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Abstract

We consider the relation between the spatial distribution of resource related to the
mating activity, for instance, the spatially distributed females themselves and the size
distribution of territories established by males for purpose of mating. Assuming the
ranking related to the position of territory, we construct and analyze a mathematical
model to consider how the spatial size distributions of the territories and the mating
groups are affected by the spatial distribution of mating resource. Our modelling analyses
clearly demonstrate that the size distribution of territories is significantly affected by the
spatial distribution of mating resource. The tendency of the spatial size distribution of
territories is monotonically increasing for some types of spatial distribution of mating
resource as the territorial site gets located far from the most favorable place, while a
specific spatial distribution of mating resource can realize a monotonically decreasing
size distribution of territories.
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1. Introduction

In numerous cases of animals, fishes and insects, territory is established for the various
purposes, for example, for foraging and for mating (for instance, see Krebs and Davies,
1981). Keeping territory brings to its owner such benefit that he could advantageously
use the resource in his territory, whereas he would have to spend the time and the
energy to maintain and defend his territory. It is considered that the maintenance
of territoriality basically depends on whether the benefit that the territorial individual
gains by keeping its territory overcompensates the loss spent for keeping it (Brown,
1964; Davies, 1978; Davies and Houston, 1984; Myers et al., 1981). The benefit and the
loss with keeping the territory depend on the property of habitat where the territory is
established, which contains the spatial density distribution of the foods, the mates and
the interacting other species including predators.

Horn (1968) constructed and analyzed the geometrical model for the maintenance of
territoriality, and discussed how the maintenance depends on the density distribution of
foods. He suggested that, when the food is uniformly distributed in space and is suc-
cessively recruited, the territoriality could evolve. In contrast, when the spatial density
distribution of foods has the small variance, and when the place with the higher density
of foods is temporally variable and the prediction about the spatial density distribution
is hard, the territoriality could not evolve.

The spatial size distribution of territories depends on the property of habitat. For
example, in case of labroid fishes which live on reefs in the tropics and the temperate zone,
females migrate to specific spawning sites on the outer or the downcurrent edges of reefs
in order to spawn in the mating season. That is, the biased spatial density distribution
of females is observed in the mating season. In such case of labroid fishes, the spatial
density distribution of females could reflect the spatial distribution of the spawning sites
preferred by females. Territorial phase males make territories over prominent rocks
on the offshore reef slope where females prefer spawning in the mating season. Those
territories are maintained at the same location during some days in the mating season.
Females tend to gather at a specific territorial male selected according to the position of
territory, the body size and the color of territorial male. As a result, each territorial male
constructs its mating group consisting of females within its territory, and the territorial
male tends to exclude the other males from its territory and to spawn with females of
its own mating group. In case of the labroid fish Halichoeres melanochir, the size of
territory located at the center of the spawning site is smaller than those at the periphery,
and the territorial male at the center of spawning site can experience significantly higher
successful matings than the other at the periphery (Moyer and Yogo, 1982).

In general, as the territory size gets larger, the amount of time and energy which its
owner has to spend to keep its territory would increase. Due to such cost of time and
energy, the benefit which the territorial individual gains would not necessarily increase
as expanding its territory. From the viewpoint of optimality, it could be considered that
the territory size is selected so as to maximize the benefit which its owner gains.

Constructing and analyzing a mathematical model, we consider how the spatial size
distribution of territories depends on the spatial distribution of resource related to the
mating activity. In this paper, especially we consider the spatial distribution of females
and that of territories established by males for purpose of mating such as in case of
labroid fishes. The spatial distribution of females reflects the preference of female for
the spawning site, the food abundance and the mate keeping territory. The small variance
of the spatial distribution of females corresponds to the case when the places or the mates
preferred by females are distributed in a restricted small region and when the preference
of female is intense. We consider the ranked male in terms of the occupation of territory.
It is assumed that male with the higher rank can occupy the more favorable place where
the female density is the higher. The rank reflects the priority to occupy the place with
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the higher female density. In our modelling, with a given spatial density distribution
of females, provided that each territorial male could select their territory size according
to the ranking so as to maximize its successful matings, we can theoretically derive the
expected size distribution of territories. Furthermore, provided that the mating group is
established within the territory of each territorial male, the mating group size is uniquely
determined from the female density distribution and the territory size. We consider the
nature of the size distribution of mating groups, too.

Our fundamental mathematical modelling will be able to be improved to some more
sophisticated mathematical modelling involving some other more concrete factors rele-
vant to the size distribution of territories, and will provide a basic framework to construct
and analyze such more advanced mathematical model.

2. Assumptions and General Model

We consider a mathematical model on how the spatial size distribution of territories is
determined. We suppose that mating group is established within the territory of each
territorial male, and that the group size is uniquely determined from the female density
distribution and the territory size.

In case of labroid fishes, terminal phase males make territories in the mating season.
Territories are settled at the mating sites. Each territorial male tends to exclude the
other males from its own territory and spawn with females of its own mating group. As
a result, the best male could occupy the most favorable place, that is, the best territory
where the female density is higher than in the other place. So territories could be
considered to be settled one after another from the more favorable place to the less.
Provided that the territorial male that can occupy the larger territory can keep the
more females, the territorial male would spend the greater amount of time and energy to
defend its territory and keep females in its territory as it could have the larger territory.
Territorial male has to defend females from sneakers, too. When mating group size
is too large, territorial male could not efficiently guard females from sneakers. Hence,
the successful matings of territorial male does not necessarily increase as expanding its
territory.

In our mathematical modelling, we consider the 1-dimensional space for the territory.
The spatial density distribution of females is now given by F (x), that is, the female
density in the region [x, x + dx] by F (x)dx. The density function F (x) is assumed to
be sufficiently smooth and satisfy the following conditions for ∀x ≥ 0:

dF (x)
dx

≤ 0 (1)

F (x) = F (−x) (2)

0 ≤ F (x) < +∞. (3)

These conditions indicate that the most favorable site is at x = 0, and the female density
monotonically decreases as |x| gets higher, that is, as the distance from the most favorable
site does larger. We assume that the better territorial male can occupy the place where
the female density is the higher. From (2), since the considered density distribution
of females is symmetry in terms of x = 0, we assume that the spatial distribution of
established territories is symmetry, too. So the 2n th and the 2n + 1 th males (n ≥ 1)
are considered to have the same size of territory. The best territorial male is assumed to
make the territory on [−x0/2, x0/2], where x0 represents the territory size for the best
male. From the above-mentioned symmetricity of the spatial distribution of territories,
the second and the third males make territories respectively on [x0/2, x0/2 + x1] and on
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[−x0/2− x1, −x0/2]. Subsequently, the 2n th and the 2n + 1 th males (n = 1, 2, 3, ...)
respectively make the territories on [zn−1, zn] and on [−zn, −zn−1], where

z0 =
x0

2

zn = zn−1 + xn =
x0

2
+

n∑
k=1

xk (n ≥ 1),

and xk is the territory size for the 2k th and the 2k+1 th males. For the symmetricity of
the spatial distribution of territories, we hereafter consider just [zn−1, zn] of the territory
for the 2n th male (n ≥ 1). The number of females Mn(x) that the 2n th male (n ≥ 1)
can keep within the territory size x is given by

Mn(x) =
∫ zn−1+x

zn−1

F (y)dy =
∫ x

0

F (zn−1 + y)dy. (4)

Mn(x) is equal to the number of females that the 2n + 1 th male (n ≥ 1) can keep
within the territory size x. The number of females M0(x) kept by the best male with
the territory size x is given by

M0(x) =
∫ x/2

−x/2

F (y)dy = 2
∫ x/2

0

F (y)dy. (5)

As the territorial male keeps the larger size of territory, he has to spend the greater
amount of time and energy to defend its own territory and keep females in its territory.
In this reason, the available time and energy for matings would decrease as the size of
territory gets larger. So, now we define the successful matings Wn(x) of the 2n th male
with the territory size x by

Wn(x) = A(x)Mn(x), (6)

where A(x) is assumed to satisfy the following conditions for ∀x ≥ 0:

A(x) ≥ 0 (7)

dA(x)
dx

≤ 0 (8)

0 < −d[log A(x)]
dx

∣∣∣∣
x=0

< +∞. (9)

As the size x of territory gets larger, Mn(x) increases, while A(x) decreases from (8).
The above-mentioned negative effect of the territory size on the successful matings is
now introduced by the function A(x).

We assume that each territorial male selects the territory size x at which Wn(x) takes
the maximum. Eventually, the selected size xn must satisfy the following conditions:

dWn(x)
dx

∣∣∣∣
x=xn

= 0 (10)

d2Wn(x)
dx2

∣∣∣∣
x=xn

< 0. (11)

We assume that, when the roots for (10) and (11) exist, the territorial male selects the
minimum of those roots as its territory size.
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3. Analysis

At first, we consider the territory size x0 for the best male. From (10), we can obtain
the following equation:

L0(x) = R(x) (12)

where

L0(x) =
F (x/2)

2
∫ x/2

0
F (y)dy

R(x) = −d[log A(x)]
dx

.

We can easily show that, when the positive roots for (12) exist, the minimum root satisfies
(11), and it is selected as x0 (see Appendix A).

Next, we consider the territory size xn for the 2n th male (n ≥ 1). From (10), we
can obtain the following equation:

Ln(x) = R(x) (13)

where

Ln(x) =
F (zn−1 + x)∫ x

0 F (zn−1 + y)dy
,

and R(x) is the same as before. We can show again that, when the positive roots for
(13) exist, the minimum root satisfies (11), and it is selected as xn (n ≥ 1) (see Appendix
A).

We can prove that, when the appropriate positive root x for (12) exists, and when
Ln(x) > Ln+1(x) for ∀n ≥ 0 and ∀x > 0, the appropriate root for (13) always exists and
the determined territory sizes xn monotonically decreases in terms of n ≥ 0 (Appendix
B). Otherwise, the territory size is not necessarily decreasing in terms of n. Indeed, the
n-dependency of the territory size is considerably affected by the nature of the spatial
density distribution of females. In Appendix B, the general condition sufficient for the
increasing monotonicity and that for the decreasing monotonicity of the territory size xn

in terms of n (≥ 1) are given.
Now, to demonstrate how the characteristics of the female distribution affects the op-

timal distribution of male territory sizes, we consider the following distribution functions
F of females, which satisfy (1), (2) and (3) (see Fig. 1):

Case A: F (x) ∝ e−β|x|

Case B: F (x) ∝ e−βx2

Case C: F (x) ∝ H(−x2 + β2) ≡
{ −x2 + β2 for |x| < β

0 for |x| ≥ β

Case D: F (x) ∝ 1
eλx−β + 1

Case E: F (x) ∝ 1
βx + 1

,

where β and λ are positive constants.
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At first, we consider the following function A which represents the effect of the terri-
tory size on the successful matings, satisfying (7), (8) and (9):

A(x) ∝ e−αx, (14)

where α is a positive constant that represents the extent of energy share for keeping
the territory with size x. As α gets larger, the available time and energy for matings
decrease, whereas, as α does smaller, they increase. For A(x) given by (14), R(x)
becomes constant α. Then, we can show that the mating group size Mn(xn) kept by the
2n th male satisfies the below relation for any spatial female density distribution function
F satisfying (1), (2) and (3), so that it monotonically decreases in terms of n (Appendix
C):

Mn(xn) > Mn+1(xn+1) for n ≥ 0. (15)

In case of the uniform distribution of females, that is, when F (x) =const., the optimal
territory size is the same with each other as long as the territory could be established
within the region where females are distributed. With (14), it is given by 1/α.

For each function F in the above-described cases, we show in Fig. 2 the territory size
(grey) and the mating group size (black) of each male, calculated numerically with (14).

Numerical demonstration Fig. 2(a) corresponds to Case A with (14). For Case A,
whenever the positive root x for (12) exists, the appropriate one for (13) exists, and then
the determined territory sizes have the following relations for any function A satisfying
(7), (8) and (9) (Appendix D):

x0 > x1; (16)

xn = xn+1 for n ≥ 1. (17)

This result indicates that the territory size of the best male is larger than any other
males, and all the other males have the same territory size.

From (16) and (17), we can show that the mating group sizes for Case A have the
relation (15) for any function A satisfying (7), (8) and (9) (Appendix D). This indicates
that the mating group size monotonically decreases as the rank of territorial male becomes
lower. Consequently, the mating group size is smaller in the less favorable region than
in the more favorable region with the higher female density.

Also for Cases B, C and D, as shown in Figs. 2(b-d), the territory size xn monotoni-
cally decreases in terms of n. That is, the size of territory located at the more favorable
site with the higher female density is larger than that at the less favorable.

For Case C, the spatial density distribution of females is restricted in [−β, β]. As
shown in Fig. 2(c), the territories located relatively near the most favorable site could
have almost the same size. However, the territory size becomes smaller rapidly as the
distance from the most favorable site gets much larger. Only males ranked less than
the 18 th have the territories. Fig. 2(c) could be regarded as the case when the size of
territories settled in the periphery of the spatial distribution of females is much smaller
than the others within an internal range of female distribution.

For Case D, as shown in Fig. 2(d), the territories located in the sufficiently favorable
region have almost the same size. Because of the nature of the female density distribution
shown by Fig. 1(d), the size of territories located in the region with an intermediate range
of female density rapidly decreases as the distance from the most favorable site gets
larger. The territories located in the less favorable region with the lower female density
have almost the same size distinctly smaller than the size for those in the sufficiently
favorable region. Hence, in this case, the territories could be roughly classified into two
characteristic sizes.

In contrast to the previous cases, Case E is an example to satisfy the sufficient con-
dition for the increasing monotonicity of the territory size xn in terms of n (≥ 1), given
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in Appendix B. In case of labroid fishes, it has been reported that the territory size
monotonically increases as the distance from the most favorable spawning site with the
higher female density gets larger (Moyer and Yogo, 1982). In Case E of our model,
when the parameter β is small, the territory size x0 for the best male is larger than that
for the second, while the territory size xn monotonically increases in terms of n ≥ 1
(Fig. 2(e-1)). When β is sufficiently large, as shown in Fig. 2(e-2), xn monotonically
increases in terms of n ≥ 0. In this case, the parameter β represents the extent of
the variance of spatial density distribution of females. As β gets larger, the variance
becomes smaller. When the variance gets smaller, the optimal size of territory located
in the more favorable region with the higher female density tends to become smaller than
that in the less favorable region.

For each case, we show in Fig. 3 the spatial distribution of the mating group size
per territory size of each male, Mn(xn)/xn, that is corresponding to the mean female
density within the territory (grey), and the successful matings Wn(xn) defined by (6)
(black). Figs. 3(a-e) respectively correspond to Cases A, B, C, D and E. For every
considered cases, both the mean female density and the successful matings are larger for
the territory located at the more favorable site with the higher female density than for
one at the less favorable. In Fig. 3(d) for Case D, the males with their territories in
the sufficiently favorable region have almost the same larger successful matings. In Figs.
3(e-1) and (e-2) for Case E, the mean female density is small and roughly similar for the
territories located in the less favorable region with the lower female density. Figs. 3(e-1)
and (e-2) respectively correspond to the cases when β is small and when it is sufficiently
large. As the variance of the density distribution of females gets larger, the successful
matings of any male becomes smaller.

From Figs. 2 and 3, we can see that the nature of the successful matings is regarded
as significantly related to the nature of the mating group size and of the mean female
density within the territory.

Fig. 4 gives the spatial distributions of the successful matings per territory size (grey)
and per mating group size (black). The former can be regarded as the mean efficiency
of the utilization of territory area for the mating success, or as the value of the unit
territory area according to the mating success. The latter corresponds to the successful
matings averaged over the females within the territory, so that it can be regarded as the
value of one female according to the mating success. The successful matings per territory
size shows the nature similar to that of the mating group size (Fig. 3) or the mating
group size per territory size (Fig. 4). It monotonically decreases as the distance from the
most favorable site gets larger. This result indicates that the merit of the wider territory
according to the mating success becomes the less as the territory is located at the less
favorable site. Especially, as seen from Fig. 4(d), Case D shows that the value of the
unit territory area rapidly decreases as the distance of territory from the most favorable
site gets over a critical.

In contrast, the successful matings per mating group size does not necessarily have
such nature as common for every cases. Commonly for Cases A, B, C and D, as seen from
Figs. 4(a-d), the successful matings per mating group size is monotonically increasing in
the male rank n, that is, in the distance from the most favorable site. For Case E, as
seen from Figs. 4(e-1) and (e-2), roughly saying, it is monotonically decreasing, although
it is larger for the second rank male than for the best in case of Fig. 4(e-1).

For Case A, the value of one female according to the mating success does not have
much difference among territories as seen from Fig. 4(a). So, from the viewpoint of
female, the mating success is affected little by which territory it belongs to.

Differently from Case A, the value of one female in Case C could show a drastic
change for the territories sufficiently far from the most favorable site. In Fig. 4(c),
the value of one female for the peripheral territories is rather high, whereas it does not
have little difference among the territories located within an internal range of distance
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from the most favorable site. In other words, the female in the territory located at the
peripheral site has a rather high value for the territorial male according to its mating
success. From the viewpoint of such female, the female could expect the higher mating
success in the peripheral territory, compared to the female belonging to the territory
located at the better site. As for the female belonging to the territory within an internal
range of distance from the most favorable site, as seen from Fig. 4(c), the female could
expect little difference depending on which territory it belongs to, as long as belonging
to the territory located within the range.

Also for Case D, as seen from Fig. 4(d), the value of one female has the characteristics
similar to that for Case C. However, compared to Case C, Case D shows a classification
of the value into two characteristic groups, as resulted for the territory size distribution
shown by Fig. 2(d). For a group of territories (for instance, from n = 0 to 4 in Fig.
4(d)) within an internal range of distance from the most favorable site, the value of one
female has little difference among them. In the same time, for another group of territories
(from n = 11 to 20 in Fig. 4(d)) sufficiently far from the most favorable site, too, the
value has little difference among them. The value of one female in the latter group is
significantly larger than that in the former. Roughly saying, the value of one female
becomes significantly larger as the location of territory gets out of a critical range (upto
n = 7 or 8 in Fig. 4(d)).

Case E shows the characteristics different from the other cases. The value of one
female is relatively higher around the most favorable site than in the peripheral sites far
from the most favorable. In case of Figs. 4(e-1) and (e-2), the value of one female in the
territories located within the peripheral region far from the most favorable site has little
difference among them.

Through those results shown in Fig. 4, the distribution of the value of one female
has tendency reflecting the characteristics of the distribution of territory size rather than
the mating group size. That is, the female tends to have the higher value in the smaller
territory. So, this result indicates a significant relationship between the territory size and
the value of one female, independently of the female distribution in space.

4. Conclusion

In our model, we considered the 1-dimensional space for territory, and analyzed a funda-
mental mathematical model to consider how the spatial size distributions of the territories
and the mating groups are determined, depending on the spatial distribution of resource
related to the mating activity, for instance, that of females themselves. We analyzed
the model for some different spatial density distribution functions of the resource. In
some cases of labroid fish, as observed by Moyer and Yogo (1982), the territory size is
smaller at the more favorable mating site with the higher female density than at the
less favorable. Our mathematical model can realize such nature of the size distribution
of territories (see Fig. 2(e)). However, as shown in Fig. 2, the results opposite to
such observed nature could be realized by our mathematical model, too, depending on
the spatial distribution of females. Therefore, our results could apparently demonstrate
that the spatial size distribution of territories considerably depends on how the resource
related to the mating activity, including the female density, is distributed in space.

In some cases of labroid fish, the territorial male has to defend the mating group
against the sneakers. Such situation would make the amount of time and energy for the
territorial to defend its territory increase. The density of sneakers might have tendency
to be higher at the more favorable mating site. As a result, such situation would work to
reduce considerably the territory size at the favorable mating site. In our mathematical
modelling, such effect of sneaker subpopulation could be regarded as to be introduced
into the model by the nature of both functions F and A. This is because the spatial
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distribution of sneakers must be significantly relevant to the female distribution F , and
the loss of mating success due to the sneaking could be to A.

In reality, the spatial distribution of territories is to be considered in the 2-dimensional
space. However, when the territories are formed in the region centered at the unique
favorable mating site, we could expect that there would be the similar property of the
distribution as resulted for our 1-dimensional model.

In this paper, we considered that the spatial density distribution of females could
reflect the spatial distribution of the spawning site preferred by females. We could
consider the other factors which could reflect the preferability for mating, for example,
the food or the predation risk. For the case of food distribution, W (x) could be regarded
as corresponding to the number of offsprings or the energy that the territorial keeping
the territory size x could expect to obtain.

Our fundamental mathematical modelling will be able to be improved to some more
sophisticated mathematical modelling involving some other more concrete factors rele-
vant to the size distribution of territories, and will provide a basic framework to construct
and analyze such more advanced mathematical model.
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Appendix A Adaptability of the Minimum Root

The x-derivative of L0(x) is obtained as follows:

dL0(x)
dx

=
1

4{M0(x)}2

[
dF

dx
(x/2)M0(x) − {F (x/2)}2

]
.

M0(x) is given by (5). Therefore, from (1) and (3), dL0(x)/dx < 0. Hence, L0(x)
monotonically decreases in terms of x.

From (1) and (3), it can be essily shown that M0(x) satisfies the following inequality:

xF (x/2) < M0(x) < xF (0).

Thus, L0(x) satisfies the following inequality:

F (x/2)
xF (0)

< L0(x) <
1
x

. (A1)

From (1) and (3), as x → +0, F (x/2)/{xF (0)} and 1/x diverge to +∞. As x → +∞,
they converge to 0. Therefore, from (A1), L0(x) diverges to +∞ as x → +0, and
converges to 0 as x → +∞. Now, dW0(x)/dx > 0 when L0(x) > R(x), and dW0(x)/dx <
0 when L0(x) < R(x). Since A(x) satisfies (9), 0 < R(0) < limx→+0 L0(x) = +∞.
Therefore, when the positive roots for (12) exist, L0(x) and R(x) have the relation shown
in Fig. 5. As a result, when the positive roots for (12) exist, W0(x) takes the maximum
at the minimum root of them, so that the minimum positive root satisfies (11).

In the similar way, we can show that Ln(x) monotonically decreases in terms of x,
and it diverges to +∞ as x → +0, and converges to 0 as x → +∞. Therefore, when the
positive roots for (13) exist, Wn(x) takes the maximum at the minimum root of them.

Appendix B Monotonicity of Territory Sizes

At first, we consider the decreasing monotonicity of the territory size xn in terms of n.
When the appropriate positive root for (12) exists, L0(x) and R(x) have the relation as
shown in Fig. 6. Then, when Ln(x) > Ln+1(x) for ∀n ≥ 0 and ∀x > 0, as shown in
Fig. 6, the positive root for (13) always exists and the determined territory sizes satisfy
xn > xn+1. So, in this case, we can obtain the following condition sufficient for the
decreasing monotonicity of the territory size xn in terms of n:

∂L(x, z)
∂z

< 0 for ∀z, x > 0,

where

L(x, z) =
F (x + z)∫ x

0 F (y + z)dy
.

Ln(x) in the main text corresponds to L(x, zn−1) (n ≥ 1). When L(x, z) monotoni-
cally decreases in terms of z, Ln(x) > Ln+1(x) so that the territory size xn (n ≥ 1)
monotonically decreases in terms of n.

Next, we consider the increasing monotonicity of the territory size. For ∀n ≥ 0
and ∀x > 0, when Ln(x) < Ln+1(x), and when the appropriate positive roots x for
Ln(x) = R(x) and Ln+1(x) = R(x) exist, with the argument similar to that for the
decreasing monotonicity of the territory size, we can show that the determined territory
sizes xn and xn+1 satisfy xn < xn+1. In this case, for n ≥ 1, we can obtain the following
sufficient condition for the increasing monotonicity of xn in terms of n:

∂L(x, z)
∂z

> 0 for ∀z, x > 0.
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When L(x, z) monotonically increases in terms of z, Ln(x) < Ln+1(x). Then, when
Ln(x) < Ln+1(x), and when the appropriate positive roots x for Ln(x) = R(x) and
Ln+1(x) = R(x) exist, we can show that the determined territory sizes xn and xn+1

satisfy xn < xn+1.

Appendix C Decreasing Monotonicity of Mating Group
Sizes

For the function A(x) given by (14), R(x) is constant α. Since M0(x0) is given by (5)
and x = x0 satisfies (12), the following relation can be obtained:

M0(x0) =
1
α

F (x0/2) =
1
α

F (z0).

Since M1(x1) is given by (5) and x1 satisfies (13), the following can also be obtained:

M1(x1) =
1
α

F (x0/2 + x1) =
1
α

F (z0 + x1).

From (1) and (3), F (z0) > F (z0 + x1). Hence, the above relations show that M0(x0)
and M1(x1) satisfy the following relation:

M0(x0) > M1(x1).

Similarly, for n ≥ 1, Mn(xn) and Mn+1(xn+1) become

Mn(xn) =
1
α

F (zn−1 + xn)

Mn+1(xn+1) =
1
α

F (zn + xn+1) =
1
α

F (zn−1 + xn + xn+1).

Since F (zn−1 + xn) > F (zn + xn+1) for n ≥ 1, the argument same as above concludes
that Mn(xn) and Mn+1(xn+1) satisfy the following relation:

Mn(xn) > Mn+1(xn+1).

Appendix D Territory and Mating Group Sizes for
Case A

At first, we show that xn has the relation (16) and (17) for Case A. L0(x) in this case
is given by

L0(x) =
β

2
1

eβx/2 − 1
,

and Ln(x) (∀n ≥ 1) by

Ln(x) =
β

eβx − 1
.

When the positive roots for (12) exist, L0(x) and R(x) have the relation as shown in
Fig. 6. We can easily show that L0(x) > Ln(x) (∀n ≥ 1). Therefore, as shown in Fig.
6, when the positive roots for (12) exist, (13) also has the positive roots. The minimum
root is smaller for (13) than for (12). This proves (16). Since each xn (n ≥ 1) is the
root determined commonly for (13) which is now independent of n, they are all identical.
This proves (17).
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Next, we show that Mn(xn) (n ≥ 0) in Case A monotonically decreases in terms of
n. M0(x0) and M1(x1) are respectively obtained as follows:

M0(x0) =
2
β

(1 − e−βx0/2)

M1(x1) =
e−βx0/2

β
(1 − e−βx1).

Since x0 > x1, M0(x0) and M1(x1) have the following relation:

M0(x0) − M1(x1) =
1
β
{2(1 − e−βx0/2) − e−βx0/2(1 − e−βx1)}

>
1
β
{2(1 − e−βx0) − (1 − e−βx1)}

=
1
β
{(1 − e−βx0) + (e−βx1 − e−βx0)} > 0.

Mn(xn) and Mn+1(xn+1) (n ≥ 1) are respectively obtained as follows:

Mn(xn) =
e−βzn−1

β
(1 − e−βxn)

Mn+1(xn+1) =
e−βzn

β
(1 − e−βxn+1).

Since xn = xn+1 for ∀n ≥ 1, Mn(xn) and Mn+1(xn+1) have the following relation:

Mn(xn) − Mn+1(xn+1) =
1 − 2e−βxn + e−β(xn+xn+1)

βeβzn−1

=
(1 − e−βxn)2

βeβzn−1
> 0 for ∀n ≥ 1.

Therefore, Mn(xn) monotonically decreases in terms of n.
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Figure Caption

Fig. 1. The female density distribution functions F : (a) F (x) = exp(−β|x|),
β = 0.1; (b) F (x) = exp(−βx2), β = 0.2; (c) F (x) = c(−x2 + β2), c = 0.025, β = 6.5;
(d) F (x) = 1/{exp(λx − β) + 1}, λ = 2.0, β = 8.0; (e) F (x) = 1/(βx + 1), β = 1.5.

Fig. 2. The territory size xn (grey) and the mating group size Mn (black) for
the 2n + 1 th male (n = 0, 1, 2, ...). n = 0 corresponds to the territory of the best
male in the text. A(x) = exp(−αx), α = 2.0. (a) F (x) = exp(−β|x|), β = 0.1;
(b) F (x) = exp(−βx2), β = 0.2; (c) F (x) = c(−x2 + β2), c = 0.025, β = 6.5; (d)
F (x) = 1/{exp(λx − β) + 1}, λ = 2.0, β = 8.0; (e-1) F (x) = 1/(βx + 1), β = 1.5; (e-2)
F (x) = 1/(βx + 1), β = 10.5.

Fig. 3. The mating group size per territory size Mn(xn)/xn (grey), and the successful
matings Wn(xn) (black) for the 2n + 1 th male (n = 0, 1, 2, ...). A(x) = exp(−αx),
α = 2.0. (a) F (x) = exp(−β|x|), β = 0.1; (b) F (x) = exp(−βx2), β = 0.2; (c) F (x) =
c(−x2 +β2), c = 0.025, β = 6.5; (d) F (x) = 1/{exp(λx− β)+ 1}, λ = 2.0, β = 8.0; (e-1)
F (x) = 1/(βx + 1), β = 1.5; (e-2) F (x) = 1/(βx + 1), β = 10.5.

Fig. 4. The successful matings per territory size Wn(xn)/xn (grey), and the suc-
cessful matings per mating group size Wn(xn)/Mn(xn) (black) for the 2n + 1 th male
(n = 0, 1, 2, ...). A(x) = exp(−αx), α = 2.0. (a) F (x) = exp(−β|x|), β = 0.1;
(b) F (x) = exp(−βx2), β = 0.2; (c) F (x) = c(−x2 + β2), c = 0.025, β = 6.5; (d)
F (x) = 1/{exp(λx − β) + 1}, λ = 2.0, β = 8.0; (e-1) F (x) = 1/(βx + 1), β = 1.5; (e-2)
F (x) = 1/(βx + 1), β = 10.5.

Fig. 5. Relation between L0(x) and R(x) when the positive root for L0(x) = R(x)
exists.

Fig. 6. Relation between Ln(x) and R(x) (n ≥ 0) when the positive root for
L0(x) = R(x) exists, and when Ln(x) > Ln+1(x).


