1 − γ12N2)N1 = f1(N1, N2)

∂N2

∂t
= (r2 − γ21N1 − γ22N2)N2 = f2(N1, N2)

(1.11)

where r1 > 0, r2 > 0 are the intrinsic growth of each species, γ11 > 0, γ22 > 0
describe the effect of logistic growth, and γ12 > 0, γ21 > 0 describe the effect
of the competition on the species.

The steady states are given by the equations{
0 = (r1 − γ11N1 − γ12N2)N1

0 = (r2 − γ21N1 − γ22N2)N2
(1.12)

which give the following possibilities

(N∗1 , N
∗
2 ) = (0, 0), or (

r1
γ11

, 0), or (0,
r2
γ22

)

or (
r1γ22 − r2γ12
γ11γ22 − γ21γ12

,
r2γ11 − r1γ21
γ11γ22 − γ21γ12

)

For the stability of those steady states, we study the eigenvalues of the
community matrix :(

∂f1
∂N1

∂f1
∂N2

∂f2
∂N1

∂f2
∂N2

)
(N∗

1 ,N
∗
2 )

=

(
r1 − 2γ11N1 − γ12N2 −γ12N1

−γ21N2 r2 − γ21N1 − 2γ22N2

)
(N∗

1 ,N
∗
2 )

(1.13)

• For (0, 0) the eigenvalues are λ1 = r1, λ2 = r2, so it’s always unstable.

• For (r1/γ11, 0), the eigenvalues are λ1 = −r1, λ2 = r2 − γ21r1/γ11, so
it’s stable when γ21/γ11 > r2/r1.
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Figure 1.4: Stability of a two species with interspecific competition system
depending on the parameters.

• For (0, r2/γ22), the eigenvalues are λ1 = r1 − γ12r2/γ22, λ2 = r2, so it’s
stable when γ12/γ22 > r1/r2.

• For the coexistence equilibrium, it is stable when γ12/γ22 < r1/r2 and
γ21/γ11 < r2/r1.

The Figure(1.4) sums up the results. We observe that in the case (d), there
is a case of bistability. The final state of the system depends on the initial
values.
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Chapter 2

Number of prey species that
can coexist with a shared
predator

2.1 Modeling the Apparent competition ef-

fect

2.1.1 Apparent competition

The competition we talked about in the previous chapter are direct effects.
But there are also indirect effect. The apparent competition, as described by
Holt [5], is such an effect. It is the negative effect the prey species have on
one another through the existence of a shared predator. It is also called the
competition for enemy-free space [7]. A schematic representing its working
is given in Figure 2.1.

2.1.2 Hypothesis

In this chapter, we are interested in knowing how many prey species could
coexist when sharing a predator, and what kind of species are the most likely
to survive.

To answer this question, we model the situation following those assump-
tions :

• The interactions between species follow a Lotka-Voltera model.
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Figure 2.1: The + symbol indicates a positive effect on the species at the
end of the arrow, the - a negative effect. The plain arrows illustrate direct
effect, the dotted arrows indicate the apparent competition effect.

• The growth of every prey species is limited by their environment natural
capacity (logistic growth).

• There are no direct competition for food or space between the prey
species (no interspecific competition)

• No intraspecific density effect (logistic effect) is assumed for the preda-
tor.

2.1.3 Model
dP

dt
= −δP +

n∑
i=1

cibiHiP

dHi

dt
= (ri − βiHi)Hi − biHiP (i = 1, 2, . . . , n),

(2.1)

with P the population size of the predators, δ > 0 their natural death rate,
Hi the population size of the preys i, ri > 0 their intrinsic growth rate, ci > 0
the energy conversion rate of the predation for preys i, bi > 0 the predation
rate for preys i and βi > 0 the coefficient of the intraspecific density effect
on preys i.

Without loss of generality, we assume the following order of the numbering
for preys:

r1
b1
≥ r2
b2
≥ · · · ≥ rn

bn
. (2.2)
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2.2 Equilibria and their stability

2.2.1 Domain of study

The solution for P (t) in the system (2.1) being :

P (t) = P (t0) exp

[
−δt+

n∑
i=1

cibi

∫ t

t0

Hi(τ)dτ

]
(2.3)

then P (0) = 0 ⇐⇒ P (t) = 0 ∀t > 0 and P (0) > 0 ⇐⇒ P (t) > 0 ∀t > 0.
With the initial data

(P (t0), H1(t0), ..., Hi−1(t0), 0, Hi+1(t0), ..., Hn(t0)) , P (t0) ≥ 0

we have a Cauchy problem.

(P (t), H1(t), ..., Hi−1(t), 0, Hi+1(t), ..., Hn(t)), ∀t > t0

is a solution of this Cauchy problem, and this maximal solution is then unique
(Cauchy-Lipschitz Theorem). As we are in an autonomous system, it means
that if Hi(0) > 0, then Hi(0) ≥ 0, ∀t > 0. This being true for any 1 ≤ i ≤ n.

Finally, if Hi(t) ≥ ri
βi

and P (t) > 0, then dHi
dt

< 0. As we have

y′(t) = (ri − βiy)y =⇒ lim
t→∞

y(t) =
ri
βi

and here P (t→∞) > 0, then :

lim
t→∞

Hi(t) <
ri
βi

Meaning that there exists a t1 where Hi(t1) = ri
βi

. Furthermore, since

dHi

dt

∣∣∣∣
Hi≥

ri
βi

≤ −bi
ri
βi
P < 0 if P > 0

then P (t) > 0 ⇐⇒ Hi(t) <
ri
βi

.
On the other hand if P = 0 then Hi → ri

βi
, and we can approximate that

there also exists a time t2 where Hi(t2) = ri
βi

.
Then, without loss of generality, we can assume that we will work in the

domain 0 < Hi(t) ≤ ri
βi
, ∀t > 0, ∀1 ≤ i ≤ n and P (t) ≥ 0, ∀t > 0.
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2.2.2 Conditions for Predator’s extinction

Theorem 1. The steady state with the predator’s extinction for the system
(2.1)

(P,H1, H2, ..., Hn) = (0,
r1
β1
,
r2
β2
, ...,

rn
βn

) (2.4)

is stable if and only if :

δ ≥ Rn :=
n∑
i=1

cib
2
i

βi

ri
bi

(2.5)

Furthermore, it is then globally asymptotically stable.

Proof.

dP

dt
=

(
−δ +

n∑
i=1

cibiHi

)
P ≤

(
−δ +

n∑
i=1

cib
2
i

βi

ri
bi

)
P = (−δ +Rn)P

If δ > Rn, then

0 ≤ P (t) ≤ P (0)e(−δ+Rn)t −−−→
t→∞

0,

and then P (t) −−−→
t→∞

0.

If δ = Rn, then

dP

dt
=

(
−Rn +

n∑
i=1

cibiHi

)
P =

n∑
i=1

cibi

(
− ri
βi

+Hi

)
P < 0

and P (t) −−−→
t→∞

0.

On the other hand, if we suppose P (t) −−−→
t→∞

0, then Hi(t) −−−→
t→∞

ri
βi

,

∀1 ≤ i ≤ n. And from the logistic model, we can also say that for any k > 0,
(0, r1

β1
, ..., rk

βk
, 0, ..., 0) is unstable. A local stability analysis of (0, r1

β1
, ..., rn

βn
)

gives the necessary condition −δ + Rn ≤ 0, and the previous arguments
allow to say this is then a condition for global asymptotic stability.

This theorem is illustrated on the Figure (2.2).
Since Rn increases with n, it means that the more prey species available

to be preyed upon, the higher are the chances of the predator to survive.
On the other hand, we see here that the most relevant prey species to the
predator survival are those with a high cibiri/βi
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Figure 2.2: Evolution of the equilibrium size of the predator population
depending on the parameter delta. ci = 0.1; r1 = 0.1; r2 = 0.115; r3 =
0.13; r4 = 0.145; r5 = 0.16; r6 = 0.175; bi = 0.001; βi = 0.0001; 1 ≤ i ≤ 6

2.2.3 Conditions for prey species’ extinction

As seen in Figure (2.3), the number of prey surviving after some time de-
pends on the condition of the system. We will now try to understand those
conditions. Let’s then study the steady state E∗k for (2.1) :

E∗k = (P ∗[k], H
∗
[k],1, H

∗
[k],2, ..., H

∗
[k],k, 0, ..., 0︸ ︷︷ ︸

n−k

) (2.6)

H∗[k],i > 0 for 1 ≤ i ≤ k, and P ∗[k] > 0 (2.7)

From (2.1) this steady state E∗k can be uniquely given by

H∗[k],i =
ri − biP ∗[k]

βi
; P ∗[k] =

Rk − δ
Bk

(2.8)

where

Rk :=
k∑
i=1

cib
2
i

βi

ri
bi

; Bk :=
k∑
i=1

cib
2
i

βi
(2.9)
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Figure 2.3: Evolution of the number of prey species depending on the pa-
rameter delta. ci = 0.1; r1 = 0.1; r2 = 0.115; r3 = 0.13; r4 = 0.145; r5 =
0.16; r6 = 0.175; bi = 0.001; βi = 0.0001; 1 ≤ i ≤ 6

From (2.7) and (2.8), we can find the following condition for the existence
of the equilibrium E∗k :

Rk −
ri
bi
Bk < δ < Rk, ∀1 ≤ i ≤ k (2.10)

And from (2.2), this condition is equivalent to

Rk −
rk
bk
Bk < δ < Rk (2.11)

For the convenience of the mathematical arguments in the following part,
we show here the following lemma :

Lemma 1. The sequence {Rk − (rk/bk)Bk}, 1 ≤ k ≤ n is non-negative and
non-decreasing.

Indeed, from (2.2) and (2.9), we have

R`+1 −
r`+1

b`+1

B`+1 −
(
R` −

r`
b`
B`

)
=

(
r`
b`
− r`+1

b`+1

) l∑
i=1

cib
2
i

βi
≥ 0
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and R1 − r1
b1
B1 = 0 from the definition (2.9). This proves the lemma.

Now we define a specific index of prey species s by :

s := max{` ∈ [1, n] | r`
b`
> P ∗[`]} = max{` ∈ [1, n] | δ > R` −

r`
b`
B`} (2.12)

From (2.8) and (2.9), we note that

P ∗[1] =
R1 − δ
B1

=
r1
b1
− δβ1
c1b21

<
r1
b1

(2.13)

which proves that s always exists. Then we note that

rj
bj
≤ P ∗[j] :=

Rj − δ
Bj

, that is δ ≤ Rj −
rj
bj
Bj ∀j > s (2.14)

because of lemma (1). We can then prove the following two theorems con-
cerning the existence and stability of the steady state
E∗s = (P ∗[s], H

∗
[s],1, H

∗
[s],2, ..., H

∗
[s],s, 0, ..., 0) :

Theorem 2. The steady state E∗s with s < n exists and is globally asymp-
totically stable if and only if

Rs −
rs
bs
Bs < δ ≤ Rs+1 −

rs+1

bs+1

Bs+1 (2.15)

Theorem 3. The steady state E∗n exists and is globally asymptotically stable
if and only if

Rn −
rn
bn
Bn < δ < Rn (2.16)

Proof. First we consider the existence of the steady state E∗s . When s < n,
from (2.14), we have (2.15). On the other hand, from the definition (2.9) we
can easily find that

Rk+1 −
rk+1

bk+1

Bk+1 = Rk −
rk+1

bk+1

Bk ∀1 ≤ k ≤ n (2.17)

Therefore we have

δ ≤ Rs+1 −
rs+1

bs+1

Bs+1 = Rs −
rs+1

bs+1

Bs < Rs for s < n (2.18)
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Hence, when the condition (2.15) is satisfied, the condition (2.11) for the
existence of the steady state E∗s with s < n holds. When s = n, the condition
(2.16) is the condition (2.11) with s = n for the existence of the steady state
E∗n.

Next, let’s consider the stability of this steady state. For the case of
s < n, we define the function

Vs(t) := P ∗[s]

{
P (t)

P ∗[s]
− 1− log

P (t)

P ∗[s]

}

+
s∑
i=1

ciH
∗
[s],i

{
Hi(t)

H∗[s],i
− 1− log

Hi(t)

H∗[s],i

}
+

n∑
i=s+1

ciHi(t)(2.19)

This function is continuously differentiable (on the study domain), radially
unbounded and positive definite for any (P,H1, ..., Hn) 6= E∗s . Furthermore,

dVs(t)

dt
= −

s∑
i=1

ciβi
{
Hi(t)−H∗[s],i

}2
+

n∑
i=s+1

ciHi(t)
{
ri − βiHi(t)− biP ∗[s]

}
(2.20)

From the definition of s by (2.12),

ri − βiHi(t)− biP ∗[s] < ri − βiHi(t)− bi
rs
bs

= −βiHi(t)− bi
(
rs
bs
− ri
bi

)
< 0 (2.21)

for any i > s and any t > 0. Thus from this, we can say that{
V̇s(P,H1, ..., Hn) ≤ 0, (P,H1, ..., Hn) ∈ Ω =]0,+∞[s+1×[0,+∞[n−s

V̇s(X) = 0 ⇐⇒ X = (P,H∗[s],1, ..., H
∗
[s],s, 0, ..., 0), ∀P > 0

(2.22)

Then, the LaSalle Invariance Theorem states that :

∀Y0 = (P (0), H1(0), ..., Hn(0)) ∈ Ω =]0,+∞[s+1×[0,+∞[n−s,

ω(Y0) ⊂ {X | V̇ (X) = 0} = {(P,H∗[s],1, ..., H∗[s],s, 0, ..., 0) | P > 0}

18



where ω(Y0) is the limit set of the solution of our system starting at the
point Y0.

Since our solution must still obey the system (2.1) while belonging to this
limit set, then

lim
t→+∞

P (t) = P ∗[s] (2.23)

This concludes the proof of the global asymptotic stability of E∗s , and the ar-
guments at the beginning of the proof combined with this prove the Theorem
2.

For the case of s = n, let’s consider the continuously differentiable (on
the study domain) and radially unbounded function

Vn(t) := P ∗[n]

{
P (t)

P ∗[n]
− 1− log

P (t)

P ∗[n]

}

+
n∑
i=1

ciH
∗
[n],i

{
Hi(t)

H∗[n],i
− 1− log

Hi(t)

H∗[n],i

}
(2.24)

As before, this function is continuously differentiable (on the study domain),
radially unbounded and positive definite for any (P,H1, ..., Hn) 6= E∗n. Fur-
thermore,

dVn(t)

dt
= −

n∑
i=1

ciβi
{
Hi(t)−H∗[n],i

}2 ≤ 0 (2.25)

With the same arguments as previously, with Ω =]0,+∞[n+1 and applying
the LaSalle’s Invariance Theorem, we can also conclude in this case that
E∗n is globally asymptotically stable, which in turn finishes the proof of the
Theorem 3.

If we look more specifically at the steady state with only one prey species
surviving, E∗1 , we have the following corollary from Theorem 2 :

Corollary 1. The steady state E∗1 exists and is globally asymptotically stable
if and only if

0 < δ ≤ R2 −
r2
b2
B2 = R1 (2.26)
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This comes from the fact that R1 − (r1/b1)B1 = 0 from the definition
(2.9).

Finally, from Theorem 1, 2, 3 and Corollary 2, we get the principal the-
orem :

Theorem 4. The system (2.1) always has a globally asymptotically stable
steady state.

As for the proof of this theorem, it is easily seen since the conditions for
the existence and global stability of the steady states given by (2.5), (2.15),
(2.16), (2.26) are complementary, and the union of those conditions for all
equilibria covers all parameter regions from Lemma 1. As a consequence, we
do not need to consider any periodic or chaotic stationary solution for (2.1),
because such a solution is not approachable from almost any initial condition
even if it exists. Furthermore, it also gives this last corollary :

Corollary 2. For the system (2.1), any equilibrium with the persistent preda-
tor other than the type of E∗k -defined by (2.6)- is always unstable even if it
exists.

2.2.4 Which prey species can coexist with a shared
predator ?

This analysis shows that the prey species with the most risk to be eliminated
are the ones with the lowest ri/bi in this model.

Another result shown here is, if all the species have the same ratio r/b,
then theoretically there can be an unlimited number of them cohabiting.
More realistically, it means that if the ratio ri/bi are close from one another,
then more species can coexist with a shared predator.

On the other hand, if one or two species have a high ratio ri/bi, then it
is much more likely for fewer species to be able to coexist. Indeed, in the
second case, the species with a high ri/bi ratio will create a strong apparent
competition on the other species, leading them to extinction. Those results
are shown on the figures (2.4) and (2.5).

This phenomenon was already empirically stated in [5] and [10] : a high
species diversity exists under the condition that the value of r/b is similar
for all prey species.
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Figure 2.4: Bifurcation diagram depending on the parameter delta, for 6
species with ratio ri/bi far from one another. r1 = 0.3; r2 = 0.2; r3 =
0.1; r4 = 0.04; r5 = 0.02; r6 = 0.01; bi = 0.001; ci = 0.1; βi = 0.0001; 1 ≤
i ≤ 6

Figure 2.5: Bifurcation diagram depending on the parameter delta, for 6
species with ratio ri/bi close from one another. r1 = 0.2; r2 = 0.19; r3 =
0.18; r4 = 0.17; r5 = 0.16; r6 = 0.15; bi = 0.001; ci = 0.1; βi = 0.0001; 1 ≤
i ≤ 6
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Chapter 3

Spatial movement

In all our previous work, we considered the species as spatially-homogeneous.
It gives good result to understand some situations, but it is obviously wrong
for studying others, for example the spread of a population. To solve that
problem, Skellam introduced the diffusion in the ecological model, and suc-
cessfully applied it to the data of Ulbrich [12] to explain the speed of spreading
of a muskrat population [11],see Figure (3.1).

In this chapter, we will ask ourselves how is the diffusion phenomenon
affecting the previously known results of prey interactions. More precisely,
how is it affecting the survival of a species living by itself, or the competition
between two prey species.

3.1 One species diffusing in a finite space

3.1.1 Modeling the spatial spread

We now consider a spatial region Ω ∈ Rd, d ≤ 3. Then, the description of
the local density of the population is given by

N(x, t), x ∈ Ω, t ≥ 0

To formulate our model, we will follow the conservation principle. There are
two terms that regulate our population density :

• J(x, t), the population flux, represents what comes into or goes out
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Figure 3.1: (a) Muskrat spread in Europe. (b) Square root of the area
expansion depending on years. It increases linearly, as predicted by Skellam.

off our spatial boundary. It is a vector field such as :

J(x, t) · nσ(x)dσdt = number of individuals crossing the infinitesimal

surface dσ at x per unit time at time t

in the direction nσ(x).

where nσ(x) is the normal to dσ.

• f(x, t), the total growth rate, represents the population local births
and deaths at x at time t.

Based on the conservation equation, we obtain

d

dt

∫
V

N(x, t)dx =

∫
∂V

J(x, t) · nσ(x)dσ +

∫
V

f(x, t)dx

and by using the divergence theorem, we obtain

dN(x, t)

dt
= −∇J(x, t) + f(x, t) (3.1)

Depending on what motivates the movement, there are different ways to
model a spatial spreading of a population in a model..

• The Advection : it’s a transport of substance due to the motion of a
fluid. For examples, a fish in a stream, or a pollen in the wind.
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• The Diffusion : it arises from a Random Walk, and induces a movement
from a region of higher concentration to a region of lower concentration.

We will only focus on the diffusion case. With the hypothesis that dx2/dt
is constant and that there is an equal probability to go in any direction,
the model for J(x, t) is given by Fick Law (which is the result of a simple
Taylor-expansion) :

J(x, t) = −D∇N(x, t) (3.2)

With D ≥ 0 the diffusion coefficient, representing the speed at which the
species spreads.

As for f(x, t), we will use the usual models we studied previously, de-
pending on the situation (logistic growth, prey-predator, ...)

Finally, we must implement boundary conditions to describe what hap-
pens at the border of the habitat. Among all the possibilities, there are two
in particular that are more frequently used :

• The Dirichlet condition : used in case of an extremely inhospitable
border.

N(x, t) = 0, ∀t ≥ 0, ∀x ∈ ∂Ω (3.3)

• The Neumann conditions : used in case of a completely closed habitat.

J(x, t) · n(x) = 0, ∀t ≥ 0, ∀x ∈ ∂Ω (3.4)

3.1.2 The model and steady states with diffusion and
Dirichlet conditions

For the simplicity of all the models to come, we will now consider them in one
dimensional spaces, unless specified otherwise. We consider a finite space,
x ∈ [0, L].

We assume that the species follows a logistic growth, and diffuses accord-
ing to Fick Law. This is called the Fisher equation. Furthermore, we use
Dirichlet conditions for boundary conditions :

∂N

∂t
= D

∂2N

∂x2
+ r(1− N

K
)N (3.5)

N(0, t) = N(L, t) = 0 ∀t ≥ 0 (3.6)
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To find the steady states of (3.5), we study

0 = D
∂2N

∂x2
+ r(1− N

K
)N (3.7)

When taking the diffusion into account, there are two kinds of Steady
states. The homogeneous steady states, solutions that are independent of
both time and space, and the non-homogeneous steady states, solutions that
are independent of time only.

For the homogeneous steady states, ∂2N/∂x2 = 0 and the two steady
states possible would be N(x) = 0 and N(x) = K, ∀x ∈ [0, L], as in the
logistic model. However, here N(0) = N(L) = 0, so N(x) = K is impossible.

To find the non-homogeneous steady state, we will introduce V (x) = dN(x)
dx

to create a system of first order differential equations :{
dN
dx

= V (x)
dV
dx

= − r
D

(
1− N(x)

K

)
N(x)

(3.8)

This will make it much easier to proceed.
If we then take the function

F (N, V ) = V 2 +
r

D
N2

(
1− 2N

3K

)
(3.9)

then we notice that d
dx
F (N(x), V (x)) = 0. F is then a first integral of the

system (3.5), which leads to :(
dN

dx

)2

+
r

D
N(x)2

(
1− 2N(x)

3K

)
= c (3.10)

with c a real number given by F (N(0), V (0)) = V 2
O

Finally we obtain the relation describing our steady states with an implicit
function ∫ N∗

0

dy√
c− r

D
y2(1− 2y

3K
)

= x (3.11)

Finding a direct relation describing N∗ cannot be achieved through this equa-
tion (3.11) ; but it will allow us to find another very important value.
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Figure 3.2: Spatial allocation of the population with t > 100, with r =
0.5;D = 3;K = 10 in the three cases. For (a) L = 100; for (b) L = 25; for
(c) L = 5.

3.1.3 Critical patch size

A numerical analysis of this model gives the Figure (3.1.3), picturing the
spatial allocation of the population after a very long time. We see on this
figure that the total size of the space has a direct impact on the survival of
the species. It is said that the model (3.5) with Dirichlet condition has a
critical patch size, under which the species cannot survive. Let’s find out its
value.

The system (3.5) describes a species with no competitor, no predator,
but dying when getting closer to the border. Then it is symmetric, with the
maximum of population reached in x = L

2
. This maximum cannot be greater
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than K. Let’s call this maximum NM . We have

N(0) = 0, N(
L

2
) = NM , c = F (N(

L

2
), 0) =

r

D
N2
M(1− 2NM

3K
)(3.12)

Then

2

∫ NM

0

dy√
r
D
N2
M(1− 2NM

3K
)− r

D
y2(1− 2y

3K
)

= L

and if we change the variables for z = NMy, we obtain

2

√
D

r

∫ 1

0

dz
√

1− z
√

1 + z − 2NM
3K

(1 + z + z2)
= L (3.13)

Then the minimum size possible for the species to survive is given by the
limit NM → 0 :

2

√
D

r

∫ 1

0

dz√
1− z2

= L

This antiderivative is given by arcsin. All in all, we find a critical patch size
of value

LM = π

√
D

r
(3.14)

For a species to survive while diffusing with Dirichlet bordering conditions,
the space it lives in needs to be greater than LM .

3.1.4 Stability of Steady states

Since the species is unable to survive in case LM < π
√
D/r, then N∗ = 0 is

globally asymptotically stable within this condition.
For the study of the stability of the non-homogeneous steady states, we

look at n(x, t) = N(x, t)−N∗(x) with |n(x, t)| << 1 and n(0, t) = n(M, t) =
0. With a Taylor expansion on (3.5) we get the relation

∂n

∂t
= D

∂2n

∂x2
+ r

(
1− 2

N∗

K

)
n (3.15)
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We will study this equation with the method of separation of variables :
let’s take n(x, t) = f(t)g(x). It gives us

{
f ′(t) = λf(t) (a)

Dg′′(x) + g(x) · r
(

1− 2N∗(x)
K

)
= λg(x) (b)

(3.16)

This is a regular Sturm-Liouville problem, which implies :

• There exist solutions, all associated to a discrete set of eigenvalues
λ1 > λ2 ≥ ... ≥ λk ≥ ...

• These solutions make an orthogonal basis of the solution space

• The solution gn associated to λn has exactly n − 1 zeros in [0,M ],
∀n ≥ 1

The second point tell us that all solutions of the system will be of the form

n(t, x) =
∞∑
n=1

cne
λntgn(x) (3.17)

= eλ1t

(
c1g1(x) +

∞∑
n=2

cne
(λn−λ1)tgn(x)

)
(3.18)

To know the stability of the N∗(x), we only need to know the sign of λ1.
When multiplying by N∗(x) and doing an integration by parts on (3.16.b)
we obtain :

−
∫ M

O

g′1(x)N∗′(x)dx+
r

D

∫ M

O

(
g1(x)N∗(x)− 2g1(x)

(N∗(x))2

K

)
dx (3.19)

=
λ1
D

∫ M

O

g1(x)N∗(x)dx

And by multiplying (3.7) by g1(x), and doing an integration by parts, we
obtain :

−
∫ M

O

g′1(x)N∗′(x)dx+
r

D

∫ M

O

(
g1(x)N∗(x)− g1(x)

N∗(x)2

K

)
dx = 0(3.20)
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By adding (3.19) and (3.20) we obtain :

λ1 =
−r
∫M
O

g1(x)N
∗(x)2

K
dx∫M

O
g1(x)N∗(x)dx

(3.21)

Since N∗(x) > 0 ∀x ∈]0,M [ when LM > π
√
D/r and g1 has no zero (so

its sign is constant) then λ1 < 0. We conclude that the non-homogeneous
steady state N∗(x) is stable when LM > π

√
D/r.

3.1.5 The model and steady states with diffusion and
Neumann conditions

In the same space as before, x ∈ [0, L], we will now impose Neumann bor-
dering conditions, also called no-flux bordering conditions

∂N

∂t
= D

∂2N

∂x2
+ r(1− N

K
)Nr (3.22)

∂N

∂x

∣∣∣∣
x=0

=
∂N

∂x

∣∣∣∣
x=L

= 0 ∀t ≥ 0 (3.23)

In this case, both homogeneous states N∗ = 0 and N∗ = K are possible.
On the other hand, when we draw the phase plane base on the first integral
(3.9), we obtain Figure (3.3). A non-homogeneous solution would link two
points on the U-axis, but such a trajectory doesn’t exist. Hence, there are
no non-homogeneous steady state with Neumann conditions.

From the same system (3.16) as in the Dirichlet case, we obtain the result
for the λ1 as in (3.21), but here since we are only concerned with N∗ constant,
we have :

λ1 = −rN
∗

K
(3.24)

So the steady states N∗ = 0 is unstable, and the steady states N∗ = K is
stable.
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Figure 3.3: Trajectories for the system (3.22) in the phase plane (V,N)

3.2 Some general results for a 2 species competition-

diffusion model with Neumann boundary

conditions

3.2.1 General settings

The generalized system we work on for now is the following :

{
∂N1

∂t
= D1∆N1 + f(N1, N2) (x ∈ Ω, t > 0)

∂N2

∂t
= D2∆N2 + g(N1, N2) (x ∈ Ω, t > 0)

(3.25)

where D1 and D2 are positive constants, f and g are smooth mappings of R2

into R, and Ω is a bounded domain in Rn with smooth boundary ∂Ω. We
impose Neumann boundary conditions :

∂N1

∂n
=
∂N2

∂n
= 0 (3.26)
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where ∂
∂n

denotes the outer normal derivative on ∂Ω. Finally the initial
conditions are given by the continuous functions N10 and N20 :

N1(x, 0) = N10(x), N2(x, 0) = N20(x) (x ∈ Ω) (3.27)

With the addition of the conditions :

∂f

∂N2

(N1, N2) ≤ 0,
∂g

∂N1

(N1, N2) ≤ 0 (3.28)

this system is a general competition diffusion system.

3.2.2 Convergence of solutions

Then, according to Kishimoto and Weinberger [6] we have the following re-
sults:

Theorem 5. Any non constant (i.e. spatially non-homogeneous) equilibrium
solution of this competition-diffusion system is unstable if Ω is any bounded
convex domain.

Furthermore, according to Hirsch [4] we also have :

Theorem 6. For this system, any periodic solution, if existing, is unstable.

So all in all, we conclude :

Theorem 7. The phenomenon of pattern formation never occurs if Ω is
bounded and convex; more precisely, almost all the bounded solutions converge
to some constant (i.e., spatially-homogeneous) equilibrium solutions as t →
+∞

See also for those results Matamo and Mimura [3].

3.2.3 Meaning of such a study

According to the results from before, if we want to have any kind of pattern
formation, we must take a non convex domain. In 2 dimensions, it is possible,
as demonstrated by the Figure(3.4).

According to the results from before, and knowing that an interval in R
is necessarily bounded and convex, we can have no pattern formation in a 1
dimensional setup, whatever the parameters taken. If we want to study the
pattern formation in a 1 dimensional setup, it is therefore necessary to study
a patchy system, or to modify the model.
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Figure 3.4: Diffusion of two species starting from the same point in a
non-convex environment, with a Lotka-Volterra interspecific competition
model. We can observe the formation of a naturally occurring pattern.
r1, K1, a12, D1 = 1, 1, 1.2, 0.3 ; r2, K2, a21, D2 = 1.1, 1, 1.3, 1.5.
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3.3 2 prey species competition with one of

them diffusing

3.3.1 Model

Here, we are considering that one of the species is moving and the other is
not. This can be seen as an approximation of a case where one of the species
is diffusing much faster than the other. ∂N1

∂t
=

{
(r1 − γ11N1 − γ12N2)N1 x ∈ [0, l]

0 x ∈ (l, L]
∂N2

∂t
= (r2 − γ21N1 − γ22N2)N2 +D2

∂2N2

∂x2
x ∈ [0, L]

(3.29)

To reduce the number of relevant parameters in this model, we will express
it in non dimensional terms. Let’s take U = γ11

r1
N1, V = γ22

r2
N2, t̂ = r2t,

x̂ = x
L

, d = l
L

, R = r1
r2

, a = γ12
γ22

, b = γ21
γ11

, c = 1
L

√
D2

r2
: ∂U

∂t
=

{
R(1− U − a

R
V )U x ∈ [0, d]

0 x ∈ (d, 1]
∂V
∂t

= (1−RbU − V )V + c2 ∂
2V
∂x2

x ∈ [0, 1]

(3.30)

With initial conditions :
U(x, 0) =

{
1 x ∈ [0, d]
0 x ∈ (d, 1]

V (x, 0) =

{
0 x ∈ [0, d]
1 x ∈ (d, 1]

(3.31)

We will study it under Neumann bordering conditions :

∂V

∂x

∣∣∣
x=0

=
∂V

∂x

∣∣∣
x=1

= 0 (3.32)

Finally, we force our solutions to be smooth enough :

lim
x→d−

V (x, t) = lim
x→d+

V (x, t) ∀t > 0 (3.33)

lim
x→d+

∂V

∂x
= lim

x→d+

∂V

∂x
∀t > 0 (3.34)
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3.3.2 Conditions for the diffusing species to survive

In order to know the conditions for our diffusing species to survive, we are
looking at the Stability of (U(x, 0), 0). More precisely, we are looking for
the condition when this Steady State is unstable. We then look at the small
oscillations around it.

U = U(x, 0) + u(x, t) , |u(x, t)| << 1 (3.35)

V = v(x, t) , v(x, t) > 0, v(x, t) << 1 (3.36)

After introducing those oscillation in the system (3.29) and linearizing,
we obtain 

∂u
∂t

=

{
−RU − av x ∈ [0, d]

0 x ∈ (d, 1]

∂v
∂t

=

{
(1−Rb)v + c2 ∂

2v
∂x2

x ∈ [0, d]

v + c2 ∂
2v
∂x2

x ∈ (d, 1]

(3.37)

Since ∂u/∂t ≤ 0 ∀x ∈ [0, 1], ∀t > 0, then the stability conditions come from
the study of ∂v/∂t.

If we take a look at v(x, t), it’s in the form

∂v

∂t
= q(x)v + c2

∂2v

∂x2
with q ∈ L∞([0, 1])

It’s then a Sturm-Liouville equation, and there exists a set of eigenvalues λn
such that

v(x, t) =
∞∑
n=1

cne
λntgn(x)

with gn the eigenfunctions verifying :{
c2g′′(x) + (q(x)− λ)g(x) = 0
g′(0) = g′(1) = 0

(3.38)

To solve that we separate (3.38) in two systems :{
c2g′′−(x) + (1−Rb− λ)g−(x) = 0 x ∈ [0, d]
g′−(0) = 0

(3.39)
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and {
c2g′′+(x) + (1− λ)g+(x) = 0 x ∈ [d, 1]
g′+(1) = 0

(3.40)

Sols of (3.39) :
λ > 1−Rb → g−(x) = A cosh

(
x
√
Rb+λ−1
c

)
λ = 1−Rb → g−(x) = A

λ < 1−Rb → g−(x) = A cos
(
x
√
1−Rb−λ
c

) (3.41)

Sols of (3.40) :
λ > 1 → g+(x) = A cosh

(
(1− x)

√
λ−1
c

)
λ = 1 → g+(x) = A

λ < 1 → g+(x) = A cos
(

(1− x)
√
1−λ
c

) (3.42)

Finally, to respect the smoothness of the solutions, we need :

g−(d−) = g+(d+) (3.43)

g′−(d−) = g′+(d+) (3.44)

We are looking for solutions with λ > 0. If there are, then the Steady
States is unstable.

The case where λ ≥ 1

First, when λ ≥ 1, (3.43) and (3.44) give :

A cosh

(
d

√
Rb+ λ− 1

c

)
= cosh

(
(1− d)

√
λ− 1

c

)
A

√
Rb+ λ− 1

c
sinh

(
d

√
Rb+ λ− 1

c

)
= −

√
λ− 1

c
sinh

(
(1− d)

√
λ− 1

c

)
Then √

Rb+ λ− 1

c
tanh

(
d

√
Rb+ λ− 1

c

)
(3.45)

= −
√
λ− 1

c
tanh

(
(1− d)

√
λ− 1

c

)
The functions f : x → x tanh(ax) is positive on R+ for a ∈]0, 1[, so this

equality is impossible. There are no solutions with λ ≥ 1.
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Figure 3.5: f(λ) in blue, g(λ) in red. Rb < 1

The case where 1−Rb < λ < 1

Now, if 1−Rb < λ < 1, (3.43) and (3.44) give:

A cosh

(
d

√
Rb+ λ− 1

c

)
= cos

(
(1− d)

√
1− λ
c

)
A

√
Rb+ λ− 1

c
sinh

(
d

√
Rb+ λ− 1

c

)
= −

√
1− λ
c

sinh

(
−(1− d)

√
1− λ
c

)
Then
√
Rb+ λ− 1

c
tanh

(
d

√
Rb+ λ− 1

c

)
=

√
1− λ
c

tan

(
(1− d)

√
1− λ
c

)
(3.46)

Let’s call :

g(λ) =

√
Rb+ λ− 1

c
tanh

(
d

√
Rb+ λ− 1

c

)
(3.47)

f(λ) =

√
1− λ
c

tan

(
(1− d)

√
1− λ
c

)
(3.48)

Figure 3.5 is when Rb < 1. In this case, as seen on the Figure, there is
necessarily an intersection between both curves. Meaning, if Rb < 1, there
exists a λn > 0 and a gn associated. Then the steady states is unstable.

Now, if Rb > 1. Figure 3.6 shows when the asymptote is greater than
x = 0. Then there is an intersection between both curves in the positive
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Figure 3.6: f(λ) in blue, g(λ) in red. Rb > 1. Asymptote greater than 0

Figure 3.7: f(λ) in blue, g(λ) in red. Rb > 1. Asymptote lesser than 0.
f(0) > g(0)

interval for lambda. Meaning that, if Rb > 1 and d < 1− πc
2

,then the steady
states is unstable.

Finally, if Rb > 1 and d > 1− πc
2

. Then, as seen in Figure 3.7 and Figure
3.8, the existence of an intersection in the positive values for λ depends on
if f(0) > g(0) is true. In other words, in those conditions, the steady states
is unstable if :

tan

(
1− d
c

)
>
√
Rb− 1 tanh

(
d

√
Rb− 1

c

)
(3.49)
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Figure 3.8: f(λ) in blue, g(λ) in red. Rb > 1. Asymptote lesser than 0.
f(0) < g(0)

Summary

By rewriting the conditions with the initial variables, we obtained that the
conditions for the instability of the steady states are :

• Rb < 1 ⇐⇒ γ21
γ11

< r2
r1

• γ21
γ11

> r2
r1

and l < L− π
2

√
D2

r2

• γ21
γ11

> r2
r1

, l > L− π
2

√
D2

r2
,

tan
(

(L− l)
√

r2
D2

)
>
√

r1γ21
r2γ11

− 1 tanh
(
l
√

r2
D2

√
r1γ21
r2γ11

− 1
)
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3.3.3 Comparison with a non diffusion system of two
species with interspecific competition

Figure 3.9: phase plane of a two species with interspecific competition sys-
tem depending on the parameters. (b) and (c) have the second condition
equivalent to Rb < 1

As we can see in Figure 3.9, in a non-diffusion system, γ21
γ11

< r2
r1
⇐⇒ the

Steady State ( r1
γ11
, O) is locally unstable. That coincidates perfectly with the

first condition we found for our diffusion system.
On the other hand, the local stability of ( r1

γ11
, O) is assured in the non-

diffusion system case, but not in our system. Indeed, there are added condi-
tions coming from the diffusion of the second species that allows it to survive
in a wider range of cases. Which makes sense, since the only contact both
species have comes from the diffusion of the second one.

What is interesting is that, in case we have :

γ21
γ11

>
r2
r1

, l > L− π

2

√
D2

r2

tan

(
(L− l)

√
r2
D2

)
<

√
(
r1γ21
r2γ11

− 1) tanh

(
l

√
r2
D2

√
r1γ21
r2γ11

− 1

)
Then the species diffusing cannot survive. It is effectively killed by its own
diffusion. This is the same phenomenon as the critical patch size in case

39



Figure 3.10: Bifurcation diagram of the steady state depending on l/L and
L. Comparison with the critical patch size coming from Dirichlet bordering
conditions.

Figure 3.11: Bifurcation diagram of the steady state depending on l and
L. Comparison with the critical patch size coming from Dirichlet bordering
conditions.
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Figure 3.12: Initial State for the numerical analysis

of Dirichlet bordering conditions, but there is a difference that appears due
to the death coming from a species competition. This difference is clearly
visible in the Figure(3.10) and (3.11). We also see the existence of a critical
ratio size for the ratio l/L. With c → ∞ since L → 0 and `/L = d ∈]0, 1[,
and since the boundary is given by the equation

1− d = c ∗ arctan

(√
Rb− 1 tanh

(
d

√
Rb− 1

c

))
(3.50)

then a linearization of tanh and artanh gives us that this critical ratio size is(
`

L

)
M

=
1

Rb
=
r2γ11
r1γ21

(3.51)

3.3.4 Numerical confirmation

For the test, the parameter values are r1 = 1, r2 = 1, γ11 = 0.01, γ12 =
0.04, γ21 = 0.1, γ22 = 0.0125, D2 = 1. Which means that the condition
r2
r1
< γ21

γ11
is here always assumed to be true.

The initial state is one very close from the Steady State ( r1
γ11
, 0), to sim-

ulate a small perturbation of it, as shown in Figure 3.12
The first verification is on the instability of the Steady State whenever

the condition L − l < π
2

√
D2

r2
is met. As seen in the Figure 3.13, where the

condition is not met, the steady states is stable. Whereas, in Figure 3.14,
where the condition is met, the instability is clear.

As for the last condition, when we take L− l < π
2

√
D2

r2
as true, then the
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Figure 3.13: L− l < π
2

√
D2

r2

Figure 3.14: L− l > π
2

√
D2

r2

Figure 3.15: tan
(

(L− l)
√

r2
D2

)
<
√

( r1γ21
r2γ11

− 1) tanh
(
l
√

r2
D2

√
r1γ21
r2γ11

− 1
)
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Figure 3.16: tan
(

(L− l)
√

r2
D2

)
>
√

( r1γ21
r2γ11

− 1) tanh
(
l
√

r2
D2

√
r1γ21
r2γ11

− 1
)

last condition for instability is

tan

(
(L− l)

√
r2
D2

)
<

√
(
r1γ21
r2γ11

− 1) tanh

(
l

√
r2
D2

√
r1γ21
r2γ11

− 1

)
With the value taken here, and with taking L − l = 1, this conditions

gives that the instability is true if and only if :

l <
1

3
artanh

(
tan(1)

3

)
≈ 0.2

The numerical results seen in the Figures 3.15 and 3.16 concur with this
condition.

3.3.5 Ecological meaning

It is interesting to compare the stability of this ”extinction of the diffusing
species” equilibrium with the length and ratio of the habitat, because this
length is modified by the destruction of said habitat for example. Nowadays
the human activities have modified a lot of the natural habitat of species,
and we can see from our results that the smaller the L, the more difficult it
is for a diffusing species to invade it. Indeed, if another species is already
established in the area, occupying most of the territory (high `/L ratio),
whether the territory itself is big enough will have a huge impact on the
success of invasion by another species.

On the other hand if it is only ` that shrinks, for example because of a
policy that extends the area of hunting, or a chemical contamination of part of
the area, then we might suddenly cross the border of this bifurcation diagram.

43



In this case, either coexistence happen, or we might see the extinction of the
motionless species, which would be a drastic hysteresis effect.

3.3.6 Bistability of the system

When taking the system(3.29), and studying the small oscillation around the
steady state (0, r2

γ22
) :

U = u(x, t) , u(x, t) > 0, u(x, t) << 1 (3.52)

V =
r2
γ22

+ v(x, t) , |v(x, t)| << 1 (3.53)

we obtain after linearization
∂u
∂t

=

{
Ru(1− a

R
) x ∈ [0, d]

0 x ∈ (d, 1]

∂v
∂t

=

{
−(Rbu+ v) + ∂2v

∂x2
x ∈ [0, d]

−v + ∂2v
∂x2

x ∈ (d, 1]

(3.54)

If our motionless species disappears, meaning a (0,−) steady state, then
nothing prevent the diffusive species to diffuse and fill the whole space, reach-
ing its carrying capacity r2/γ22. So we only need to study ∂u

∂t
. Then :

(R < a ⇐⇒ )
r1
r2
<
γ12
γ22

⇐⇒ (0,
r2
γ22

) is locally stable (3.55)

In other words, the stability that we found before was a case of Bistability.
If we take the same conditions as Figure 3.16, but with the starting values

of both species at their carrying capacity, then we obtain Figure 3.17, which
illustrates the bistability.
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Figure 3.17: tan
(

(L− l)
√

r2
D2

)
>
√

( r1γ21
r2γ11

− 1) tanh
(
l
√

r2
D2

√
r1γ21
r2γ11

− 1
)

.

Initial values of both species are at their respective carrying capacity.
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Chapter 4

Conclusions

Through this paper, we have explored two different aspect of the Mathe-
matical ecology field. The first brought us to analyze the relationship engen-
dered by the existence of a generalist predator among an indefinite number of
preys. The apparent competition exerted between the prey species through
this common predator is a non negligible threat to some endangered species,
as was shown by DeCesare et all[8] for the Sierra Nevada bighorn sheep or the
Vancouver Island marmot. Indeed, if some new prey species with a higher
r/b is introduced in the natural habitat, or the change in environment brings
a modification of the ratio r/b to a much higher value from an already present
species, then they will feed the predator much more. This in turn will let the
population of the predator grows, and all the species will be subject to more
frequent attacks, not only the changed one. As we shown in our analysis,
this may bring the condition of the steady states into a range where some
species will disappear.

On the other hand, it also means we may be able to control this phe-
nomenon to help an endanger species to survive. As shown by Serrouya et
all [9], an important decrease in the principal prey may be an important
conservation strategy for the other preys. Another interesting aspect is the
possibility of biological pest control thanks to the apparent competition. For
example, this effect has been observed by Karban et all [1], and Hanna et all
[2], with the Pacific mites, a very damaging herbivorous to grapevines.The
introduction of another economically unimportant mites species, sharing the
same predator as the Pacific mites, effectively reduced the population of this
harmful mite species.

We have to remember though, we considered that the prey species have
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no direct competition between themselves. It would be an interesting point
to compare the results from this model to a result where we would add an
interspecific competition. It might be possible to know what effect these two
kinds of competition (apparent competition and interspecific competition)
have on one another.

The second aspect we explored was the diffusion of a species, and how
taking into consideration the spatial aspect would change our logistic model
and interspecific competition model. As there are quite some mathemat-
ical difficulties added by taking into account this new space variable, the
model we ended up studying was of a competition with only one of the two
species. Though it stays interesting and relevant. Indeed, because of the
global warming or human activities, many species are forced to flee their
habitat and invade new ones . In this situation, they will be confronted to
already implanted species.
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