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Plants that can reproduce both sexually and agamically are called facultative apomicts. Some
species, such as ¹araxacum, contain both sexual diploids and triploid facultative apomicts.
Triploids produce seeds without gamete fusion and recombination, and can also produce
pollen and fertilize diploids. We present a population dynamic model that deals with gene #ow
and competition between diploids and triploids, with di!ering allocation towards reproductive
investment in seeds and pollen. This paper examines whether diploids and triploids of plants
with facultative agamospermy can coexist within a single population. We analyse the global
behavior of such a dynamic system. Features of the system are signi"cantly a!ected by the
germination rates of diploids and triploids. Either diploids or triploids persist alone when the
germination rate of diploids is su$ciently larger or smaller than that of triploids, respectively.
Competitive exclusion occurs when both germination rates are su$ciently large. Coexistence
is possible under certain speci"c conditions when: (I) the germination rates of both diploid
sexuals and triploids are not su$ciently large, and (II) triploids produce su$cient pollen.
When diploid sexuals and triploids coexist, triploids cannot exist alone, implying that the
pollen of triploids is necessary to exploit diploid ovules.

� 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

Plants that can reproduce both sexually and
agamically are called facultative apomicts. Some
species, such as ¹araxacum, include both triploid
facultative apomicts and sexual diploids. Facul-
tative apomicts form seeds without gamete fusion
and recombination. Facultative apomixis is com-
mon in plants, and is found in about 15% of
angiosperm plant families, although 75% of all
apomicts belong to the Poaceae, Asteraceae, and
Rosaceae families (Asker & Jerling, 1992). These
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plants have polyploids and diploids, the former
are facultative apomicts, while the latter repro-
duce sexually. Facultative apomicts also produce
pollen and fertilize diploids in these plants. In
¹araxacum, triploids produce haploid, diploid, or
triploid pollen that fertilizes diploids, enabling
diploids to produce diploid and triploid seeds
(Richards, 1986; Morita et al., 1990a).
Several articles have reported the geographic

distributions of polyploids and diploids within
a single species. Empirical studies suggest
that diploid and polyploid types of Eupatorium
(Compositae) are geographically separated
(Sullivan, 1976; Kawahara et al., 1989). On the
other hand, diploids and polyploids coexist within
� 2002 Elsevier Science Ltd. All rights reserved.



FIG. 1. Mating scheme used in our model with hybridiza-
tion between diploids and apomicts. All facultative apomicts
are apomictic and all diploids are sexual. Apomicts (left) not
only cross with diploids (right), but also reproduce without
pollination. A diploid individual produces a haploid pollen
grains. An apomictic individual produces b both haploid
and diploid pollen grains with probability r and 1!r,
respectively.
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populations of ¹araxacum (Compositae) (Den
Nijs et al., 1990), Antennaria (Anteraceae) (Bayer
et al., 1991) and Amelanchier (Rosaceae)
(Campbell & Dickinson, 1990). Den Nijs & Sterk
(1984) showed that ¹araxacum populations may
be pure triploid, pure diploid, or mixed. Thus, the
ratio of diploids to polyploids varies among
populations. The ecological situation that brings
about the coexistence of polyploids and diploids
in unknown.
Models of competition between asexual and

sexual strains within a single population have
been used to explain the evolution and mainten-
ance of sexual reproduction. Asexual strains
probably invade sexual populations due to the
two-fold advantage of sex (Williams, 1975;
Maynard Smith, 1978). Recent models show how
a small competitive advantage for sex can cancel
the growth advantage resulting from asexuality
in a density-dependent system (Doncaster et al.,
2000; Kerszberg, 2000). Most models of competi-
tion between sexual and asexual types assume
that asexuality is obligate, and that no genes
are exchanged between the two types. However,
gene #ow does exist between polyploids and di-
ploids in plants with facultative agamospermy. In
this paper, we present a mathematical model that
deals with facultative agamospermy and includes
gene #ow between diploids and triploids, such as
exists in dandelions. We examine whether diploid
sexuals and triploid apomicts can coexist within
a single population.
We focus on the allocation of reproductive

investment in pollen and seeds. For simplicity, we
assume that a plant is monocarpic, unlike dande-
lions. We analyse the stability properties of pure
diploids, pure apomicts, and mixed populations,
and discuss the conditions under which a stable
equilibrium is possible. Although the germina-
tion rate may change with environmental
conditions and the accumulation of deleterious
mutations over the long term, we consider a
constant environment and ignore genetic degra-
dation of asexual strains, and discuss the short
term.

2. Model

Our model is based on a monocarpic annual
plant population that consists of sexual diploids
and facultatively apomictic triploids. Diploids
produce haploid pollen and ovules via meiosis in
the usual fashion. However, triploids produce
both haploid and diploid pollen via meiosis and
triploid ovules via agamospermy. Agamosper-
mous triploids of ¹araxacum form male gametes
with haploid, diploid, or triploid chromosome
sets, although most gametes have incomplete sets
and die (Richards, 1973). For simplicity, we ig-
nore triploid pollen in our model. We assume
that triploids produce haploid pollen with prob-
ability r and diploid pollen with probability
1!r. Diploid seed is produced when haploid
pollen fertilizes a haploid ovule. Triploid seed is
produced either (1) when diploid pollen fertilizes
a haploid ovule or (2) when a triploid ovule
becomes a seed without pollination. The system
of reproduction is summarized in Fig. 1. We
describe the diploid and triploid population
densities at generation t by x

�
and y

�
, respectively.

We assumed that a diploid individual produces
a pollen grains and that an apomict individual
produces b pollen grains. Therefore, an apomict
individual produces rb haploid pollen and
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(1!r)b diploid grains. We assumed that haploid
ovules from diploid donors randomly cross with
pollen from diploids and triploids. In intermixed
populations consisting of diploids and triploids,
the total number of pollen grains at generation
t is ax

�
#by

�
. Assuming random mating within

the population, the probability that haploid
ovules produced by diploids are fertilized by hap-
loid pollen from diploid donors is given by
ax

�
/(ax

�
#by

�
). On the other hand, the probabil-

ity of crossing a haploid ovule produced by
diploids and diploid pollen from triploid donors
is given by (1!r)by

�
/(ax

�
#by

�
). This cross

produces a triploid seed. In the same way, the
probability of crossing a haploid ovule produced
by a diploid and haploid pollen from a triploid
donor is given by rby

�
/(ax

�
#by

�
). This cross

produces a diploid seed.
We consider the cost of sexuality and impose

restrictions on sexual compensation. Both
diploids and triploids have limited resources
available to produce pollen and ovules. Let K

�
and K

�
denote the weight of total reproductive

investment per diploid and triploid, respectively.
The weight of a pollen grain from diploid donors
is k

�
and that from triploid donors is k

�
. A di-

ploid invests k
�
a in pollen andK

�
!k

�
a in seeds,

while a triploid produces the weight of K
�
!k

�
b

seeds. We de"ne g
�
and g

�
as the germination

rate of diploids and triploids, respectively. Let g
�

be the germination rate of hybrid diploid seeds,
and g

�
be the germination rate of hybrid triploid

seeds. The germination rate of seeds may depend
on seed size or ploidy. Note that K

�
!k

�
a and

K
�
!k

�
b must not be negative.

The population dynamics of diploids x
�
and

triploids y
�
is given as follows:

x
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�
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�
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�
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, (1)
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�
#by

�

x
��F�

, (2)
where F
�
and F

�
are the rates at which diploids

and triploids survive and reach maturity (to pro-
duce the next generation), respectively.
Within a population, there is competition for

resources, such as light and nutrients, while
germinated seeds develop to the adult stage. We
assume that competition speci"cally occurs
among seedlings. F

�
and F

�
were assumed to

depend on total densities within a population.
Let z

�
be the total density of seedlings produced

at generation t, de"ned as

z
�
"

(K
�
!k

�
a)x

�
ax

�
#by

�

�g
�
ax

�
#g

�
rby

�
#g

�
(1!r)by

�
�

#g
�
(K

�
!k

�
b)y

�
. (3)

We assume that the survival probabilities F
�
and

F
�
monotonically decrease and approach 0 as the

total seed population density z
�
increases:

F
�
(z

�
)"�

�
e����� ()�

�
) (i"1, 2), (4)

where �
�
, the maximal survival probability, and

�
�
, the coe$cient of density e!ect, are positive

constants (Ricker, 1954). Assuming that the co-
e$cient of density e!ect of diploids is equal to
that for triploids, then �

�
"�

�
"�. If the func-

tional form of density dependence follows
Michaelis}Menten [F

�
(z)"�

�
z/(m#z)], the sta-

bility property becomes simpler. The necessary
conditions for coexistence can be demonstrated
even when we use eqn (4) and the equilibrium is
unstable.
From eqns (1}4), we constructed the following

mathematical model:
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"��(s�!a)
ax�

�
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#by

�

#� (s
�
!a)

rbx
�
y
�
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�
#by

�
� e���� , (5)
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�

#� (s
�
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(1!r)bx
�
y
�

ax
�
#by

�
� e����, (6)



FIG. 2. The graph of function f (	) given by eqn (8) is
shown by a solid curve. The broken line shows the iterating
trajectory of eqn (8): (a) 	

�
approaches a positive equilib-

rium, and (b) approaches 0 or diverges to #R. The initial
condition is indicated by the dot on the 	

�
-axis.
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where �,�
�
g
�
k
�
, �,�

�
g
�
k
�
, �,�

�
g
�
k
�
, �,

�
�
g
�
k
�
, K

�
/k

�
,s

�
, K

�
/k

�
,s

�
, s

�
'a and

s
�
'b.

3. Analysis

3.1. DENSITY RATIO 	
�

Let the density ratio 	
�
,x

�
/y

�
. In this section,

we consider the case y
�
'0. We obtain the fol-

lowing one-dimensional discrete dynamic system
for 	

�
, from eqns (5}7):

	
���

"
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�
!a)(a�	

�
#rb�)	

�
��b(1!r)(s

�
!a)#a� (s

�
!b)�	

�
#b�(s

�
!b)

,f (	
�
). (8)

f (	
�
) is the monotonically increasing function of

	
�
, independent of z

�
. Let 	* be the non-trivial

equilibrium satisfying 	*"f (	*)'0, which is
explicitly and uniquely obtained as

	*"

b��(s
�
!b)!r�(s

�
!a)�

a��(s
�
!a)!�(s

�
!b)�!�b(1!r) (s

�
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(9)

Since s
�
'a and s

�
'b, a positive equilibrium

	* exists if and only if

l
�
(�(l

�
(10)

or

l
�
(�(l

�
, (11)

where l
�
and l

�
are de"ned by

l
�
"

s
�
!a

s
�
!b ��!

b�(1!r)
a � , (12)

l
�
"

r (s
�
!a)

s
�
!b

�. (13)
If eqn (10) is satis"ed, a positive equilibrium 	*
given by eqn (9) is globally stable. Therefore,
f (	)/	'1 if 	(	* and f (	)/	(1 if 	'	*
[Fig. 2(a)].
In contrast, if eqn (11) is satis"ed, the positive

equilibrium 	* is always unstable, whereas the
zero equilibrium is locally stable, because
f (	)/	(1 if 	(	* and f (	)/	'1 if 	'	*
[Fig. 2(b)]. The cobweb method (Mooney
& Swift, 1999) clearly shows that if the initial
value 	

�
is less than 	*, 	

�
monotonically de-

creases over generations (iterations) and asymp-
totically approaches 0. On the other hand, if 	

�
is

greater than 	*, 	
�
monotonically increases to

positive in"nity. Thus, whether 	
�
converges to

0 or diverges to #R depends on the initial
conditions. The given system has a bistable
structure.
From these arguments, if f 
(0)(1 is satis"ed,

but eqn (10) is not, then the value of f (	) must
always be less than 	 for any positive 	. There-
fore, the cobweb method shows that 	

�
P0 as



FIG. 3. Dynamic behavior of x
�
and y

�
, where 	

�
P0

(Domain I), 	
�
PR (Domain II), 	

�
P	*

�
(Domain III), and

	
�
P0 or 	

�
P#R depending on the initial relative density

(Domain IV) for the case where b�/�(1/(s
�
!a) and

rb�(s
�
!a)/a(1. The "tness of an apomict (�) plotted

against that of a diploid (�). Diploids become extinct in
Domain I and apomicts in Domain II. See the text for
subcategories (a)} (c) in Sections 3.2.1 and 3.2.2. See Fig. 5
for subcategories (a)} (c) in Domain III.
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tP#R for any positive initial value 	
�
. The

necessary and su$cient condition for f 
(0)(1 is

�'l
�
, l

�
. (14)

Similarly, if f 
(0)'1 is satis"ed, but eqn (11) is
not, then the value of f (	) must always be greater
than 	 for any positive 	. Therefore, the cobweb
method indicates that 	

�
P#R as tP#R for

any positive initial value 	
�
. The necessary and

su$cient condition for f 
(0)'1 is

�(l
�
, l

�
. (15)

3.2. ASYMPTOTIC BEHAVIOR OF x
�
AND y

�

We focus on the dynamic property of the ratio
	. In this section, we consider the dynamic prop-
erties of densities x

�
and y

�
for the following

separate instances: (I) 	
�
P0, (II) 	

�
P#R, and

(III) 	
�
P	*. From eqns (5}7), x

�
and y

�
do not

positively diverge (see below). In each case, the
absolute density may either approach 0, ap-
proach a unique "nite-positive equilibrium or
#uctuate permanently. Since the germination rate
is assumed to depend on seed size, seeds origin-
ating from the ovules of diploids should have the
same germination rate, regardless of ploidy.
Thus, g

�
"g

�
"g

�
and �,�. A discrete dy-

namic system (5}7) has four equilibria, described
as (0, 0), (0, yJ ), (xJ , 0), and (xL , yL ). System (5}7) may
not reach equilibrium. If 	

�
(,x

�
/y

�
) reaches 0,

then x
�
reaches 0 and y

�
reaches 0 or is kept

positive. If 	
�
P	*, given by eqn (9), x

�
and y

�
either simultaneously reach 0 or both remain
positive. If 	

�
P#R, (x

�
, y

�
) becomes either (0, 0)

or (xJ , 0), and thus y
�
reaches 0 and x

�
reaches 0 or

is kept positive. We investigate (I) the dynamical
behavior of y

�
if x

�
,0, (II) that of x

�
if y

�
,0, and

(III) that of x
�
, if y

�
,x

�
/	*.

3.2.1. Dynamic Behavior of Apomictic ¹riploids

We consider the condition x
�
,0. From eqns

(6) and (7), we obtain

y
���

"�(s
�
!b)y

�
e�����������	��,f

�
(y

�
). (16)

Since eqn (16) indicates a Ricker type of discrete
dynamic system, y

�
does not positively diverge.

When eqn (14) is satis"ed, equilibrium (0, 0) is
stable if and only if, f 

�
(0)(1, i.e. �(s

�
!b)(1.

Under this condition, y
�
converges to 0 for all

y
�
'0. The non-trivial equilibrium satis"es

f
�
(yJ )"yJ . From eqn (16), we can easily obtain the

unique equilibrium yJ "�
�
ln[�(s

�
!b)]/��(s

�
!b).

The equilibrium yJ exists if � (s
�
!b)'1. yJ is

globally stable if � f 

�
(yJ )�"�1!ln[� (s

�
!b)]�(1,

or if 0(ln[� (s
�
!b)](2. Therefore, yJ exists

and is stable if

1(� (s
�
!b)(e�. (17)

In contrast, the equilibrium yJ exists and is unsta-
ble if �(s

�
!b)'e�. Figure 3 shows the following

asymptotic behaviors for the number of triploids:
triploid apomicts (Ia) become extinct, (Ib) reaches
a positive equilibrium, or (Ic) persist and #uctu-
ate permanently.

3.2.2. Dynamic Behavior of Diploids

Next, we consider the condition y
�
,0. From

eqns (5) and (7), we obtain

x
���

"�(s
�
!a)x

�
e���������	�	��,f

�
(x

�
). (18)

Since f
�
(x

�
) also indicates a Ricker type of discrete

dynamic system, x
�
does not positively diverge
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either. When eqn (15) is satis"ed, equilibrium
(0, 0) is stable if f 


�
(0)(1, i.e. �(s

�
!a)(1. Under

this condition, x
�
converges to 0 for all x

�
'0.

The non-trivial equilibrium satis"es f
�
(xJ )"xJ .

From eqn (18), we can easily obtain the unique
equilibrium xJ "�

�
ln[�(s

�
!a)]/��(s

�
!a). As

used to obtain condition (17), the equilibrium
xJ exists and is globally stable if

1(�(s
�
!a)(e�. (19)

In contrast, the equilibrium xJ exists and is unsta-
ble if �(s

�
!a)'e�. Domain II in Fig. 3 shows

the following types of asymptotic behaviors for
diploids: diploids (IIa) become extinct, (IIb) reach
positive equilibrium, or (IIc) persist and #uctuate
permanently.

3.2.3. Asymptotic State of Coexistence

We consider what happens when x
�
,y

�
	*

with 	* given by eqn (9). From eqns (5}7),

x
���

"�(s
�
!a)

ax
�
#rby

�
ax

�
#by

�

x
�
e����(z

�
e����

∀x
�
, ∀y

�
'0, (20)
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"��(s�!a)
(1!r)bx

�
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�
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�

#�(s
�
!b)�

�y
�
e����(z

�
e���� ∀x

�
, ∀y

�
'0. (21)

ze��� maximizes 1/�e at z"1/�. Therefore, both
x
�
and y

�
do not positively diverge. Since 	

�
monotonically approaches 	* irrespective of x

�
and y

�
as shown by (a) in Fig. 2, we expect

x
�
Py

�
	* and consider the asymptotic dynamics

of x
�
after x

�
,y

�
	*. Substitution of y

�
by x

�
/	*

into eqns (5}7) leads to

x
���

"�(s
�
!a)

(a	*#rb)
a	*#b

x
�
e���� (22)

and

x
���

"��(s�!a)
(1!r)b	*
a	*#b

#�(s
�
!b)�x�

e���� , (23)
respectively. Simplifying, eqns (22) and (23)
become

x
���

"Ax
�
e���
	�,g(x

�
), (24)

where

A"�(s
�
!a)

(a	*#rb)
a	*#b)

"� (s
�
!a)

(1!r)b	*
a	*#b

#� (s
�
!b).

From eqn (9), A becomes

A"�
a�(s

�
!b)!rb�(s

�
!a)

a�!b�
. (25)

A is positive if eqn (10) is satis"ed. Quantity
A determines the stability property of this system.
We consider the non-trivial unique equilibrium
xL satisfying xL "g(xL ) for the one-dimensional dis-
crete dynamic system (24), and obtain

xL "
log A
2�A

. (26)

The function g (x) is positive and "nite for all
x*0 and reaches a maximum at x"1/(2�A).
Therefore, x

�
never positively diverges. When 	*

is stable, the dynamic behavior of x
�
has three

cases determined by A: (IIIa) A(1, (IIIb)
1(A(e�, and (IIIc) A(e�. In case (IIIa), x

�
and y

�
(,	*/x

�
) converge to 0 for all x

�
'0 if

A(1, i.e. �'max(�
�
, l

�
), where

�
�
"

a#rb(s
�
!a)�

a(s
�
!b)

!

b�
a(s

�
!b)�

. (27)

In case (IIIb), x
�
converges to the positive equilib-

rium xL if 1(A(e�, i.e. max (�
�
, l

�
) (�(

min(�
�
, l

�
), where

�
�
"

ae�#rb(s
�
!a)�

a(s
�
!b)

!

e�b�
a(s

�
!b)�

. (28)

Finally, in case (IIIc), diploids and apomicts co-
exist with cyclic or chaotic #uctuations if A'e�,
i.e. l

�
(�(min(�

�
, l

�
). The hatched region in

Fig. 4 represents a globally stable coexisting



FIG. 4. Stability property for (i) 0(�(a/b(1!r)
(s
�
!a), (ii) a/b(1!r) (s

�
!a)(�(e�a/b(1!r)(s

�
!a)

and (iii) �'e�a/b(1!r) (s
�
!a). Both diploids and

apomicts become extinct in Domain (IIIa). Diploids and
apomicts coexist in Domain (IIIb). Domain (IIIc) shows that
both diploids and apomicts persist and #uctuate stably.

FIG. 5. Attractors for eqn (24) when �"1 and x
�
"100.

For 0(A(1, x
�
converges to 0. For 1(A(e�, equilib-

rium xL is locally stable. For A'e�, equilibrium xL becomes
unstable and periodic cycles appear as A increases.
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equilibrium (xL , yL ), where yL "xL /	*. The dotted
region in Fig. 4 represents persistent, but #uctu-
ating, levels of diploids and apomicts. We investi-
gate the dynamic behavior of x

�
numerically.

After 10 000 generations, the system reaches
periodic or chaotic oscillations. Figure 5 shows
the population for the last 100 generations. Simu-
lations starting from a population size of 100
reveal a bifurcation diagram of x

�
. xL becomes

unstable and the system has periodic cycles as
A increases. Increasing A further results in peri-
odic doubling in the asymptotic state and "nally
results in a chaotic state.
When 	

�
P0 (Domain I in Fig. 3), y

�
has three

asymptotic states: (x
�
, y

�
)P(0, 0), (0, yJ ), (0, vari-

able). The asymptotic state yJ depends on � if
	
�
P0. When 	

�
P#R (Domain II in Fig. 3), x

�
has three asymptotic states: (x

�
, y

�
)P(0, 0), (xJ , 0),

(variable, 0). The asymptotic state xJ depends on �
if 	P#R. When 	P	* (Domain III in Fig. 4),
(x

�
, y

�
) has asymptotic states: (x

�
, y

�
)P(0, 0), (xL , yL ),

(variable, variable). The asymptotic state
(xL , yL ) depends on A if 	P	*. When the fate
of 	

�
depends on the initial value (Domain IV in

Fig. 3), nine asymptotic states arise: (IVaa) (0, 0)
(not bistable), (IVab) (xJ , 0) or (0, 0), (IVac)
(variable, 0) or (0, 0), (IVba) (0, 0) or (0, yJ ), (IVbb)
(xJ , 0) or (0, yJ ), (IVbc) (variable, 0) or (0, yJ ), (IVca)
(0, 0) or (0, variable), (IVcb) (xJ , 0) or (0, variable),
and (IVcc) (variable, 0) or (0, variable). When
b�/�'1/(s

�
!a), Domains IIa, IVaa, IVba, and

IVca disappear (see Fig. 3). I similar ways, all
Domains, but Ic, IIc, IIIa, and IVcc may disap-
pear depending on parameter values.
Figure 6 demonstrates that the stable structure

changes from coexistence to extinction as �
(the germination rate of triploid seed without



FIG. 6. Change in the equilibrium density of diploids and
apomicts as � increases from 0 to 1. �"1.04, �"2, �"1,
a"1, b"1, r"0.8, s

�
"2, and s

�
"2. (**) and (} } })

curves, respectively, indicate diploids and apomicts.

FIG. 8. The six trajectories of (x
�
, y

�
) for �"1.6, �"1,

�"0.9, �"1, a"1, b"1, r"0.5, s
�
"2, and s

�
"2. Each

initial value is (x
�
, y

�
)"(1, 1), (1, 2), (0.1, 1), (0.05, 0.15), (0.05,

0.02), (0.25, 0.1). The (� � �) and (� � �) circles are unstable
and locally stable equilibria, respectively. The slope of the
(} } }) line indicates 	*.

FIG. 7. The "ve trajectories of (x
�
, y

�
) for �"0.676, �, �,

and � are the same as in Fig. 6. Each initial value is (x
�
, y

�
)

"(1, 1), (0.01, 10��), (0.01, 10��), (0.03, 10��), (0.1, 10��).
Each (**) curve presents the trajectory with each initial
value. The (� � �) and (� � �) circles are unstable and stable
equilibria, respectively. The slope of the broken line indi-
cates 	* and the ratio x

�
/y

�
monotonically approaches 	*.
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crossing) increases. When �(l
�
, x

�
converges to

a positive equilibrium and y
�
converges to 0. In

other words, the population becomes purely di-
ploid. When l

�
(�(�

�
, diploids and triploids

coexist. However, as � increases to �
�
, xL mono-

tonically decreases, yL initially increases and sub-
sequently decreases, and "nally xL and yL approach
0, as � increases from l

�
to �

�
. If �

�
(�(l

�
, both

diploids and triploids become extinct. Figure 7
shows the trajectories of x

�
and y

�
for �

�
(�(l

�
.

Here, yL (apomict) initially increases then de-
creases with increasing �, as shown in Fig. 6.
Thus, increasing � does not always support the
triploid population. If the germination rate of
triploid seed asexually produced by triploid
apomict � is su$ciently small, most triploids are
reproduced by crossing. Under these conditions,
diploids and triploids coexist. As � increases, di-
ploids and apomicts are a!ected by the density
e!ect of the seedlings. The number of triploids
o!spring increases with �. Diploids are fertilized
by triploids and become extinct. Subsequently,
triploids also become extinct. When � is su$-
ciently large, diploids become extinct. Under
these conditions, the stability of the equilibrium
depends of �.
Figure 8 shows the trajectories of x

�
and y

�
for Domain (IVab) in Fig. 3. Whether diploids
persist depends on the initial conditions. Both
diploids and apomicts become extinct when
x
�
/y

�
(	* (shown by the dotted line); however,

diploids can invade when x
�
/y

�
'	*. For

example, a small number of diploids invade at
a trivial equilibrium (0, 0) and x

�
/y

�
'	* and

therefore the system moves to the other equilib-
rium (xJ , 0). We compile the dynamics of this
system as follows: (i) both diploids and apomicts
become extinct (Domains Ia, IIa, IIIa, and IVaa),
(ii) both diploids and apomicts coexist (Domains
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IIIb, IIIc), (iii) only diploids can invade (Domains
IIb, IIc, IVab, and IVac), (iv) only apomicts can
invade (Domains Ib, Ic, IVab, and IVca), and (v)
whether diploids or apomicts invade depends on
the initial relative density (Domains IVbb, IVbc,
IVcb, and IVcc).

4. Discussion

Based on our results, the coexistence of triploid
apomicts and diploid sexuals does not require
niche separation. However, coexistence is only
possible under speci"c conditions, where both
� (the germination rate of sexual diploid seeds)
and � (that of triploid seeds without crossing) are
su$ciently small, as in Fig. 4. When diploids and
apomicts coexist, the system has three equilib-
rium states: stable or periodic cycles or a chaotic
state. These complex dynamics depend on
a Ricker form density dependence. If the func-
tional form of density dependence conforms to
Michaelis}Menten [F

�
(z)"�

�
z/(m#z) in eqn (4)],

this system always has a stable equilibrium. The
coexistence conditions shown in Fig. 3 are the
same irrespective of the functional forms of den-
sity dependence. System (5}7) is bistable in condi-
tions (IVbb), (IVbc), (IVcb), and (IVcc). In these
cases, neither apomicts nor diploids invade each
other's population. Apomicts cannot increase
where diploids already exist. Diploids cannot in-
crease where apomicts already exist. This situ-
ation is thought to be unlikely in nature. In
¹araxacum, which is perennial and has both sex-
ual diploids and apomictic triploids, the latter
have invaded broad areas in Japan where the
native species is exclusively diploid (Morita et al.,
1990b; Ogawa & Isao, 1991). If the germination
rate of triploids is large, a pure triploid popula-
tion would be generated as in Case (I). In con-
trast, if the germination rate of diploids is large,
they would make a pure diploid population as in
Case (II).
The maintenance of sexual diploids depends

on the di!erence between the germination rates
of diploids and apomicts, �!�. If apomicts do
not produce pollen, that is b"0, s

�
"s

�
, and

�"�, then the slope of l
�
is smaller than 1, and

diploids never persist. Coexistence of diploid and
apomict is possible if apomicts produce pollen. If
b"0, both lines l

�
and l

�
in eqns (12) and (13)
pass on (0, 0) and Domain (III) in Fig. 3 vanishes.
Facultative apomicts may be forced to pay the
cost of pollen production when the germination
rate of triploid apomicts is very low. When
apomicts produce more pollen (b becomes large),
diploids and apomicts may coexist, because
Domain (III) becomes larger. Apomicts
become extinct when diploids produce more pol-
len (a becomes large). Diploids become
extinct when they produce less pollen (a becomes
small).
The population structure depends on the ger-

mination rates of diploids and triploids (� and �,
respectively). However, we have little quantitat-
ive information on the germination rate or the
numbers of seedlings produced by diploids and
triploids. The germination rate of diploids
depends on density, climate, and pollinator
conditions, since diploids are considerably self-
incompatible. If the population density is very
low, the germination rate of diploids may be
lower. Thus, the germination rate di!ers among
habitats and between diploids and triploids
owing to ecological conditions.
Crossing can alter genetic variability, but our

model did not include this pehnomenon. Cross-
ing may also provide variability in agamosperms
by promoting recombination (Mogie, 1992).
Populations in the wild may be subject to immi-
gration, since vectors such as birds can transport
seeds over considerable distances. Isozyme
evidence suggests that genetic variation exists
between sexual and agamospermous species
(Yahara et al., 1991; Overath & Hamrick, 1998).
Variation in agamospermy may be the result of
crossing, immigration, or mutation. Spatial
structure and genetic diversity should also be
considered. Further modi"cations of our math-
ematical model are expected to contribute to the
examination of the evolution of facultative
agamosperms.
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