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1
INTRODUCT ION

1.1 a short history of epidemics

Epidemics have been a part of the long history of human civilization.
One of the earliest records of an epidemic was found in the Amarna
tablets which was an archive of correspondence between the king of
Egypt and their ancient ambassadors in Canaan during 1300s BC. The
tablet mentioned a failure in harvest, cities being attacked, and a plague
that consumed the city of Megiddo [41].

An account by Thucydides on the Plague of Athens gave details on
an epidemic that struck Greece in its antiquity during 430–426 BCE. In
the modern era, now it is known that it was typhoid fever caused by
Salmonella enterica. Spartan siege was the culprit for quick spread of the
disease, as refugees from the countryside hurled into the city-state of
Athens under insufficient fulfilment of nutrition and hygiene. [4]

The biggest epidemic that had struck humanity up until now is the
black death, wiping 30-50% of medieval Europe’s population during
the plague in the 14th to 18th century and might even be higher in other
parts of the world. This is the event in history that marked the birth of
term ’epidemic’ from the Greek word επιδημιοσ (epidemios) (from επι,
epi ’upon’, and δημοσ, demos, ’people’, i.e. ’between people’), address-
ing the infectivity of the disease. Impoverished urban communities
were the ones who got hit the hardest as they lived in such crowded
small houses [4].

Paleobiological research and excavation of ancient tombs across Rus-
sia and Europe by Spyrou and her team concluded in the likely origin
of Yersinia pestis, the cause of the Plague, to be around Volga river that
empties into Caspian Sea. Genomic analysis found the strain that had
infected the first patient in Barcelona in 1348 to be closely related with
the original Volga ancestors [44]. As a flea-borne disease, its entry into
Europe was purported by imports of goods coming from Central Asia
which incidentally brought the flea-infested rats living in containers.
The plague in the medieval era also brought about the modern term
’quarantine’, from Italian quaranta giorni ’40 days’, the length of period
required for ships to anchor themselves into the port before entering
the port city of Venice to avoid newly-coming ships infecting the coastal
cities. [9] The strain that infected Europe made its way to cause plague
in China during the late 19th century [44].
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Until then, there was no specific application of mathematical treat-
ment for investigating disease spread until Daniel Bernoulli (1760)
proposed a mathematical model based on statistical data of smallpox
outbreak to calculate the life expectancy if smallpoxwere ruled out from
a cause of death [6]. The work was originally conceived for addressing
the actuarial issue as time annuities were being sold at that time, mak-
ing his contribution to epidemiology was rather unintended [19]. The
model itself was still premature for an actual epidemiological literature
in addition to the limited understanding of biology and bacteriology in
that period of time [15].

However, the advancement of bacteriology by the time of Spanish
flu outbreak in 1918 ironically caused a misidentification of the cause
of the pandemic [49]. German bacteriologist Richard Pfeiffer isolated
Haemophilus influenzae from a patient and thought that it was the cause
of the outbreak even though the bacteria were not always be found in
every patients of influenza at that time, and his hypothesis (”Pfeiffer’s
doctrine”)wasmuch objected by other experts at that time [51]. Though
the disease itself was unlikely originated from Spain, it had been named
so because at that time only in Spain, a neutral country during the
World War, media reportings were not restricted to censorship [50].
The disease spread quickly due to the advances in distant traveling by
train and big carnival events, in addition to intentional information
restriction by many governments during the war. It was one of the most
devastating pandemic in the modern era, up until COVID-19 [29].

In the recent times, the global spread of COVID-19 [18] has been a
constant fight formany communities, especiallywith the high human-to
human transmissibility via respiratory droplets and airborne particles
containing the virus [8]. Individuals infected with SARS-CoV-2 will
show symptoms such as fever, sore throat, fatigue, and cough, within 4
to 19 days of recent exposure [56, 57]. Delayed onset of the symptoms
and the ever-increasingmobility of human only promotes the spreading
of the disease in global and local scales [28]. Additionally, there was
no specific anti-SARS-Cov-2 treatment for patients with suspected or
confirmed COVID-19 infection [45] during the conceptualization of this
work, although inmid-2021, COVID-19 vaccine became readily available
[30] The severity of COVID-19 vary according to the immune response
of the infected individuals, from asymptomatic or mild symptomps that
recover within two weeks to pneumonia, cytokine storm, acute cardiac
and renal damage, and eventual death [45]. Even after the invention
of COVID-19 vaccine, efficient control of disease spread still requires
active efforts in non-pharmaceutical interventions (NPI) such as social
distancing, masking, hand-washing habit, frequent testing for infection,
real-time information update, and so on [11, 30].
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1.2 epidemic outbreaks and human activities

Theworld’s population started to double aroundmid-twentieth century
and this was not without any consequences [12]. Advancements in
transportation shortened the time required to cover a distance; as a
result, infectious diseases spread faster especially in the recent history
where international travels become easily accessible for most [21]. Hu-
mans as a species thrived so well that their travel and activities grow
into somethingmoremassive that it was possible to grow food, do trade,
have employment, wage war, and — in peaceful modern period — to
spend leisure time [12]. Living in communities, humans associated
together in groups. Communities interact with each other, building a
certain network of society. This comes with a risk, however. Now a sick
individual in the group may easily widespread his or her malady to
the healthy especially in the absence of the understanding of disease
and an effective public health infrastructure [42].

In the previous chapter, the Plague of Athens was mentioned and
how refugees from the countryside contributed to the quick spread of
typhoid fever. Thucydides described clearly that the epidemic entry
was via the port trading route [4]. Moreover, the black death plague
spread along the trade routes [44]. These examples in history have
proved how human activity and travels were major factors in disastrous
epidemics. [4, 12].

Current modern combination of growing population and ease of trav-
eling accelerate the spread of infection communities across the world
[12], such as in the case of COVID-19. Recently, it has been easy to
track activities by using smartphones. Users carry their mobiles in
their proximity, making phones to be an excellent platform for sensing
human activity distribution [16]. Previously, it has been demonstrated
that mobility data derived from phone can be utilized, among many, to
investigate the relationship between travel, activity level, and disease
spread. In Japan, mobile spatial statistics (MSS) were utilized to collect
statistics of the actual population that are generated continuously from
mobile terminal network operational data [36, 47]. Hara and his col-
league [20] analyzed MSS to find for a trend in travel during and after
the state of emergency during early wave of COVID-19. Their results
showed that there was a significant reduction in trips and a decrease in
population density index by 20% nationwide as people avoided trav-
eling to densely populated areas. In Sapporo City, reduction of travel
as much as 70-80% was reported after an analysis by Arimura and his
colleagues [1]. In Chapter 3 of this work, the MSS data during the later
waves of COVID-19 is used to analyze the relationship between the
number of new COVID-19 cases and activity level.

Other works utilizing travel data in countries such as the USA [2,
26, 40, 53, 54] and Japan [33] during the early stages of COVID-19
pandemic drew correlation between social distancing and decreased
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growth rate of COVID-19 case. Combination of phone signal and social
media location tag data gave similar conclusion for UK [25] and Tai-
wan [10], as reduction in travel was uniform all over the countries. In
Indonesia, the travel frequency in rural areas were still high compared
to bigger cities with more awareness of the pandemic, and indeed the
spread of COVID-19 in such rural areas was relatively quick [24].

It is clear that activity level and the risk of infection in communities
have a tight relationship with each other. Activity level, reflected by
the habit of travel, is a significant element to be analyzed in order to
understand the course of disease spread and how communities react to
such type of danger [39].

1.3 disease prevalence and social characteristics

Berkman and Kawachi defined social epidemiology as “the branch of
epidemiology that studies the social distribution and social determi-
nants of states of health” [5, 23]. It focuses especially on how social-
structural factors affect the states of health. What societal characteristics
affecting the pattern of disease and health distribution in a society as
well as its mechanisms are the points of interest. Examples of the iden-
tifiable characteristics are social class, gender, race, ethnicity, discrimi-
nation, social network, social capital, income distribution, social policy,
and so on [23]. The analysis may encompass the prevalence of both
non-communicable and communicable diseases, though in this current
work we will only focus on communicable diseases and an explanation
of the mechanism on how the social factors affect the communicability
would require a separate, careful study.

Diseases are assumed to be byproduct of mutual interaction among
important three factors: social, individual, and biological [42]. In social
epidemiology, social factors can be risk factors of health by adding to
or interacting with individual and biological factors [23]. Asking why
a population has a particular distribution of risk is different from the
etiological question of why a particular individual got sick [42]. Social
epidemiology may contribute to public health by providing hints for
social, environmental, and political intervention [23]. The threats posed
by infectious diseases today are being amplified by social, behavioral
and environmental factors that accelerate the natural phenomena that
modify infectious disease patterns [21].

COVID-19, the cause of the 2020 pandemic, has infected over 500
million peopleworldwide, caused at least 6million deaths [7, 52]. Social
distancing and masking as a form of Non-Pharmaceutical Intervention
(NPI) has been enacted in most of the countries around the world
for reducing the spread of the virus, even after vaccines were widely
distributed in the mid-2021 [30]. Many countries have implemented
strict quarantine, isolation, mobility limitation in other forms, or social
distancing policies early in the epidemic [35, 48]. Understanding social
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situations will help us develop optimal strategies for both ‘‘flatten the
curve’’ and ease the society burden due to economic stagnation, deaths,
and changes in habit as well as culture [3, 46].

People adapt their behavior according to the perceived notion of social
norms, and more often than not, their perceptions are often inaccurate.
Underestimation of health-promoting behaviours and overestimation of
unhealthy behaviors generally contribute to the habits against infection
[27]. In addition, social networks can amplify the spread of behaviours
that could be harmful and beneficial during an epidemic [27], even
causing mass panic via rumors in social media [14].

Slowing viral transmission during pandemics requires significant
shifts in behaviour. Various aspects of social and cultural contexts
influence the extent and speed of behaviour change. Works by Dry-
hurst and Bhuiya showed how risk perception about COVID-19 differed
between countries, and the personal risk perception citizens felt was
influenced by both country and income [7, 17]. Therefore, it is useful
to look at disease spread by using the lens of community, as commonly
shared characteristics and habits could be determining factors on the
prevalence of diseases.





2
A MODEL ING ON THE INFECT ION R I SK BY
SHOPP ING

2.1 introduction

The COVID-19 pandemic has changed the mobility of people around
the world in a significant way. More than a hundred countries had
exercised different types of mobility restriction, from strict lockdowns
to loose suggestions of activity restrictions in public sphere [39]. In the
case of Japan, a lockdown especially a strict one is not an option because
the Constitution of Japan states that citizens should be allowed to move
freely in addition to the absence of law that enforces the citizens to
stay at home [20]. Encouragements for NPIs such as social distancing,
limitation of public facilities usage by a large group of people, and
refraining from activities after the declaration of the state of emergency
were instead observed [39].

In early 2020, Japanese public interest in COVID-19was rather limited.
As the docking of cruise ship Diamond Princess and the repatriation of
its passengers made into national news in February 2020, COVID-19 be-
came a more familiar issue[20]. On April 7th, seven sizable prefectures
(Tokyo, Saitama, Chiba, Kanagawa, Osaka, Hyogo and Fukuoka prefec-
tures) were placed under a state of emergency until May 6. Temporary
closing of offices, schools, and limitations of commercial establishment
such as restaurants and shops were recommended by JapaneseMinistry
of Health, Labour and Welfare following a suggestion for the citizens to
avoid leaving their homes for non‐essential activities [31]. This was the
situation when the model in the following sections was conceptualized,
as ”stay-at-home” was the main strategy in place with certain limitation
of activities being suggested.

2.2 assumptions and modeling

Let us assume a local community with two shops and the community
is in a situation where going out is essentially not recommended due
to an outbreak of an infectious disease. In this situation, we assume the
situation and the setup of the community as follows (Figure 1):

• Two shopkeepers from two different shops, Shop 1 and 2;

• There are 𝑛 customers;

15
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Figure 1: Set-up for the modeling in this chapter

• All are in the same community;

• Customers have preferences in choosing shops.

To factor the disease spread in the community, we set further assump-
tions:

• A shopkeeper and a customer interactwith probability of infection
𝛽;

• Customer’s preference is represented by the probability 𝑝 of going
to Shop 1 and (1 − 𝑝) to Shop 2;

• No interaction between shopkeepers is assumed;

• Customers can visit only opened shops;

• Closed shops provide delivery services to customers who stay at
home, but opened shops do not provide such a service.

Let us consider the total expected number of infections 𝐸:

𝐸 = 𝐸𝐶 + 𝐸𝑆

with the expected number of infections 𝐸𝐶 and 𝐸𝑆 for the customers
and shopkeepers respectively. Let us have the probability of infection 𝛽
when a shopkeeper and a customer interact. The interaction between
customers bring a certain risk of infection with probability 𝑠𝛽, where 𝑠
is the average closeness of interaction between the customers compared
to the interaction between the customer and shopkeeper. In the case of
delivery, let us assign the probability 𝜖𝛽 to be the risk of infection that
arises from the interaction between the deliveryperson and customer.
We assume 𝜖 < 1 as the interaction between the deliveryperson and
customer shall be brief and much shorter than the interaction in the
physical shop. In this modeling, the probability 𝛽 can be regarded as
the infectiousness of the disease in question.

In our set-up, the shops may be opened like usual or closed but with
delivery service. Such a set-up will result in three possible situations:
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Case I: All shops are open.

In this situation there are interactions between the shopkeeper and
customers and also between the customers.

The distribution of the customers depends on the shopping prefer-
ence which is now introduced by 𝑝𝑛 and (1 − 𝑝)𝑛 for Shop 1 and 2,
respectively. For a customer of Shop 1, he/she would need to escape
from infections coming from other 𝑝𝑛 − 1 customers with probability
(1 − 𝑠𝛽)𝑝𝑛−1 in addition to escaping the infection from the shopkeeper
with probability 1 − 𝛽. Overall, the probability for a customer of Shop
1 to do shopping without getting infected is (1 − 𝑠𝛽)𝑝𝑛−1 and thus the
probability of infection is 1 − (1 − 𝑠𝛽)𝑝𝑛−1. The risk of infection for a
customer shopping in Shop 2 follows a similar fashion, that is, with
probability 𝑝𝑛: 1 − (1 − 𝑠𝛽)(1−𝑝)𝑛−1. For the shopkeeper, the probability
of escaping new infection after consecutive contacts with the customers
is (1 − 𝛽)𝑝𝑛 for Shop 1 and (1 − 𝛽)(1−𝑝)𝑛 for Shop 2, and the probability
of infection is given by 1 − (1 − 𝛽)𝑝𝑛 and 1 − (1 − 𝛽)(1−𝑝)𝑛, respectively.
From those descriptions, we have the following expected numbers of
new infections 𝐸𝐶 and 𝐸𝑆 for customers and shopkeepers in Case I:

𝐸𝐶 =𝑝𝑛[1 − {(1 − 𝑠𝛽)𝑝𝑛−1(1 − 𝛽)}]
+ (1 − 𝑝)𝑛[1 − {(1 − 𝑠𝛽)(1−𝑝)𝑛−1(1 − 𝛽)}];

𝐸𝑆 ={1 − (1 − 𝛽)𝑝𝑛} + {1 − (1 − 𝛽)(1−𝑝)𝑛}.
(1)

Case II: One shop is open and the other is closed

In this case, the open shop — let us assign it as Shop A — can be
treated similar to Case I but with a modified distribution of customers
𝑝′𝑛. There are (1 − 𝑝′)𝑛 customers who stay home and have items
delivered to their homes from the closed shop. Interactions between
customers, the customers and shopkeeper in Shop A, and between the
customer and deliveryperson — the shopkeeper of Shop B, i.e. the
closed shop — must be taken into account. As the interaction between
the deliveryperson and customers at home is significantly shorter, the
infection probability for customers receiving the delivery is now given
by (1 − 𝑝′)𝑛𝜖𝛽. For the deliveryperson, the infection probability for
every delivery is 𝜖𝛽, and the deliveryperson escapes infection with
probability (1 − 𝜖𝛽)(1−𝑝′)𝑛 for all deliveries he/she does. Therefore, the
probability of infection for the deliveryperson is {1 − (1 − 𝜖𝛽)(1−𝑝′)𝑛}.
For 𝜖, it has to be 0 < 𝜖 < 1 as there will always be a probability to get an
infection from the deliveryperson and we do not expect the case where
the deliveryperson will absolutely infect the customer. The expected
numbers of infection in Case II are given by

𝐸𝐶 = 𝑝′𝑛[1 − {(1 − 𝑠𝛽)𝑝′𝑛−1(1 − 𝛽)}] + (1 − 𝑝′)𝑛𝜖𝛽;
𝐸𝑆 = {1 − (1 − 𝛽)𝑝′𝑛} + {1 − (1 − 𝜖𝛽)(1−𝑝′)𝑛}.

(2)
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Case III: All shops are closed.

In this case, that all the shops are closed and all customers stay at
home, every customer has their item delivered by their preferred shop,
following similar distribution as in Case I, with 𝑝 and (1 − 𝑝) for Shop
1 and 2, respectively. The possible interaction is only between the
customer and shopkeeper who is now the deliveryperson. The infection
probability for a customer is 𝜖𝛽. For the deliveryperson, the probability
of escaping from the infection by a customer is 1−𝜖𝛽, and the probability
of escaping from the infection at all the deliveries becomes 1−(𝜖𝛽)𝑝𝑛 and
(1−𝜖𝛽)(1−𝑝)𝑛, respectively for Shop A and Shop B. Thus the probability
for the deliverers to get the infection is 1 − {1 − (𝜖𝛽)𝑝𝑛} and 1 − {1 −
(𝜖𝛽)(1−𝑝)𝑛}. We have the following expected numbers of new infections
case in Case III:

𝐸𝐶 = 𝑛𝜖𝛽;
𝐸𝑆 = {1 − (1 − 𝜖𝛽)𝑝𝑛} + {1 − (1 − 𝜖𝛽)(1−𝑝)𝑛}.

(3)

2.3 analysis on the model

We compare every two of cases in the previous section to find the least
expected number of new infections in which situation the infection risk
is considerably lower. The difference 𝐸1 −𝐸2 between the total expected
numbers of new infections in Case I and Case II, 𝐸1 and 𝐸2, that is a
way to find which case is the worse situation.

First let us consider a specific situation with 𝑝′ = 1, when all cus-
tomers in Case II go to Shop 1. In this situation, 𝐸1 − 𝐸2 < 0 for a
sufficiently small 𝛽, while 𝐸1 − 𝐸2 > 0 for sufficiently large 𝛽 (Ap-
pendix A.1).

Next, let us consider the other specific situation with 𝑝′ = 0. All
customers in Case II stay home, which can be regarded as equivalent to
Case III. In this case for sufficiently large 𝛽 ≤ 1, we have 𝐸1 − 𝐸2 > 0
for any value of 𝜖𝛽 ≤ 1 (Appendix A.2). In contrast, if 𝛽 is sufficiently
small, we have 𝐸1 − 𝐸2 < 0 for sufficiently large 𝜖. This result indicated
that, there is a critical value of 𝛽 for which the sign of 𝐸1 − 𝐸2 changes.

This result shows that it depends on the infectivity of the disease
which is the worse, Case I and II. For the higher infectivity, Case I
is worse than Case II, while the latter becomes worse even for the
low infectivity if the delivery causes a high risk of infection for the
customers.

2.4 discussion

We compared the infection risks in three possible situations making use
of the expected numbers of new infections under a limitation of non-
essential activity: no limitation at all (first situation), a certain limitation



2.4 discussion 19

(second situation), and finally a semi-lockdown with movements of
limited persons (third situation). Although intuitively the first situation
would have the highest infection risk, it is not necessarily so according
to this model. The second situation could result in a higher infection
risk for the community members given that the preference for visiting
a public place, i.e. shops (or the awareness to stay home) represents
a nature of the community. If the preference to visit a non-restricted
facility is very high the infection risk could be higher than that with
limitation for the activity.

Even in the first situation where there is no limitation of activity,
the interaction between the customers or the customer and shopkeeper
could be controlled by social distancing, masking, and using contactless
payment. The only feasible option by the shop is to control the customer
density. In the second situation, the awareness of customers to con-
sciously choose to stay home and get their items delivered to their doors
highly depends on the nature of community. A community with an
open shop in close distance may have a considerable amount of people
still visiting the shop in person, compared to where the opened shop is
located farther from the residential area, for which the delivery is more
convenient the customers. In this case, matching the open/closed strat-
egy with the shopping habit of the customers may be an ideal approach
to limit the risk of infection caused by shopping. Indeed, shopping to
any actual brick-and-mortar shop is the activity which has the least
reduction in frequency compared to other possible activities outside
home [39].

In this research project, we do not consider any strategy for the com-
munity to reduce the epidemic prevalence, that is the infection risk. It
may be the shopkeeper’s choice whether the shop is opened or closed
under an epidemic. The choice by the shopkeeper must depend also
on the economic/commercial reason to maintain the business. It may
depend on the reputation of the shop with the choice under a situation
of disease spread in the community. Thus, the result of the choice could
depend on the response of customers for the shopwhich represents a na-
ture of the community/ Such a situation could be theoretically regarded
as a game between the shop(s) and customers. The choice/preference
of customers on which they use going to a shop or ordering by the
delivery could be a strategy, while the strategy of shop could be to open,
close, change to the delivery-based business. Our research is not to
purpose any discussion on such an aspect of theoretical game, although
it would be an intersting theoretical problem. Further, in contrast to
our simplest assumption with a mean-field approximation, it would be
possible to introduce a heterogeneity of customer’s choice, for example,
with a certain distribution of a parameters representing the individu-
ality in the customers. In such a modeling, the distribution could be
regarded as a representation of the nature of community. This one of
future studies related to ours.
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Shopping does take place in a public place with a chance of exposure
to people from different neighborhood, which may or may not carry a
significant risk of infection, unbeknownst to the individuals carrying
out the activity. On the other hand, people also spend their time in their
private space with family or neighbors in a residential area. This is not
without any risk, and we will explore in the next chapter about how
the social situation, in the context of human activity, affect the infection
risk in the community.
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A MODEL ING FOR THE DEPENDENCE OF
INFECT ION R I SK ON COMMUNITY STRUCTURE

3.1 introduction

In this chapter, we construct and analyze a mathematical model to the
consider the correlation between the social activity and the infection
risk in a community. In our modeling, the infection risk is indexed by
the expected number of new cases. We take into account the activity
levels and the sphere where the activity takes place, according to the
types of social interaction held. We shall try to discuss the relation of
the infection risk to the social activity level and activity sphere.

In the first wave of COVID-19 pandemic, Japanese government an-
nounced a state of emergency in April 2020 for seven prefectures with
large populations [31]. During the state of emergency, restrictions of
non-essential activities were suggested by the government. Schools
were closed and many offices arranged the workers to do work from
home (WFH). The trend of WFH, or teleworking, had increased be-
tween January and June 2020, peaking around May 2020 (25% average
increase) nationwide in Japan when the state of emergency was in effect
[37, 38]. Mobility control reduced long-distance travel by 90% [11] at
that time. An analysis by Nagata and his colleagues [33] using mobile
phone signal data showed a strong association between work, nightlife,
and residential location mobility in Japanese metropolitan areas with
COVID-19 incidences. Mobility changes in locations related to nightlife
weremore significantly associatedwith the outbreak than other types of
location [33]. Similarly, we investigated the correlation between activity
level reflected by the mobile phone signal density and the recorded
number of new COVID-19 cases. We picked Shibuya crossing as the
representative location since it is one of the busiest district in Tokyo
area [13] and number of new COVID-19 cases recorded for the city of
Tokyo.

By our calculation to get their correlation described in Appendix
B, we found that there could a positive correlation between the rise
of activity and number of new cases (Figure 2), in agreement with
previous demonstrations that increased mobility positively contribute
to the spread of COVID-19 [53]. There must be a lag between the peaks
in the new cases and peaks in the crowd density, because of a necessary
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Figure 2: Graph of relative crowd density in Shibuya crossing from MSS data
[36] and recorded new COVID-19 cases in Tokyo Metropolitan area
fromMay 2020 to September 2021 [34]. The upper fluctuating graph
indicates the relative crowd density where the weekly average is
drawn together. The lower fluctuating graph indicates the number
of new cases, where the weekly average is drawn together.

Figure 3: Graph of the correlation coefficient between the activity level and
the number of new infection cases in Figure 2 calculated using raw
(blue, peaked at exactly 40 days), weekly average (black, peaked at
42 days), and 7-days past average relative (red, peaked at 38 days)
data.
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latent period for the COVID-19 and a technical or behavioral lag for
the detection of new cases. Our calculation on the data shows that
about 40 days lag could result in the greatest correlation coefficient
between them (Figure 3). Although this lag seems much longer than
the averaged latent period, two weeks for the COVID-19, we could not
find the reasonable explanation about it. However we consider that
this result could be regarded as an example of the positive correlation
of new cases to the social activity.

3.2 assumptions and modeling

Let us assume a community which is composed with two classes based
on their activity level in daily life: less-active and active. The less-
active class typically includes elderly and infants who do not spend a
significant portion of their day outside their residential area. The active
class members partake their activities both in the residential area and
public places out of their residential area (Fig. 4).

We here assume only two different phases about the activity sphere as
previously done by Seno [43]: private and social phases. Private phase
is defined as the activity sphere mainly in the residential area with
limited interactions with the family members, neighbors, and house
staff. Traveling by personal car or bicycle is considered to be at the
private phase. At the social phase, the interactions are with arbitrary
members of the community in the public sphere which may include
but not limited to work, school, shops, public transportations, etc. The
less-active class members have activities at only at the private phase,
and the active class members have those at both the private and social
phases. At the private phase, the epidemiological contact between
members of two classes is possible. In contrast, the epidemiological
contact at the social phase happens only between members of the active
class. The likelihood of infection is assumed to be different according
to the interaction that takes place at each phase, contributed by both
the active and less-active classes at the private phase and solely by the
active class at the social phase.

The member of less-active class has a probability to get infected only
at the private phase. The member of active class has a probability to
get infected at the private or social phase. Higher risk of infection must
result in a higher expected number of new cases.

Expected number of new cases for the less-active class

Let 𝑁 denotes the population size of the community. The sizes of active
and less-active classes are now given by 𝑞𝑁 and (1 − 𝑞)𝑁 respectively
with the ratio 𝑞 of active class in the community. Now we define the
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Figure 4: The active class and less active class and their activity sphere.

expected number of new cases in an appropriate time unit for the less-
active class as

𝐸𝑙(𝛼, 𝑞) = 𝛽𝑝(1 − 𝑞)𝑁, (4)

where 𝛽𝑝 is the probability of infection for an individual at the private
phase. Since 𝛽𝑝 may be contributed by may be contributed by active
and less-active individuals, 𝐸𝑙 is denoted here as a function of 𝛼 and 𝑞
in general.

Expected number of new cases for the active class

Let us introduce here a constant parameter 𝛼 (0 < 𝛼 < 1) that indexes
the mean proportion of time at the social phase of the member of active
class in a daily life. Then, let 𝛼𝛽𝑠 be the probability for an individual
of active class to get infected at the social phase. The individual may
get infected at the private phase with probability (1 − 𝛼)𝛽𝑝. Thus, the
individual of active class can avoid getting infected at the private phase
and social phase to keep being uninfected with probability {1 − (1 −
𝛼)𝛽𝑝}(1 − 𝛼𝛽𝑠). Hence, the infection occurs for the individual of active
class with probability 1 − {1 − (1 − 𝛼)𝛽𝑝}(1 − 𝛼𝛽𝑠). Therefore, we define
the expected number of new cases for the active class as

𝐸𝑎(𝛼, 𝑞) = [1 − {1 − (1 − 𝛼)𝛽𝑝}(1 − 𝛼𝛽𝑠)]𝑞𝑁. (5)

Infection risk for the community

The infection risk for the community is now indexed by the expected
number of new cases 𝐸(𝛼, 𝑞) = 𝐸𝑙(𝛼, 𝑞) + 𝐸𝑎(𝛼, 𝑞) where 𝐸𝑙(𝛼, 𝑞) and
𝐸𝑎(𝛼, 𝑞) are given by (4) and (5). In this work, we introduce the follow-
ing formulas for probabilities 𝛽𝑠 and 𝛽𝑝:

𝛽𝑠 = 𝛽𝑠(𝛼, 𝑞, 𝑁) = 𝜎𝑠𝛼𝑞𝑁;
𝛽𝑝 = 𝛽𝑝(𝛼, 𝑞, 𝑁) = 𝜎𝑝{(1 − 𝑞)𝑁 + (1 − 𝛼)𝑞𝑁}, (6)

where 𝛼𝑞𝑁 corresponds to the expected population density at the social
phase and (1−𝑞)𝑁+(1−𝛼)𝑞𝑁 does to that at the private phase. Positive
constants 𝜎𝑠 and 𝜎𝑝 are the infection coefficients at the social and private
phases, respectively. This formulation is based on the assumption that
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the infection probability has a positive correlation to the population
density. For the well-definition of probabilities 𝛽𝑠 and 𝛽𝑝, our modeling
leads to a confinement of parameters 𝜎𝑠 and 𝜎𝑝 such that 𝜎𝑠𝑁 ≤ 1 and
𝜎𝑝𝑁 ≤ 1.

In the following sections, we will consider the dependence of 𝐸 to
parameters 𝑞 and 𝛼. These parameters characterize the community
structure. Parameter 𝑞 may correspond to the characteristic hardly
changeable (age structure, for example) in the epidemic dynamics,
while 𝛼 may be changeable like the behavioral nature of the active class
in the community,which could be influenced by governmental policy,
social perception, campaign, education, and so on. Focusing on these
two parameters, we will try to discuss how the infection risk depend
on the community structure.

3.3 analysis on the model

3.3.1 Dependence of the infection risk on the class size

We can get the following result about the 𝑞-dependence of the expected
number of new cases 𝐸(Appendix C):

Theorem 3.3.1. The expected number 𝐸 is monotonically decreasing in terms
of 𝑞 ∈ (0, 1) if and only if 𝛼 ≤ 𝛼𝑐, where 𝛼𝑐 is given by the unique root of the
cubic equation

−3𝛼3 + 5𝛼2 + 2𝐴𝛼 −
2

𝜎𝑠𝑁
= 0

for 𝛼 ∈ (0, 1), where

𝐴 ∶=
1

𝜎𝑠𝑁
+

1
𝜎𝑝𝑁 − 1. (##)

Otherwise, when 𝛼 > 𝛼𝑐, 𝐸 has a unique extremal minimum at 𝑞 = 𝑞∗ ∈ (0, 1)
where 𝑞∗ is given by

𝑞∗ =

⎧{{{{
⎨{{{{⎩

1
3(1 − 𝛼)𝛼{ − (𝐴 + 𝛼) + √(𝐴 + 𝛼)2 +

6(1 − 𝛼)
𝜎𝑠𝑁

} for 𝛼 ∈ (𝛼𝑐, 1);

1/(𝜎𝑠𝑁)
1/(𝜎𝑠𝑁) + 1/(𝜎𝑝𝑁) for 𝛼 = 1.

(7)

When the active class has the social phase sufficiently longer than
the private phase, there is a certain proportion of active class for which
the expected number of new cases becomes minimum. Otherwise, the
expected number of new cases is smaller as the size of active class gets
larger.
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3.3.2 Dependence of the infection risk on the activity

We can derive the following result on the 𝛼-dependence of the expected
number 𝐸 (Appendix D):

Theorem 3.3.2. The expected number of new cases 𝐸 is monotonically de-
creasing in terms of 𝛼 ∈ (0, 1) if and only if 𝑞 ≤ 𝑞𝑐, where 𝑞𝑐 is defined by

𝑞𝑐 ∶=
3
2 + 𝐴 − √(

3
2 + 𝐴2) −

2
𝜎𝑠𝑁

. (8)

Otherwise, when 𝑞 > 𝑞𝑐, 𝐸 has a unique extremal minimum at 𝛼 = 𝛼∗ which
is the unique root of

− 4𝛼3 + 3(1 +
1
𝑞)𝛼2 +

2𝐴
𝑞 𝛼 −

2
𝜎𝑠𝑁𝑞2 = 0 (9)

for 𝛼 ∈ (0, 1).

When the active class is sufficiently larger than the less-active class,
there is a certain length of the social phase for which the expected
number of new cases becomes minimum. Otherwise, the expected
number of new cases becomes smaller as the length of the social phase
gets longer.

3.3.3 Social situation to minimize the infection risk

First we find the following result from the results obtained in the previ-
ous section:

Lemma 3.3.3. The expected number of new cases E cannot become minimum
for 𝛼 = 0 or 𝑞 = 0.

The case of 𝛼 = 0 is the situation in which the members of active
class always stay at the private phase, in other words, every individual
in the community is of the less-active class. Such a situation could
be regarded as the community under the complete lockdown. Hence,
this result implies that the complete lockdown could not minimize the
infection risk in the community. Therefore, the expected number of
new cases 𝐸 may become minimum when (𝛼, 𝑞) is one of the following
cases: (1, 1); (1, 𝑞∗); (𝛼∗, 1); (𝛼∗, 𝑞∗) with 𝛼∗ ∈ (0, 1) and 𝑞∗ ∈ (0, 1).

The case of (𝛼, 𝑞) = (1, 1) could be taken into account only when
𝛼 ≤ 𝛼𝑐 ∈ (0, 1) and 𝑞 ≤ 𝑞𝑐 ∈ (0, 1) because this is the case when 𝐸
is monotonically decreasing in terms of 𝛼 ∈ (0, 1) and 𝑞 ∈ (0, 1) as
shown in the previous lemmas. Thus the case when 𝛼 = 1 and 𝑞 = 1
is contradictory to the condition. Therefore, this case cannot make
the value of 𝐸 minimum. The case of (𝛼, 𝑞) = (1, 1) is corresponding
to the situation such that every individual belongs to the active class
and always has activities at the social phase. This result matches our
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Figure 5: Numerically obtained (𝛼, 𝑞)-dependence of 𝐸(𝛼, 𝑞) with 𝜎𝑠𝑁 = 0.6,
𝜎𝑝𝑁 = 0.4, 𝑞𝑐 = 0.371967, and 𝛼𝑐 = 0.42152. Contour map (left) and
three dimensional graph (right).

intuition that the highest active situation would be worse with respect
to infection risk.

For the other cases of (1, 𝑞∗) and (𝛼∗, 𝑞∗), we can prove that they
cannotmake𝐸minimumeither, and consequentlywehave the following
result (Appendix E):

Theorem 3.3.4. The expected number of secondary cases 𝐸 becomes minimum
for (𝛼, 𝑞) = (𝛼∗, 1) such that 0 < 𝛼∗ ≤ 𝛼𝑐 < 1.

The result of Theorem 3.3.4 is visualized by the numerical calculation
for the value of 𝐸 in Fig. 5. Theoretically, it is implied that the situation
with no less-active class minimizes the infection risk. This may be
translated as the less-active class having a higher density at the private
phase, which raises the infection risk, whereas such a situation in an
established community could not be realistic in general. On the other
hand, a specific situation in a temporarily organized village like that in
the Olympiad may be applicable. Then, Theorem 3.3.4 implies that the
infection risk could be minimized by controlling the daily schedule in
the village to an appropriate extent about the activity there.

As for the dependence of 𝐸(𝛼∗, 1) on parameters 𝜎𝑠𝑁 and 𝜎𝑝𝑁, we
find that 𝐸(𝛼∗, 1)/𝑁 becomes larger as 𝜎𝑠𝑁 or 𝜎𝑝𝑁 gets larger. This is
an intuitively expected result because the larger 𝜎𝑠𝑁 or 𝜎𝑝𝑁 means the
higher risk at the social or private phase.

From the results about the 𝑞-dependence and the 𝛼-dependence of 𝐸
obtained in Lemmas 3.3.1 and 3.3.2, we find that the management of
infection risk is significantly restricted by the community structire, and
get the following result:

Lemma 3.3.5. The expected number of new cases 𝐸 becomes minimum for
𝛼 = 1 when 𝑞 ≤ 𝑞𝑐, while it becomes minimum for 𝑞 = 1 when 𝛼 ≤ 𝛼𝑐.

The situation of 𝛼 = 1 means that the case when the active class is
always at social phase. That is, the individual of the active class is never
at private phase. Thismay be regarded as the complete separation of the
active class from the less-active one, or of the less-active class from the
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active one. This could be adapted only for some specific situations, for
example in a temporarily organized village of social event like Olympics
or carvinals.

The situation of 𝛼 = 1 means that the active class is always at the
social phase. That is, the member of active class is never at the private
phase. This may be regarded as a complete separation of the active
class from the less-active one, or of the less-active class from the active
one. However, it cannot be adapted for most of community-level risk
management about the spread of a transmissible disease because such
a complete separation of active and less-active classes can be hardly
realized. In general, the less-active class may consist of elders, infants,
and people with disabilities in the community. Thus, the proportion of
active class 𝑞 is hardly changed. On the other hand, it would be possible
to control the proportion of the social phase 𝛼. For example, limiting
the office work, the school time, or prohibiting from going out for a
certain period may be imposed to control the infection risk.

3.3.4 Classification of community according to the infection risk

As every community is characterized by its own 𝛼 and 𝑞, we can classify
communities according to the infection risk. Based on the results ob-
tained for our mathematical model, we can categorize the community
structure into three types as shown in Figure 7. Type I community is for
𝑞 ≤ 𝑞𝑐, Type II is for 𝑞 > 𝑞𝑐 and 𝛼 ≤ 𝛼𝑐, Type III is for 𝑞 > 𝑞𝑐 and 𝛼 > 𝛼𝑐.
As shown in Lemma 3.3.1 and 3.3.2, 𝛼𝑐 and 𝑞𝑐 are uniquely determined
by (𝜎𝑠𝑁 and 𝜎𝑝𝑁), as numerically seen in Figure 5. They always exist
in terms of 𝜎𝑠𝑁. Since parameters 𝜎𝑠𝑁 and 𝜎𝑝𝑁 are factors to define
the infection probability at social and private phases respectively in the
infection probability at social and phases respectively in our modeling,
this dependence of 𝛼𝑐 and 𝑞𝑐 can be regarded as the dependence on the
infection probability at each phase, which must reflect the character-
istics of community according to the epidemics. This dependence is
quantitative and dependent on themodeling of the infection probability,
whereas it does not change the qualitative result of the dependence of
𝐸 on (𝛼, 𝑞). Thus, we consider hereafter only the qualitative aspect.

In Type I community, the expected number of new cases becomes
smaller as the proportion of the social phase gets larger. Therefore, the
reduction of time at the social phase could not be appropriate to reduce
the infection risk in such a community, which could be regarded as a
modern aged community with a large proportion of aged people.

In Type II community, there is a relatively large active class. which
has a sufficiently small proportion of the social phase. It would be
characterized by a specific custom of social activities including work-
ing, which provides a daily life with a sufficiently short time for the
social activity. For example, this may be regarded as a community
with sufficiently effective telecommunication and teleworking which



3.3 analysis on the model 29

Figure 6: Classification of the community structure indexed by (𝛼, 𝑞). Nu-
merically drawn with parameter values, same with those for Figure
5.
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Figure 7: Dependence of 𝛼𝑐 and 𝑞𝑐 on (𝜎𝑠𝑁, 𝜎𝑝𝑁). Upper figures correspond
to the left figure of Figure 4 with different (𝜎𝑠𝑁, 𝜎𝑝𝑁). Lower figures
numerically shows the dependence of 𝛼𝑐 and 𝑞𝑐 on (𝜎𝑠𝑁, 𝜎𝑝𝑁).
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do not necessarily require the direct contact with the others for a long
duration in the daily life. In such a community, many people could be
regarded as being at the private phase for relatively longer duration in
the daily life. Our analysis implies that, the same as Type I, the longer
time spent at the social phase makes the smaller number of new cases
in such a community of Type II. Therefore, for Type II community, in
order to reduce the infection risk, it would be effective to promote the
social activity out of the private phase. If such a promotion is rather
successful, the community of Type II may change to Type III with the
longer time spent at the social phase.

Differently fromType I and II, the community of Type III has a specific
length at social phase to minimize the infection risk. Hence for such a
community, an appropriate control of the duration at the social phase
would be successful to make the infection risk lower.

3.4 discussion

Let us think of three different communities: one located in an urban
metropolis with a high mobility and relatively young population, one
located in a semi-urban city with relatively young population but lim-
ited options of activity, and another one in a rural areawith lowmobility
and aging population. In a situation without pandemic, we can imagine
that the urban and semi-urban communities have larger size of active
class compared to their rural counterparts. The active class in the urban
population may have a significantly more option of public settings to
spend their proportion of activity sphere in daily life, i.e. at the social
phase. Meanwhile, the semi-urban community limits their time spent
at the social phase as the activity of its active class are limited only to
school/work in different locations and go home afterwards. The rural
community will be content to spend their time at the private phase,
socializing among neighbors and only a handful chances to have a huge
event where all members of the community come together. It is obvi-
ous that the urban community belongs to the Type III, semi-urban one
belongs to the Type II, while the rural community one may falls into
Type I community.

In the event of pandemic, we can turn our attention back to the
urban community of Type III, where there may be a need to control the
duration at the social phase into a specific one tailored to reduce the
infection risk. Applying policies such as closing shopping center and
restaurants early to limit activities, teleworking, online classes, and so
onmay be appropriate in this type of community to shorten their length
of social phase. Periodic closure of public facilities may have a special
effect in minimizing a disease spread [22]. However, we need to recall
that there must be a possibility of infection at the private phase. With
the active class members crowding inside their residential area, the
infectionmay spread still, evenworse, putting elderly or infantmembers
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of less-active class. For the semi-urban community of Type II, it is much
easier to control the spread as they have already a limited duration
at the social phase voluntarily due to lifestyle. However, similar to
infection spread within homes in the Type I communities, promoting
activities at the social phase may be necessary to manage the infection
risk.





4

CONCLUDING REMARKS

Current situation regarding COVID-19 serves as a impetus for a deeper
understanding of the community structure and its social characteristics
to recognize the risk of infection, which is connected to the epidemic
prevalence. Such a huge scale of epidemic is not the first and may not
be the last time in history, thus the knowledge of social epidemiology
would still be relevant in the distant future.

Disease spread is influenced by people’s willingness to adopt preven-
tative public health behaviors, which are often associated with public
risk perception. Risk perception is correlated significantly with adop-
tion of preventative health behaviors in ten countries as previously
studied [17]. Even for the same disease, the response of communities
in each country are dependent on the distinctive institutional arrange-
ments and cultural orientation, affecting the community behavior as a
whole[55]. For example, facing COVID-19, governments of the world
employ different policies such as ”nudge” in Sweden, ”mandate” in
China, ”decree” in France, and ”boost” in Japan, with different level of
enforcement and types of strategy[55].

At first, we consider the modeling in which we focused on the local
mobility in a regional community and what situations would have the
least infection risk. The state of emergency in Japan during April – May
2020 served as an impetus for the consideration of such amodeling. The
assumptions were set as such in a state of emergency or semi-lockdown
situation where the mobility of people was limited only in a neighbor
region that they belong to. According to the report by Parady et al. [39],
shopping is one of the activities with the least reduction in frequency, so
setting up the model to consider only the effect of shopping on disease
prevalence could be reasonable, as a primitive theoretical consideration
on the relation of the infection risk to the social situation.

Next, on the modeling for the dependence of the infection risk on
community structure, the assumptions were considering the situation,
for example, when the lockdown has been relaxed. People are freer
to move, however their mobility is dependent on the social structure
in the communnity. The community is divided by the activity level
and activity phases [43], and these two factors comprises the social
structure in the community. Our analysis of activity level versus the
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number of new cases served as an initial point to exemplify the tight
correlation between these two.

Even though these two models are independent, they are compli-
mentary of each other in that they are considering the effect of social
situation on the prevalence. What situation would give the larger preva-
lence? What kind of factors in terms of the community structure would
be considered to get the estimation of the social situations according to
the severity of an epidemic process? These two questions are common
for building the assumptions for the models.

In Chapter 2, the characteristics of social situation were determined
by the preference of shopping. We compared the infection risks in three
possible situations: no limitation at all, a certain limitation, and a semi-
lockdown with the mobility of limited persons. Semi-lockdown and
activity limitation may not necessarily correlate with a lower infection
risk, as is common with the event of superspreader.

In Chapter 3, the social characteristics of a community were intro-
duced by the distribution of the communitymember’s activities in terms
of the activity level and phase. Communities with young and highly
active members will have different challenges from aging communities,
although appropriate recognition of the social structure is necessary
for both cases. Activity center of the community, for example shops,
offices, schools, and so on, may benefit from recognizing the activity
patterns of its patrons. In such a case, a theoretical game between the
activity center and the community members for the least prevalence
may be an interesting topic to explore as an extension of this study.

As for themodeling in Chapter 2, the theoretical considerationwould
only work for small communities as large ones would not have only two
shops serving the community. Themodeling in Chapter 3maywork for
big communities, and only activities in the localities were considered.
Risks fromvisitors outside the communitieswere not taken into account.
Only very simplemodeling for the infection risk in the private and social
phases were used. It was introduced by the simplest functions of the
mean density. Disease transmissions do not necessarily require the
presence of people, such as the case of droplet transmission.

Further study of the models used in work may examine:

• a more extensive division of activity phases

• the infection probability as a function of other demographic fac-
tors

• the dependence of infection probability on the disease prevalence
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A
S IGN OF 𝐸1 − 𝐸2

a.1 𝐸1 − 𝐸2 for 𝑝′ = 1

Consider the difference in the expected number of new cases 𝐸1 − 𝐸2
with 𝑝′ = 1:

𝐸1 − 𝐸2 = 1 − (1 − 𝛽)𝑝𝑛 − (1 − 𝛽)(1−𝑝)𝑛 + (1 − 𝛽)𝑛

− 𝑛(1 − 𝛽){𝑝(1 − 𝑠𝛽)𝑝𝑛−1 + (1 − 𝑝)(1 − 𝑠𝛽)(1−𝑝)𝑛−1

− (1 − 𝑠𝛽)𝑛−1}.

We have (𝐸1 − 𝐸2)𝛽=0 = 0 and (𝐸1 − 𝐸2)𝛽=1 = 1 > 0. Then we can
find that there is a unique value of 𝛽, 𝛽𝑐 ∈ (0, 1), such that 𝐸1 − 𝐸2 < 0
for 𝛽 < 𝛽𝑐, and 𝐸1 − 𝐸2 > 0 for 𝛽 > 𝛽𝑐. This can be proved from the
following mathematical features of 𝐸1 − 𝐸2 in terms of 𝛽:

• 𝐸1 − 𝐸2 is differentiable for 𝛽 ∈ [0, 1);

• The derivative 𝑑(𝐸1 − 𝐸2)/𝑑𝛽 has the value −2𝑠(1 − 𝑝)𝑝𝑛2 < 0 at
𝛽 = 0;

• The equation 𝑑(𝐸1 − 𝐸2)/𝑑𝛽 = 0 has a unique root of 𝛽 in [0, 1).

From the second feature, we find that 𝐸1 − 𝐸2 must negative for suf-
ficiently small 𝛽 since (𝐸1 − 𝐸2)𝛽=0 = 0. On the other hand, since
(𝐸1 − 𝐸2)𝛽=1 = 1 > 0, 𝐸1 − 𝐸2 must have at least one value of 𝛽 ∈ (0, 1)
such that 𝐸1 − 𝐸2 = 0 because of its continuity in terms of 𝛽 ∈ [0, 1].
Then from the third feature and the continuity of 𝐸1 − 𝐸2, we can
conclude that such a value of 𝛽 ∈ (0, 1) must be unique.

a.2 𝐸1 − 𝐸2 for 𝑝′ = 0

In the case of 𝑝′ = 0,

𝐸1 − 𝐸2 = 1 − (1 − 𝛽)𝑝𝑛 − (1 − 𝛽)(1−𝑝)𝑛 + (1 − 𝜖𝛽)𝑛

+ 𝑛{1 − 𝑝(1 − 𝑠𝛽)𝑝𝑛−1(1 − 𝛽) − (1 − 𝑝)(1 − 𝑠𝛽)(1−𝑝)𝑛−1

− (1 − 𝛽) − 𝜖𝛽}.

For a sufficiently large 𝛽 ≤ 1, 𝐸1 − 𝐸2 is positive for any value of 𝜖
with 𝜖𝛽 ≤ 1.
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42 sign of 𝐸1 − 𝐸2

To see the function behavior for a sufficiently small 𝛽 near zero, ap-
plying 0–th degree Taylor approximation will yield

𝐸1−𝐸2 ≈ 𝑛𝛽−2𝜖𝑛𝛽+(1−𝛽)𝑛𝑠𝛽 [𝑝(𝑝𝑛 − 1) − (1 − 𝑝) {−(1 − 𝑝)𝑛 + 1}] .

For a sufficiently small 𝜖, 𝐸1 − 𝐸2 is positive. However, if we consider
large value of 𝜖 as 𝜖𝛽 ≈ 1, then 𝐸1 − 𝐸2 becomes negative. In that case
we will have

𝐸𝑞 − 𝐸2 ≈ 1 − (1 − 𝛽)𝑝𝑛 − (1 − 𝛽)(1−𝑝)𝑛.

Sufficiently large 𝛽 i.e. 1−𝛽 ≈ 0 will result in positive 𝐸1 −𝐸2. However,
sufficiently small 𝛽 i.e. 1 − 𝛽 ≈ 1 will result in negative 𝐸1 − 𝐸2.



B
ANALYS I S ON A DATA OF NEW CASES AND SOC IAL
ACT IV ITY

We utilized a population estimation dataset created by the NTT DO-
COMO mobile spatial statistics (MSS) which estimates population
density using the operation data from mobile phone network. The data
estimated hourly population in grids on the basis of phone signal [36].
The recorded densities at 15:00 were used as a reference. The relative
density at the Shibuya crossing, one of the most crowded spot in Tokyo,
Japan, was used as a representative. The daily recorded new case in
TokyoMetropolitan areawas taken from the reported cases by the Japan
Broadcasting Cooperation[34]. Datasets from May 2020-October 2021
was used. Steps to estimate an appropriate value of the correlation
coefficient are as follows:

1. The daily data of phone signal was transformed into the relative
crowd density by normalizing the daily density with the most
crowded day between May 2020 to October 2021. It provides the
original relative density data. The data of new infection cases was
not modified for the original dataset.

2. For the original relative crowddensity and the new infection cases,
each dataset was used to obtain the weekly average and seven-
days average datasets as well. The weekly average is counted by
averaging Monday to Sunday data, while seven-days average is
counted as an average from the past seven days including the
calculated day (for example, a Wednesday data was obtained by
averaging the data from Thursday of its previous week until the
Wednesday in question). By now we have the original (raw),
weekly average, and seven-days average data for both phone sig-
nal and daily case record for crowd density and new cases.

3. From the datasets, we focused on the periods when the new cases
had been increasing. Periods between December 2020-January
2021, March-April 2021, and June-July 2021 were sampled.

4. The periods with increasing new cases were matched with the
crowd density data of the corresponding periods but shifted from
zero (recorded cases on the same day) to sixty days.
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44 analysis on a data of new cases and social activity

5. The correlation coefficients between the reported new cases and
crowd density for shifted days were calculated using Pearson’s
correlation coefficient

𝑟 =
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)2√∑𝑛

𝑖=1(𝑦𝑖 − ̄𝑦)2
.

As a result, number of shifted days with the highest correlation
coefficient was obtained as the optimal day(s) delay.

The analysis for optimal delay resulted in 40 days for original data
(𝑟 = 0.43), 6 weeks (=42 days) for weekly average (𝑟 = 0.85), and 38
days for seven-days average (𝑟 = 0.84), as shown in Fig. 3.



C
PROOF OF THEOREM 3 . 3 . 1

From (4), (5), and (6), we have

𝐸𝑙(𝛼, 𝑞) =𝜎𝑝𝑁(1 − 𝛼𝑞)(1 − 𝑞)𝑁 = 𝑁 ⋅ 𝜎𝑝𝑁{1 − (1 + 𝛼)𝑞 + 𝛼𝑞2};

𝐸𝑎(𝛼, 𝑞) =𝑁 ⋅ 𝜎𝑝𝑁𝜎𝑠𝑁 ⎡⎢
⎣
(1 − 𝛼)𝛼3𝑞2 +

⎧{
⎨{⎩

−
1

𝜎𝑠𝑁
(1 − 𝛼)𝛼 +

1
𝜎𝑝𝑁𝛼2⎫}

⎬}⎭
𝑞 +

1
𝜎𝑠𝑁

(1 − 𝛼)⎤⎥
⎦

𝑞.

(C.10)

Let us consider

𝜓(𝛼, 𝑞) ∶=
𝐸(𝛼, 𝑞)/𝑁
𝜎𝑝𝑁𝜎𝑠𝑁

= (1 − 𝛼)𝛼3𝑞3 + 𝜎𝑠𝑁(𝐴 + 𝛼)𝛼2𝑞2 −
2

𝜎𝑠𝑁
𝛼𝑞 +

1
𝜎𝑠𝑁

,

(C.11)
where A is defined by ##, and satisfies that

𝐴 > max ⎡⎢
⎣

1
𝜎𝑠𝑁

,
1

𝜎𝑝𝑁
⎤⎥
⎦

≥ 1,

since 𝜎𝑠𝑁 < 1 and 𝜎𝑝𝑁 < 1 from the confinement for our modeling.
In order to investigate 𝑞-dependence of 𝐸, let us differentiate (C.11)

in terms of 𝑞:

𝜓𝑞(𝛼, 𝑞) ∶=
𝜕𝜓(𝛼, 𝑞)

𝜕𝑞 = 𝛼 {3(1 − 𝛼)𝛼2𝑞2 + 2(𝐴 + 𝛼)𝛼𝑞 −
2

𝜎𝑠𝑁
}

𝜓𝑞𝑞(𝛼, 𝑞) ∶=
𝜕2𝜓(𝛼, 𝑞)

𝜕𝑞2 = 𝛼 {6(1 − 𝛼)𝛼2𝑞 + 2(𝐴 + 𝛼)𝛼} .

(C.12)
Since 𝜓𝑞𝑞 > 0 for any 𝛼 ∈ (0, 1), 𝜓𝑞 is monotonically increasing in
terms of 𝑞 ∈ (0, 1). Further, since 𝜓𝑞(𝛼, 0) = −2𝛼 ≤ 0, there are two
distinct cases depending on the sign of 𝜓𝑞(𝛼, 1). If 𝜓𝑞(𝛼, 1) ≤ 0, then
𝜓𝑞(𝛼, 𝑞) < 0 for 𝑞 ∈ (0, 1) so that 𝜓 is monotonically decreasing for
any 𝑞 ∈ 0, while, if 𝜓𝑞(𝛼, 1) > 0, then 𝜓𝑞(𝛼, 𝑞) changes its sign from
negative to positive as 𝑞 gets larger in (0, 1) so that 𝜓 has a unique
extremal minimum at a value of 𝑞 = 𝑞∗ ∈ (0, 1). In such a case, the
value 𝑞∗ is the root of the equation 𝜓𝑞(𝛼, 𝑞)/𝛼 = 0 in terms of 𝑞 as given
by (7), where 𝑞∗ depends on 𝛼.

Further, we can find that

𝜕
𝜕𝛼 {

𝜓𝑞(𝛼, 1)
𝛼 } = 3(2 − 3𝛼)𝛼 + 2(𝐴 + 2𝛼) = 9𝛼(1 − 𝛼) + 𝛼 + 2𝐴 > 0
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46 proof of theorem 3.3.1

for 𝛼 ∈ (0, 1), and

𝜓𝑞(𝛼, 1)
𝛼 ∣

𝛼=0
= −

2
𝜎𝑠𝑁

< 0;
𝜓𝑞(𝛼, 1)

𝛼 ∣
𝛼=1

= 2(𝐴+1)−
2

𝜎𝑠𝑁
=

2
𝜎𝑝𝑁 > 0

. Thus, there is a unique value 𝛼𝑐 ∈ (0, 1) such that 𝜓𝑞(𝛼, 1) < 0 for
𝛼 < 𝛼𝑐 and 𝜓𝑞(𝛼, 1) > 0 for 𝛼 > 𝛼𝑐. We can easily find that the critical
value 𝛼𝑐 is given by the unique root of the cubic equation (7) in terms
of 𝛼 ∈ (0, 1). These results conclude Lemma 3.3.1.



D
PROOF OF THEOREM 3 . 3 . 2

We have the following partial derivatives of 𝜓(𝛼, 𝑞) defined by (C.11)
in terms of 𝛼:

𝜓𝛼(𝛼, 𝑞) ∶=
𝜕𝜓(𝛼, 𝑞)

𝜕𝛼 = 𝑞3{ − 4𝛼3 + 3(1 +
1
𝑞)𝛼2 +

2𝐴
𝑞 𝛼 −

2
𝜎𝑠𝑁𝑞2 };

𝜓𝛼𝛼(𝛼, 𝑞) ∶=
𝜕2𝜓(𝛼, 𝑞)

𝜕𝛼2 = 2𝑞3{ − 6𝛼2 + 3(1 +
1
𝑞)𝛼 +

𝐴
𝑞 }.

(D.13)
Since 𝜓𝛼𝛼(0, 𝑞) = 2𝑞2𝐴 > 0 and 𝜓𝛼𝛼(1, 𝑞) = 2𝑞3{ − 3 + (3 + 𝐴)/𝑞} >
0, we can easily find that 𝜓𝛼𝛼(𝛼, 𝑞) > 0 for 𝛼 ∈ (0, 1). Hence, 𝜓𝛼 is
monotonically increasing for 𝛼 ∈ (0, 1).

From (D.13), we have 𝜓𝛼(0, 𝑞) = −2𝑞 < 0 and

𝜓𝛼(1, 𝑞)
𝑞 = −𝑞2 + (3 + 2𝐴)𝑞 −

2
𝜎𝑠𝑁

,

and then,

𝜓𝛼(1, 𝑞)
𝑞 ∣

𝑞=0
= −

2
𝜎𝑠𝑁

< 0;
𝜓𝛼(1, 𝑞)

𝑞 ∣
𝑞=1

= 2(1+𝐴−
1

𝜎𝑠𝑁
) =

2
𝜎𝑝𝑁 > 0.

(D.14)
From (D.14), we can easily find that 𝜓𝛼(1, 𝑞) is negative for 𝑞 < 𝑞𝑐 ∈
(0, 1) and positive for 𝑞 > 𝑞𝑐, where 𝑞𝑐 is given by YY as the smaller
root of the equation 𝜓𝛼(1, 𝑞)/𝑞 = 0.

Consequently, since 𝜓𝛼 is monotonically increasing for 𝛼 ∈ (0, 1), we
have 𝜓𝛼(𝛼, 𝑞) ≤ 0 for any 𝛼 ∈ (0, 1) if and only if 𝑞 ≤ 𝑞𝑐, while 𝜓𝛼(𝛼, 𝑞)
changes the sign from negative to positive as 𝛼 gets larger if and only
if 𝑞 > 𝑞𝑐. Therefore, 𝜓(𝛼, 𝑞) is monotonically decreasing in terms of
𝛼 ∈ (0, 1) if and only if 𝑞 > 𝑞𝑐.
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First, we prove the following lemma:
Lemma E.0.1. The expected number of new cases 𝐸 cannot be minimum for
(𝛼, 𝑞) = (1, 𝑞) for any 𝑞 ∈ (0, 𝑞𝑐 ].

The case of (𝛼, 𝑞) = (1, 𝑞∗) could be valid only when 𝛼 > 𝛼𝑐 ∈ (0, 1)
and 𝑞 ≤ 𝑞𝑐 ∈ (0, 1). Thus, it is necessary that 𝑞∗ ≤ 𝑞𝑐, otherwise this
case is invalid for minimizing 𝐸. From the proof of Theorem 3.3.2 in
Appendix D, the condition that 𝑞∗ ≤ 𝑞𝑐 is equivalent to that 𝜓𝛼(1, 𝑞∗) ≤
0, that is, from (D.14),

− 𝑞∗2 + (3 + 2𝐴)𝑞∗ −
2

𝜎𝑠𝑁
≤ 0.

Since 𝑞∗ is given by (7) for 𝛼 = 1, this condition becomes

−
⎧{
⎨{⎩

1/(𝜎𝑠𝑁)
1/(𝜎𝑠𝑁) + 1/(𝜎𝑝𝑁)

⎫}
⎬}⎭

2
+ (3 + 2𝐴)

1/(𝜎𝑠𝑁)
1/(𝜎𝑠𝑁) + 1/(𝜎𝑝𝑁) −

2
𝜎𝑠𝑁

= −
⎧{
⎨{⎩

1/(𝜎𝑠𝑁)
1/(𝜎𝑠𝑁) + 1/(𝜎𝑝𝑁)

⎫}
⎬}⎭

2
+ (

2
𝜎𝑠𝑁

+
2

𝜎𝑝𝑁 + 1)
1/(𝜎𝑠𝑁)

1/(𝜎𝑠𝑁) + 1/(𝜎𝑝𝑁) −
2

𝜎𝑠𝑁
≤ 0.

With some calculation about this inequality, we can find the equivalent
inequality such that 1/(𝜎𝑝𝑁) ≤ 0. This is impossible. Hence the con-
dition 𝑞∗ ≤ 𝑞𝑐 cannot be satisfied when 𝛼 = 1. Therefore, it has been
shown that 𝑞∗∣𝛼=1 > 𝑞𝑐. Therefore, the case of (𝛼, 𝑞) = (1, 𝑞∗) cannot be
valid. As a result, we can get Lemma E.0.1

Next, the case of (𝛼, 𝑞) = (𝛼∗, 1) could be valid only when 𝛼 ≤ 𝛼𝑐 ∈
(0, 1) and 𝑞 > 𝑞𝑐 ∈ (0, 1). Thus, it is necessary that 𝛼∗ ≤ 𝛼𝑐 for 𝑞 = 1,
otherwise this case is invalid for minimizing 𝐸. From Theorem 3.3.1,
the condition that 𝛼∗ ≤ 𝛼𝑐 is equivalent to that

−3𝛼∗3 + 5𝛼∗2 + 2𝐴𝛼∗ −
2

𝜎𝑠𝑁
≤ 0. (E.15)

Then, from (9) in Theorem 3.3.2, we have 𝛼∗ for 𝑞 = 1 which satisfies
the following equation:

−4𝛼∗3 + 6𝛼∗2 + 2𝐴 𝛼∗ −
2

𝜎𝑠𝑁
= 0, (E.16)

that is,

−3𝛼∗3 + 5𝛼∗2 + 2𝐴 𝛼∗ −
2

𝜎𝑠𝑁
= 𝛼∗3 − 𝛼∗2.

49



50 proof of theorem ??

Substituting (E.16) for (E.15), we can get the condition that 𝛼∗3 − 𝛼∗2 =
𝛼∗2(𝛼∗ − 1) ≤ 0. This condition is necessarily satisfied if there exists
𝛼∗ ∈ (0, 1) when 𝑞 = 1. Indeed, from (E.16), it can be easily seen
that there exists uniquely 𝛼∗ ∈ (0, 1) even when 𝑞 = 1. From these
arguments, we have proved that it is necessarily satisfied that 𝛼∗ ≤ 𝛼𝑐
when 𝑞 = 1. As a result, we can get the following lemma:

Lemma E.0.2. The expected number of new cases 𝐸 becomes minimum
for (𝛼, 𝑞) = (𝛼∗, 1) in the region {(𝛼, 𝑞) ∈ (0, 1) × (0, 1) ∣ 𝛼 ≤ 𝛼𝑐 ∈
(0, 1) and 𝑞 > 𝑞𝑐 ∈ (0, 1)}.

Lastly, the case of (𝛼, 𝑞) = (𝛼∗, 𝑞∗) could be valid for minimizing 𝐸
only when 𝛼 > 𝛼𝑐 ∈ (0, 1) and 𝑞 > 𝑞𝑐 ∈ (0, 1). Now suppose that it
could be valid. We have 𝑞∗ for 𝛼 = 𝛼∗ satisfying the following from (??)
with Theorem 3.3.1:

−3𝛼∗3 + (3 +
2
𝑞∗ )𝛼∗2 +

2𝐴
𝑞∗ 𝛼∗ −

2
𝜎𝑠𝑁 𝑞∗2 = 0, (E.17)

while 𝛼∗ for 𝑞 = 𝑞∗ satisfies the following from (9) in Lemma 3.3.2:

−4𝛼∗3 + (3 +
3
𝑞∗ )𝛼∗2 +

2𝐴
𝑞∗ 𝛼∗ −

2
𝜎𝑠𝑁 𝑞∗2 = 0,

that is,

−3𝛼∗3 + (3 +
2
𝑞∗ )𝛼∗2 +

2𝐴
𝑞∗ 𝛼∗ −

2
𝜎𝑠𝑁 𝑞∗2 = 𝛼∗3 −

𝛼∗2

𝑞∗ . (E.18)

From these equations (E.17) and (E.18), we can immediately get the
equation that 𝛼∗3 − 𝛼∗2/𝑞∗ = 0, which results in 𝛼∗𝑞∗ = 1. This is
inconsistent for 𝛼∗ ∈ (0, 1) and 𝑞∗ ∈ (0, 1). This means that there does
not exist mathematically reasonable (𝛼∗, 𝑞∗) such that 𝛼∗ ∈ (0, 1) and
𝑞∗ ∈ (0, 1) about 𝐸. Finally we can conclude the following lemma:

Lemma E.0.3. There is no definite point (𝛼, 𝑝) to minimize 𝐸 in the region
{(𝛼, 𝑞) ∈ (0, 1) × (0, 1) ∣ 𝛼 > 𝛼𝑐 ∈ (0, 1) and 𝑞 > 𝑞𝑐 ∈ (0, 1)}.

This lemma indicates that the expected number of new cases 𝐸 cannot
be minimumwhen 𝛼 = 𝛼∗ or 𝑞 = 𝑞∗, and further implies that it becomes
minimum only when 𝛼 = 1 or 𝑞 = 1. Consequently, we can derive
Theorem 3.3.4.
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